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The eigenstates of the one-band Hamiltonian for a two-electron homopolar molecule can be exactly deter­
mined. The exact solution for the ground state and all its properties can thus be used as a standard to assess 
the accuracy and validity of several commonly used approximations: the normal molecular-orbital ground 
state, the Heitler-London states, the spin-density waves and the charge-density waves. The most general 
unrestricted self-consistent field approximations are studied in both the Hartree and Hartree-Fock ap­
proximations and are compared with one another as well as with the exact results. New and simple correlated 
states are also proposed and tested: a symmetrized spin-density wave and a symmetrized charge-density 
wave. These new states are easily obtained from the corresponding Hartree-Fock states, and whenever 
they exist, they are extremely good approximations to the exact ground state. General consequences and 
extensions to more complicated systems can be inferred from this study. 

I. INTRODUCTION 

In the course of studying the ground-state con­
figuration of C4N+2 H4N+2 cyclic polyenes, l,2 and in 
discussing the accuracy and validity of various approxi­
mations, we found an exactly soluble problem that 
could be fruitfully used as a standard and a guide. 

This problem, i.e., the ground-state configuration of 
the 11" electrons in ethylene, is identical to the well­
known and profusely studied system of the two-electron 
homopolar molecult',3 of which H2 is the classic textbook 
example. We are not aware, however, of any place 
where the unrestricted self-consistent field solutions, 
namely the spin-density wave (SDW)4 and the charge­
density wave (CDW),5 are treated on the same footing 
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1 R. A. Harris and L. M. Falicov, J. Chern. Phys. 50, 4590 
(1969) . 

2 R. A. Harris and L. M. Falicov, "Self-Consistent Theory of 
Bond Alternation in Polyenes: Normal State, Charge-Density 
Waves, and Spin-Density Waves," J. Chern. Phys. (to be pub­
lished) . 

3 See any standard textbook on molecular quantum physics, 
e.g., J. C. Slater, Quantum Theory of Matter (McGraw-Hill Book 
Co., New York, 1951), Chap. 8; L. Salem, The Molecular Orbital 
Theory of Conjugated Systems, (W. A. Benjamin, Inc., New York, 
1966), pp. 420-424. 

as (and compared with) either the more traditional 
normal molecular orbital (MO) and Heitler-London 
(HL) approximations, or with the exact one-band 
solution. Such a unified approach is presented here: 
The error in the ground-state energies and the various 
correlation functions of each approximate solution are 
displayed and compared with one another. 

Since the SDW and CDW are states of broken sym­
metry, we propose here a simple improvement on these 
solutions which is immediately obvious: symmetrized 
versions of them which we call symmetrized spin­
density wave (SSDW) and symmetrized charge-density 
wave (SCDW). These are correlated states, i.e., they go 
beyond the Hartree-Fock approximation, which are 
very easily obtained from their parent states. Whenever 
they exist, we show that they are excellent approxi­
mations to the true ground state. 

Section II discusses the Hamiltonian used throughout 
the paper. Section III is concerned with the exact 
solution and its properties as well as with the most 
common approximations. Section IV is devoted to the 
generalized Hartree approximations. Section V dis­
cusses the various Hartree-Fock solutions. Section VI 
studies the new symmetrized states. Section VII 
contains the discussion and conclusions. 

II. THE ONE-BAND HAMILTONIAN 
4 A. W. Overhauser, Phys. Rev. Letters 4, 415, 462 (1960); 

Phys. Rev. 128, 1437 (1962). We use second quantization operators and restrict 
ourselves to four Lowdin orbitals, one of each spin in 

3153 
5 A. W. Overhauser, Phys. Rev. 167,691 (1968). 
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each of the two centers. The Hamiltonian can thus be 
written 

where 

Xa=a(nlt+nH+n2t+n2~) , 

XiJ= -(3(Clt tC2t +cu tC21+C21 tClt +C21 tcu), 

Xu= U(nltnl~+~tn2~), 

XK=K(nltn2t +nll~~+nH~1 +nlln21)' 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

In these equations Cid t, Cid, and nid=Cid tCid are, respec­
tively, the usual creation, destruction, and number 
operators for the L6wdin orbital of spin q centered 
about i; they satisfy the usual Fermi-Dirac anti­
commutation rules. Xa and XiJ are the single-particle 
diagonal and off-diagonal terms, respectively, Xu is the 
intraatomic Coulomb repulsion, and XK is the corre­
sponding interatomic term. The parameters {3, U, and K 
are positive definite quantities and such that U> K. 
However, for the sake of completeness in our discussion 
of the possible ground states, we take (3 to be always 
positive, but let U and K take arbitrary values, both 
positive and negative. 

Since we restrict ourselves only to two-electron states 
the following considerations can be applied: 

(A) The electron-number operator 

(2.6) 

is completely diagonal and can everywhere be replaced 
by the number 2, e.g., 

Xa=2a. 
(B) The operator 

N2= L n",njd' 
ijuu/ 

(2.7) 

(2.8) 

is also completely diagonal and can be replaced by the 
number 4. 

(C) If we also recall that 

(2.9) 

for any i and fT, properties (A) and (B) allow us to 
write the following identity: 

4=2+2(nltnll+~tn21) 

+2(nlln2t +nll~~+nll~1 +nlln21)' 

(D) The Hamiltonian can now be rewritten 

X T=2a+K+X, 

X = Xil+Xu+(XK-K), 

and the last term can be expressed as 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

eigenvalues of X can depend on U and K only through a 
(U-K) type dependence. This allows us to write the 
ground-state energy ET as 

ET = (XT) = 2a+ K + E, (2.14) 
where 

E= (X)={3 (x) (2.15) 

and f is only a function of 

x= (U-K)/{3 (2.16) 

As we show later on, these properties are satisfied by 
the Hartree-Fock and improved solutions in addition to 
the exact one, but not by the unrestricted Hartree 
approximations. 

III. THE EXACT GROUND STATE, THE MOST 
COMMON APPROXIMATIONS, AND 

THEIR PROPERTIES 

Any eigenstate of (2.12) with two electrons should 
be a linear combination of the six states 

11 i 2 i ), 11121 ), 11 i 11 ), 
I 2 i 2t ), 11 i 2t ), and I 2 i It ), 

where 
(3.1) 

and /0) is the vacuum state. The matrix elements of X 
in this manifold are given in Table r. An exact diago­
nalization of the X matrix yields for the ground state 
/ G) 

I G) = 2[16+x2+x(x2+ 16) 1/2]-1/2(1 1 ill )+/2 i 2t » 
+O.5[x+ (x2+ 16) 1/2][16+x2+x(x2+ 16) 1/2]-1/2 

X (11 i 21 )+1 2 ill» (3.2) 

while the energy, expressed in the form (2.14)-(2.16) 
is given by 

(3.3) 

In order to study the structural properties of the states 
we define three correlation functions: 

PS='" 1-2 (nl tnll)-2(~ln21)' 

PAS='" I (nltJZ.ll)- (n2tn11) 1
2, 

PAC='" I (nll nll)- (~ln21) 1
2

• 

(3.4) 

(3.5) 

(3.6) 

Of these, Ps has the full symmetry of the Hamiltonian, 
and consequently, its value in the ground state is not 
required by symmetry to take any specific value. 
The other two, PAS and PAC, are antisymmetric with 
respect to spin and charge inversion respectively, and 
should be identically zero in the true ground state. 
Therefore Ps gives a good measure of true correlation 
properties,6 while PAS and PAC are indicators of how 
badly the symmetry requirements have been broken. 

From the above expressions (as well as from simple 6 Ps is chosen such that it is zero in the normal molecular-orbital 
physical considerations) it can be easily seen that the approximation, the uncorrelated state. 

Downloaded 11 Jan 2011 to 141.161.50.111. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



TWO-ELECTRON HOMO POLAR MOLECULE 3155 

TABLE I. Matrix elements of X. 

Ili2t) 11!2!) 11il!) 12P! ) liP!) 12il!) 

(1 Pi I 0 0 

(1 !2! I 0 0 

(1 i 1! I 0 0 

(2 i 2! I 0 0 

(1 i 2! I 0 0 

(2 il! I 0 0 

In the true ground state we find 

ps(G) =x(x2+16)-1/2, (3.7) 

0 0 0 0 

0 0 0 0 

U-K 0 -fJ -fJ 
0 U-K -fJ -fJ 

-fJ -fJ 0 0 

-fJ -fJ 0 0 

broken spin symmetry. In a similar way, the polar HL 
states are 

and, as expected, 1 HLP 1) = 1 1 i it ), 

(3.8) with 

1 HLP2)=12 i 21), (3.17) 

The most commonly used approximations to the 
ground state are the normal molecular orbital (MO) 
and the Heitler-London (HL) wave vectors; in the 
last case both the neutral solution (HLN) and the 
polar one (HLP) have to be considered for arbitrary 
interactions. 

The MO solution is of the form 

1 MO) =0.5 (Clt t +C21 t) (C1~ t +C2~ t) 1 0) 

=0.5(lli it >+12 i 21 >+Ili 21 >+12 i it ». 
(3.9) 

The energy [the expectation value of :JeT with (3.9) ] 
expressed in the form (2.14)-(2.16) is 

EMO=0.5x-2, (3.10) 

while the correlation functions (3.4)-(.3.6) yield 

ps(MO) =PAs(MO) =PAc(MO) =0. (3.11) 

It is seen that the MO state does not break the 
symmetry requirements and gives a completely un­
correlated state. It is also seen that (3.9) and (3.10) 
reduce to (3.2) and (3.3) when x=O, i.e., the MO 
approximation reduces to the exact ground state when 
U=K. 

The two neutral Heitler-London states are 

IHLN1)=11i21), 1 HLN2)=12i it). (3.12) 

They yield an energy 
€HLN=O 

and correlation functions 

ps(HLN) = 1, 

PAs(HLN) = 1, 

PAC (HLN) =0. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

These solutions are overcorrelated and have completely 

€HLF=X, (3.18) 
and 

ps(HLP) =-1, (3.19) 

PAS (HLP) =0, (3.20) 

PAcCHLP) = 1. (3.21) 

In this last case there is also over correlation and com­
pletely broken charge symmetry. 

Two remarks at this point are relevant: (i) the HLN 
and HLP solutions can be symmetrized 

I SHLN) =2-1/2 (1 HLN1)+1 HLN2»), (3.22) 

I SHLP) =2-1/2 (1 HLP1)+1 HLP2») , (3.23) 

but although this restores the asymmetric correlation 
functions to their correct zero value, no change is 
induced in either the energy or in the symmetric correla­
tion function; (ii) the symmetrized HL solutions 
approach asymptotically the exact solution in the 
limits ~oo (HLN) or X---7- 00 (HLP). 

IV. THE GENERALIZED HARTREE SOLUTIONS 

The Hartree approximation is obtained by expressing 
the energy of the system as 

ET(Hartree) = (:Jea )+ (:Je,9) + U( (nll ) (nll)+ (n2! )(n2~») 

+K( (nlt >(n2! )+(n1! )(n2~)+(nH)(n2! )+(n1t)(n2t» 

( 4.1) 

and determining the state vector so that it minimizes 
(4.1). It is worth remarking that the replacement of 
products of the type n;unju' by the product of their 
expectation values introduces serious errors in the 
results. For instance, [ET(Hartree) -KJ is no longer a 
function of U -K, but function of two variables, U and 
K, separately. The energy cannot in this case be ex­
pressed in the form (2.14)-(2.16). As it is apparent 
from what follows, the Hartree approximation is only 
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FIG.!' The error in the energy of the system, as a function of 
the relative interaction strength X= (U - K) /fJ, for the various 
models discussed in the paper. 

good if 

IKI«I U-KI, ( 4.2) 

and in the limit K =0, it is identical to the much better 
Hartre~Fock approximation. We therefore, for the 
sake of brevity and completeness, give here only a few 
relevant results. 

Three solutions which minimize (4.1) exist: 

(1) the MO solution (3.9),validfor 

U~2[3, U -2K~ -2[3, (4.3) 

and such that 

E7'(Hartree, MO) =2a+K-2[3+0.5U; (4.4) 

(2) the SDW solution, similar to the one discussed in 
the next section for the Hartree-Fock approximation, 
and valid for 

U?.2{3, (4.5) 
for which 

V. THE GENERALIZED HARTREE-FOCK 
SOLUTIONS 

These approximations are obtained by minimizing 
the total energy (2.14), (2.15) with respect to the 
parameters 01, O2, Xl, X2, such that 

(5.1) 

(5.2) 

when the ground-state wave vector is written in the form 

I fjJ)= (COSOI CII t+eiXl sinOI c21 t) 

X (COs02 Cu t+eiX2 sin02 C21 t) 10). (5.3) 

After a straightforward but tedious calculation, we 
find that the states of minimum energy are: 

(1) If 
-2Sx~2, (5.4) 

the solution is the MO approximation (3.9) and the 
energy and correlation functions are given by (3.10) 
and (3.11), respectively. 

(2) If 
x~2, 

there are two SDW solutions, 

1 SDW1) = cosO sinO(ll ill )+12 i 21 » 

(5.5) 

+cos20 11 i 21 )+sin20 I 2 i 11), (5.6) 
and 

1 SDW2) = cosO sinO(11 ill )+12 i 21 » 

where 

and 

1.0 

0.5 

+sin20 11 i 21 )+cos20 12 ill), (5.7) 

HLN 

sin20= 2/x. 

(5.8) 

(5.9) 

so~ .:~:::>.:~: .......... . 
:<,"s;ow 

/:~/' 
" l MO 

~ O~-----r--~~--~--------~~~ 

E7'(Hartree, SDW) =2o+K-2[32/U; (4.6) -0.5 

(3) the C'DW, valid for 

U-2K~ -2[3 ( 4.7) 

whose Hartree energy is 

E7'(Hartree, CDW) =2a+U-2/J2/1 U-2K I. (4.8) 

Further discussion of these results are left for Sec. VIr. 

/cow 
HLP 

-1.0 

x 

FIG. 2. The symmetric correlation function Ps as a function of x for 
the various models. 
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In this case the energy (2.14)-(2.16) is 

Esmv= -2/x, 

and the correlation functions are 

ps(SDW) = (x2 -4)/x2
, 

PAS (SDW) = (x2-4)/X2, 

PAc(SDW) =0. 

It is worth noticing that 

( 5.10) 

(5.11) 

(5.12) 

(5.13) 

I SDW1)=1 SDW2)=1 MO), x=2 (5.14) 
and 

I SDW1)~1 HLNl), I SDW2)~1 HLN2) as X~OO. 

(3) If 
x':::;-2 

there are two CDW solutions 

I CDWl)=cos2sl1 ill )+sin2SI2 i 21 ) 

(5.16) 

+sinS cosS(ll i 21 )+12 ill », (5.17) 

I CDW2)=sin2sI1 ill )+cos2SI2 i 21 ) 

+sin8 cosS(ll i 21 )+1 2i 1l ), (5.18) 
where 

and 
sin2S= -2/x. 

The energy is given by 

ECDW=x+2/x 

and the correlation functions are 

ps(CDW) = (4-x2)/X2, 

PAS (CDW) =0, 

PAdCDW) = (x2-4)/x2
• 

Similarly to the SDW properties, we have 

I CDWl) = I CDW2)=1 MO), :\,=-2, 

I CDW1 ~I HLP1), I CDW2)~1 HLP2) 

(5.19) 

(5.20) 

(5.21 ) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

as x~- 00. (5.26) 

It is important to mention that these are the best 
Hartree-Fock-type solutions, i.e., no single Slater 
determinant can give a more accurate answer to the 
ground state of the system than those represented by 
(5.17)-(5.20) for U-K':::;-2{3, (3.9) for -2{3':::;U­
K':::;2{3, and (5.6)-(5.9) for 2{3':::;U-K. Any improve­
ment on these functions corresponds to using more than 
one Slater determinant in the expression for the ground­
state wave vector. 

VI. NEW SYMMETRIZED APPROXIMATIONS 

As is evident from (5.12) and (5.24), the best 
Hartree--Fock solutions in the range 1 x I> 2 correspond 

1.0 
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FIG. 3. The asymmetric correlation functions as functions of x: 
(a) spin asymmetry PAS; (b) charge asymmetry PAC. 

to states of broken symmetry. This fact suggest an 
obvious and easy way of improving the ground-state 
function without requiring complicated higher-order 
perturbation calculations: by projecting out of the best 
Hartree--Fock ground state those components which 
have the wrong symmetry, the approximate wave 
vectors can only be improved. This is easily accom­
plished by taking the symmetrized combinations of 
either (5.6) and (5.7), or of (5.17) and (5.18), remem­
bering that in each case the members of the pair are not 
orthogonal to one another. In this way we obtain: 

(i) The symmetrized spin-density wave, for x> 2 

I SSDW) = (2+2 sin220)-1/2[sin20(11 i 1l )+12 i 21 » 

+(Ili 21 )+12 ill»], (6.1) 

where sin20 is given by (5.9). The energy is now given 
by 

~ssmv= -4x/(x2+4) 

and the correlation functions are 

(6.2) 

(6.3) 

PAS (SSDW) =PAcCSSDW) =0. (6.4) 

(ii) The symmetrized charge-density wave, for 
x<-2, 

I SCDW)= (2+2 sin22S)-1/2[(11 ill >+12 i 21 » 
+sin2e(11 i 21 )+1 2 i 11 »], (6.5) 

where (5.20) holds and 

ESCDW = x(i+8) / (x2+4), 

Ps(SCDW) = (4-x2)/(4+x2
), 

PAs(SCDW) =PAc(SCDW) =0. 

(6.6) 

(6.7) 

(6.8) 
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In this case a significant improvement of the energy 
expressions, (6.2) and (6.6), over those for their parent 
states, (5.10) and (5.21) is found, and, whenever 
1 xl>2, 

fSDW> fSSDW > fa, 

€CDW> €SCDW> fa. 

(6.9) 

(6.10) 

VII. DISCUSSION AND CONCLUSIONS 

In order to assess the validity of each of the approxi­
mations here discussed, we have plotted in Fig. 1 the 
quantity 

(7.1) 

as a function of x. In Fig. 2 the symmetric correlation 
function (3.4) is displayed. Figure 3 contains the spin 
asymmetry (3.5) and the charge asymmetry (3.6). 

The following conclusions can now be obtained from 
an analysis of these figures and the formulas of the 
previous sections: 

(A) Comparison of (4.4) with (3.10), (4.6) with 
(5.10), (4.8) with (5.21), and all these equations with 
(3.3) shows that the Hartree approximation is in 
general a very bad one in regards to treating the 
interatomic term (2.5) of the Hamiltonian. 

(B) The Hartree and Hartree--Fock approximations 
are identical with respect to the intra-atomic term 
(2.4), i.e., in the limit K =0. 

(C) We infer from this that, in more general cases, if 
the Hartree--Fock approximation becomes too cumber­
some and difficult to manage, it is advisable to (1) 
neglect the interatomic terms, (2) replace in the intra­
atomic terms 

U-+U'~U - K, (7.2) 

where U' is an effective intraatomic interaction and K 
is an average interatomic interaction strength, and (3) 
then treat the Hamiltonian in the Hartree approxi­
mation (which has become now completely equivalent 
to the Hartree--Fock scheme). 

(D) It is worth emphasizing that the Hartree 
approximation is particularly bad when interatomic 
interaction strengths (K) are of the same order of 
magnitude as the intra-atomic one U. Spurious solutions 

(a CDW, for instance) could be found; these solutions 
are misleading and nonsensical. 

(E) The best unrestricted Hartree--Fock solutions 
are, energy wise, fairly good approximations, and 
become exact in the limits U -K =0; 1 U -K 1/,8-+00. 

(F) The symmetrized Hartree--Fock solutions (MO, 
SSDW, and SCDW) are, energy-wise, extremely good 
over most of the range of the parameters; they are not 
quite so good when 1 x 1",,2. The maximum error in 
the energy 

b.Emax =0.236,8=0.118(U -K) (7.3) 

appears at I x 1 =2, and decreases rapidly as I x I varies 
from 2. 

(G) The symmetric correlation function Ps (Fig. 2), 
is a good indication of the accuracy of the approxi­
mations: the MO is always, by definition, uncorrelated; 
the HL states are always overcorrelated; the SDW and 
CDW are under correlated for 2:::; 1 x I ;53.335 and 
overcorrelated for I x I ;:;3.335; the SSDW and SCDW 
are always slightly under correlated. 

(H) The symmetrization of the ground-state 
Hartree--Fock wave vectors yield a very good and simple 
way of improving only the ground-state energy and 
wave vector, but such a method, as is obvious from 
symmetry considerations, cannot be applied to the 
excited states, e.g., to the study of optical properties. 
It is perhaps possible to extend the method to encom­
pass excited states by generalizing the symmetrization 
procedure to states of other symmetries and imposing 
in addition some orthogonality conditions. This 
possible generalization requires, however, more work 
and thought, and may not prove to be simple enough to 
have the appealing features described here for the 
ground state. 

(I) In closing we would like to believe that the 
conclusions drawn here for this exactly soluble one­
band model can be generalized to more complicated/,2,7 
many-electron chains, and that the symmetrized un­
restricted Hartree--Fock states (the SSDW in particu­
lar) , whenever they exist, constitute very good and 
simple approximations to the unknown exact ground 
state. 

7 E. W. Fenton, Phys. Rev. Letters 21, 1427 (1968). 
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