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The Mott-Hubbard metal-insulator transition is one of the most important problems in correlated-
electron systems. In the past decade, much progress has been made in examining a particle-hole
symmetric form of the transition in the Hubbard model with dynamical mean field theory, where it was
found that the electronic self-energy develops a pole at the transition. We examine the particle-hole
asymmetric metal-insulator transition in the Falicov-Kimball model and find that a number of features
change when the noninteracting density of states has a finite bandwidth.
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(albeit exponentially small) in a region around the
pseudogap. Hence, the metal-insulator transition (MIT) where cy (ci) denotes the creation (annihilation) operator
The Mott-Hubbard metal-insulator transition [1,2] is
a classic example of the physics of strongly correlated
electrons. The physical mechanism of the transition
arises from a local Coulomb repulsion U that forbids
double occupancy of the electrons, creating an insulator
when there is one particle per site (on average).
Experimentally it is found in a variety of materials,
including many transition metal compounds (MnO,
NiO, NiS, YBa2Cu3O6, etc.) for which band structure
calculations severely underestimate the band gap or yield
a metallic solution [3].

In the Hubbard model [2], a number of approximations
have been employed that assume either the metallic state
and head toward the insulator [2,4,5], or vice versa [2,6].
Often it is difficult to develop an approximate theory that
is able to describe both the weakly correlated Fermi-
liquid phase and the strongly correlated insulator; hence
most approximate methods yield only limited informa-
tion about the transition. Much progress has been made
with dynamical mean field theory (DMFT) [7], where
fundamental questions such as the following have been
analyzed in great detail: Is the transition continuous or
discontinuous? Does the Fermi-liquid metal survive up to
the transition or do non-Fermi-liquid metallic phases
intervene? Do metastable phases exist? However, the
numerics are quite complicated and delicate because the
different phases are separated by very small energies.
Hence there has been much controversy about the answers
to these questions and about the details of the Mott-
Hubbard transition [8–14]; similar issues have been
studied in the disordered case [15].

Some of these problems arise from the limit of infinite
dimensions, where the noninteracting density of states
(DOS) on a hypercubic lattice is a Gaussian, which has
an infinite bandwidth. This means that the DOS can
vanish (and thereby yield an insulator at T � 0) only
when the self-energy diverges. Since this occurs only at
the single point of an isolated pole, the DOS in the
insulating phase is really a pseudogap and is nonzero
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on a hypercubic lattice always occurs when the self-
energy develops a pole (that lies infinitesimally below
the real axis). It turns out that the same scenario occurs
on the Bethe lattice at half filling, even though the DOS
has a finite bandwidth; the MIT occurs when the self-
energy develops a pole at the chemical potential
(although here there is now a well-defined gap, where
the DOS vanishes over a finite range of frequencies).

The question we wish to address is what happens
when the MIT occurs for a system that does not possess
particle-hole symmetry [16]. Following the argument
given above, the pole formation must be the underlying
cause of the MIT on the hypercubic lattice, but the situ-
ation on the Bethe lattice is unclear. The interest in
examining particle-hole asymmetric cases lies in the
fact that most real materials do not have particle-hole
symmetry; so understanding consequences of breaking
particle-hole symmetry is important for understand-
ing experimental systems. There are two ways to break
particle-hole symmetry: (i) one can modify the lattice,
so it is not bipartite, and then there is no particle-hole
symmetry at half filling, where the MIToccurs, or (ii) one
can modify the model so that a MIT occurs at different
fillings, away from the particle-hole symmetric limit. We
choose to examine the latter here.

We consider the MIT in the spinless Falicov-Kimball
(or simplified Hubbard) model [17], which is believed to
describe correlated-electron behavior, and in particular,
the MIT in materials that can be fit into a binary alloy
picture. The canonical system that fits this picture is TaxN
[18,19], which has its MIT occur at a particle-hole asym-
metric value of x � 0:6. The Falicov-Kimball model has
been previously applied to the MIT [20,21]. Its advantages
over the Hubbard model are that it has a MIT for a wide
range of fillings and the numerics are under much better
control. The Falicov-Kimball Hamiltonian has the fol-
lowing form
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FIG. 1. Phase diagram for the MIT in the Falicov-Kimball
model on the Bethe and hypercubic lattices. The solid line
denotes Ucg for the gap formation on the Bethe lattice, the
dashed line denotes Ucp for the pole formation on the Bethe
lattice, and Ucg � Ucp on the hypercubic lattice. The inset
shows the universal curve of the residue of the pole R�U� as
a function of the interaction strength for both lattices and all
fillings.
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for a spinless electron on site i, and the summation is
restricted to nearest neighbors. The classical variable wi
equals one or zero, corresponding to the presence of an A
or a B ion at the given lattice site, and U is the diagonal
site-energy difference between the two ionic configura-
tions. The hopping integral t is appropriately scaled in
order to be finite in the limit of large dimensions (d) or
coordination number (Z) [7] and to result in the same
effective bandwidths W �

������������������������R
�2����d�

q
(with ���� the

noninteracting DOS) for both lattices [14]. Therefore,
t � t	=

����
Z

p
on the Bethe lattice and t � t	=

������
2d

p
on the

hypercubic lattice. The conduction electrons interact
with the localized particles (which have an average fill-
ing of w1 � hwii) with an interaction strength U; this
forms the canonical binary alloy picture. Such a picture
is particularly useful because the model exhibits a MIT
when the particle-hole symmetry is broken (w1 � 0:5), as
long as the total particle density equals one. Hence, we
constrain our calculations to fix the total number of
particles, i.e., the number of conduction electrons satis-
fies �e � 1� w1. If we choose to measure all energies
in the units of t	, then the noninteracting DOS on the
Bethe and hypercubic lattices are a semicircle and a
Gaussian, respectively, �Bethe��� �

��������������
4� �2

p
=2� and

�HC��� � exp���2=2�=
�������
2�

p
.

In the limit of infinite dimensions the Falicov-Kimball
model can be solved exactly using DMFT [22,23].
Because the self-energy ��!� has no momentum depen-
dence, one can employ an iterative scheme using the
following relationships between the self-energy ��!�,
the retarded Green’s function G�!�, and the effective
medium G0�!�:

G�!� �
Z

d�����
1

!��� ��!� � �� i�
(2)

G0�!� � �G�!��1 � ��!��1��1 (3)

G�!� � �1� w1�G0�!� � w1
1

G0�!��1 �U
(4)

closed in the iterative loop until the self-energy is
converged to a desired accuracy [24]. The algorithm
normally converges to about 13 digits when iterated.
The calculations are particularly easy in the case of
the Bethe lattice since the integral in Eq. (2) can be
determined analytically (for the hypercubic lattice it is
a complex error function). Once the algorithm is con-
verged, the interacting DOS is defined to be �int�!� �
�Im�G�!��=�. The essential difference in the physics on
these two lattices arises from the behavior of the interact-
ing DOS. While the Bethe lattice exhibits a well-defined
gap where the interacting DOS is exactly zero for a finite
range of frequencies when U > Ucg (the critical value of
the interaction strength for opening a gap in the interact-
ing DOS), on the hypercubic lattice the DOS splits into
two subbands divided by a ‘‘pseudogap,’’ where the inter-
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acting DOS is exponentially small and exactly zero only
at one point. The interacting DOS away from half filling
has appeared elsewhere [20,25].We should note that in the
Falicov-Kimball model there is no quasiparticle peak at
the chemical potential, which normally develops for U
less than Ucg in the Hubbard model in infinite dimen-
sions. This is because the Falicov-Kimball model lacks
quasiparticles in the strict definition of the term, since the
lifetime of Fermionic excitations never becomes infinite
as T ! 0.

The metal-insulator transition at half filling is closely
related to the development of a pole in the self-energy,
where the DOS is suppressed to zero (Ucg) at the same
interaction strength for which the pole forms (Ucp); i.e.,
Ucg � Ucp. Therefore one could suggest to use the residue
of the pole as an order parameter for the MIT. In fact, a
plot of the residue versus �U �Ucp�=Ucp is universal, for
all fillings on both the hypercubic and Bethe lattices,
indicating that a scaling theory holds for the residue of
the pole (see inset of Fig. 1). Away from half filling, these
two processes (pole formation and the MIT) are de-
coupled on the Bethe lattice, with the pole formation
occurring after the MIT (in particular, the real part of
the Green’s function does not cross the horizontal axis
[within the band gap] until the pole forms).

We begin with the cubic equation that is satisfied by the
Green’s function on the Bethe lattice [20]:

G3 � 2xG2 �

�
1� x2 �

U2

4

�
G� �x� �� � 0; (5)

where x � !���U=2 and � � U�w1 �
1
2�. The pole

in the self-energy develops when G � 0, requiring x�
� � 0, or !pole � U�1� w1� ��. Next, one notes that
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FIG. 2. The relative interaction strength for the opening of a
gap versus the relative location of the pole (Epole) in the gap (of
width Egap) on the Bethe lattice; the origin on the horizontal
axis lies at the center of the gap. The lines from left to right
correspond to different fillings w1 ranging from 0.9 to 0.1, in
steps of 0.1.
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FIG. 3. Evolution of the real part of the self-energy for
different values of U, for both the Bethe (left panel) and
hypercubic (right panel) lattices, at half filling w1 � 0:5 (solid
line) and at w1 � 0:25 (dashed line). The origin of the fre-
quency axis is set to U�1� w1� ��.
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G � 0 is a physical root [26] when 1� x2 �U2=4 � 0,
which leads to the simple formula for Ucp, the critical
value of U at which the self-energy develops a pole

Ucp �
1������������������������

w1�1� w1�
p : (6)

Away from half filling, the critical values of U for the
MIT and the pole formation are not necessarily the same
on the Bethe lattice, and the former is found from the
following. Let us use standard notation for the cubic
equation’s coefficients (see [27]) q � �3� x� 3U2=4�=9
and r � x�1�U2=2�=6� �=2� x3=27. The condition
for the location of the band edges (q3 � r2 � 0) is a
fourth order equation in ! and must have exactly three
distinct roots at Ucg, the critical interaction strength for
the MIT (four distinct roots for U > Ucg). As shown in
Ref. [20], this condition leads to an equation for the
critical interaction:

1� 4
�2

U2 �
4�U2 � 1�

27U2 : (7)

Solving Eq. (7) for U yields the critical interac-
tion strength for the MIT (gap opening on a Bethe lat-
tice) Ucg:

Ucg �

���������������������������������������������������������������������������������������
1� 3w1=3

1 �1� w1�
1=3��1� w1�

1=3 � w1=3
1 �

q
: (8)

Both expressions (6) and (8) yield two at half filling
(w1 � 0:5). The behavior of Ucp and Ucg for arbitrary
fillings is shown in Fig. 1. As the system moves away
from half filling, the particle-hole asymmetry allows for
the formation of a third ‘‘phase,’’ in which the interacting
DOS has a gap, but there is no pole in the self-energy
(region between the solid and dashed lines in Fig. 1 on the
Bethe lattice). This dramatic difference in the MIT as we
move away from half filling is most likely due to the
difference between an infinite bandwidth and a finite
bandwidth [28]. On the hypercubic lattice, the pole for-
mation and MIT always occur at the same value of U
(Ucg � Ucp), and it is possible to obtain an exact expres-
sion for the pole formation, which turns out to coincide
with Eq. (6). Numerical calculations show that the inter-
acting DOS for the hypercubic lattice has an expo-
nentially small region over a similar range in frequency
as the gap region on the Bethe lattice (for the same value
of U).

Figure 2 shows the relative interaction strength as a
function of the relative location of the pole within the
gap, on the Bethe lattice. The pole is located in the middle
of the gap at half filling for any value of U > Ucg.
However, as the particle-hole symmetry is broken, the
pole first appears at the lower or upper band edge (for
U � Ucp), depending on whether w1 is larger or smaller
than 0.5, and as U increases the pole drifts closer to the
center of the band gap. Note that there is no smooth
transition between the half-filled case and the particle-
hole asymmetric case.
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Numerical calculations show the evolution of the real
part of self-energy on the Bethe lattice compared to that
on the hypercubic lattice in Fig. 3, when approaching the
MIT from the metallic side. Aside from obvious similari-
ties between the two lattices, this graph demonstrates the
existence of the third phase in the middle panel, where
U � 2. The half-filled curves (w1 � 0:5) always show
poles in the insulator, and therefore the DMFT scenario
discussed in Refs. [5,11,14] holds. However, the curves
corresponding to w1 � 0:25 exhibit large (negative) but
finite values of Re���!�� (the pole has not yet developed),
but the system is an insulator on the Bethe lattice with a
well-developed gap at this value of U. (Both Re���!��
and Re�G�!�� develop kinks at the new band gap edges,
but there is no obvious way to use the presence of a kink
216401-3
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as an order parameter for the MIT.) Hence, we conclude
that the development of the pole and the MIT are de-
coupled away from half filling and, even if it might be
tempting to use the residue of the pole as an ‘‘order
parameter’’ for the MIT, it fails to describe the situation
off of half filling on lattices with a finite bandwidth. So
what significance can be made of the pole formation? In
order to investigate this, we calculate the dc conductivity
in the relaxation time formalism (see [29] for details).
These calculations (not shown here) indicate that the MIT
is always a continuous transition at T � 0, with the con-
ductivity being suppressed continuously to zero as U !
Ucg. Also, at finite temperature we see no evidence for the
influence of the pole on the transport. The conductivity
curves are smooth functions of T with no unusual fea-
tures occurring when U > Ucp.

On the hypercubic lattice, one finds the imaginary
parts of G�!� and ��!� exponentially approaching zero
as ! ! U�1� w1� �� [25], while they are exactly zero
on the Bethe lattice. These, at first sight small differences,
in fact turn out to cause dramatic changes in the low
temperature transport properties [25,30] when going
from the Bethe lattice (where the relaxation time vanishes
in the gap) to the hypercubic lattice (where the relaxation
time has a power-law dependence around the pseudogap).
The most significant departure is in thermal transport
properties, where the thermopower diverges on the Bethe
lattice, but vanishes on the hypercubic lattice in the
insulating phase as T ! 0 (when particle-hole symmetry
is broken).

In conclusion, we have analyzed the effect of particle-
hole asymmetry on the Mott transition in the infinite
dimensional Falicov-Kimball model (on both the Bethe
and the hypercubic lattices). Hitherto, it was believed that
the scenario for the MITon both lattices was the same, as
indeed is the case at half filling. We find that this is not
true when the particle-hole symmetry is removed, as is
often the case in real materials. We show that in the
absence of particle-hole symmetry the pole formation
and the MIT are two unrelated processes on the Bethe
lattice. So even though the residue of the pole satisfies
many of the properties expected of an order parameter, it
cannot be employed to describe the MIT in all cases
(although one could use it on the hypercubic lattice).
Furthermore, there seems to be little difference between
the properties of a correlated insulator with or without a
pole in the self-energy. We conjecture that all of the
conclusions about the character of the MIT on the Bethe
lattice will hold for other systems with a finite bandwidth,
and hence much of these results will play a role in
realistic models of the MIT for real materials in finite
dimensions.
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