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Multilayered nanostructures as devices

Sandwich of metal-barrier-
metal with current moving
perpendicular to the planes

Nonlinear current-voltage
characteristics

Josephson junctions, diodes,
thermoelectric coolers,
spintronic devices, etc.

Band insulators: A10, MgO

Correlated materials: FeSi,
SrTi0,

Near MIT: V,0,, Ta,N
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Theoretical Approaches (charge transport)

Ohm’s law: R =pL/A, holds for bulk materials
Landauer approach: calculate resistance by determining

t]
C

he reflection and transmission coefficients for
uasiparticles moving through the inhomogeneous

C

levice (R, =h/2e2«[1-T]/T)

Works well for ballistic metals, diffusive metals, and
infinitesimally thin tunnel barriers (“delta function
potentials™).

Real tunnel barriers have a finite thickness---the
quasiparticle picture breaks down inside the insulating
barrier; not clear that Landauer approach still holds.

As the barrier thickness approaches the bulk limit, the
transport crosses over to being thermally activated 1n an
insulator and 1s no longer governed by tunneling.
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Need a theory that can
incorporate all forms of transport
(ballistic, diffusive, incoherent,
and strongly correlated) on an
equal footing
A self-consistent recursive Green’s function approach

called inhomogeneous dynamical mean field theory

(developed by Potthoff and Nolting) can handle all of
these different kinds of transport.
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Lead

Barrier

Our model

 The metallic leads can be

ballistic normal metals,
mean-field theory
ferromagnets, or BCS
superconductors.

Scattering in the barrier is
included via charge

scattering with “defects”
(Falicov-Kimball model)

Scattering can also be
included 1n the leads 1f
desired, but we don’t do
so here.
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Spinless Falicov-Kimball Model
2(2 TC +EZWI, + UZCI,TCI,WI,
<i j> i i

<- static spin

mobile spin ->

~exactly solvable model in the local approximation using
dynamical mean field theory.

*possesses homogeneous, commensurate/incommensurate CDW
phases, phase segregation, and metal-insulator transitions.

A self-consistent recursive Green’s function approach solves the
Inhomogeneous many-body problem (Potthoff-Nolting algorithm).
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Computational Algorithm

Self-energy on each plane

IDMET Quasi 1D model (quantum
zipper algorithm)

Planar Green’s functions

Effective Medium

Dyson’s equati‘ck Sum over planar momenta

Local Green’s function

Algorithm 1s 1terated until a self-consistent solution 1s achieved
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Half-filling and
the particle-hole symmetric
metal-insulator transition ...
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Metal- msulator transmon (half-filling)

0.2 | | | | The Falicov-Kimball
model has a metal-
Insulator transition
that occurs as the
correlation energy U i1s
increased. The bulk
interacting DOS shows
that a pseudogap
phase first develops
followed by the
opening of a true gap
0.05 1 above U=4.9 (in the

| bulk).
\ Note: the FK model is
0 ' - : - ' ' not a Fermi liquid in
its metallic state since
Frequency the lifetime of
excitations is finite.
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Interacting DOS
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Near the MIT (U=6)

— U=6

| 1f wetaket=0.25ev
then W=3ev, and the
gap sizeis about

| 100mev.

{ Thisisa correlated
1 insulator with a

| small gap, closeto
the MIT.
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L=a (Single plane barrier)

Local DOS on the

[ — U=1
0.2 — U=2 —U=12 central barrier plane.
< ek | Note how the upper
T i BB { and lower Hubbard

bands form for the

~ 015 F | Mott transition, but
E, - there 1s always
{5 01 L | substantial subgap DOS
from the localized
- barrier states.
0.05 - | This DOS arises from

quantum-mechanical
tunneling and has a
metallic shape.
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U=4 (anomalous metal) DOS
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U=5 (near critical) DOS
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U=6 (small-gap insulator) DOS
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U=6 Correlated insulator

DOS has exponential tails, but never vanishes in the “gap”; the
exponential decay has the same characteristic length for all barrier thicknesses.
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Charge transport
and the generalized
Thouless energy ...
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Junction resistance

» The linear-response resistance can be
calculated 1in equilibrium using a Kubo-
Greenwood approach.

 We must work 1n real space because there 1s
no translational symmetry.

* R, 1s calculated by inverting the
conductivity matrix and summing all matrix
elements of the inverse.
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Junction resistance (derivation)

* Maxwell’s equation gives ;=) .c;E; where the
index denotes a plane 1n the layered device.
(The field at plane j causes a current at plane 1.)

» Taking the matrix inverse gives E;=) .c™';j; but
the current 1s conserved, so | does not depend on
the planar index.

» Calculating the voltage gives V=a} E=a} .c"',j,
so the resistance-area product is R, A=a ) ;67!
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Resistance versus resistivity
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[Resistance-Rn(T=0)]*Area

Temperature dependence (correlated metal)
U=2 FK model
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The thin barrier
appears more
“metallic”; as the
barrier 1s made
thicker, the
resistance 1S
equal to a contact
resistance plus an
Ohmic
contribution,
proportional to
the bulk

resistivity.
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Resistance for U=5 (near critical)

» Tunneling occurs 10%
when the junction

. : __ 10
resistance has little & S
temperature .
dependence. = 7
~ 1077 7 ]
* Incoherent transport . . e
i \
occurs when the 1072 2 =
temperature . ‘ :
- 1 M T T B A A 1 M T T B A A
dependence becomes  '° 100 1000
strong. Temperature [K]
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Resistance for U=6 (correlated isulator)

Resistance here

shows the 105

tunneling _ 182

plateaus more “c 107
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Thouless energy

* The Thouless energy measures the quantum energy associated with
the time that an electron spends 1nside the barrier region of width L
(Energy extracted from the resistance).

E, = h/tDweII

« A unifying form for the Thouless energy can be determined from the
resistance of the barrier region and the electronic density of states:

h
ETh —
—df (w)
AL
dw N

* This form produces both the ballistic E, = hVFN / 7L and the
diffusive ETh —#D/ > forms of the Thouless energy.

2¢’ [ doN ()
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Thouless energy 11

The resistance can be considered as the ratio of the Thouless energy
to the quantum-mechanical level spacing A (with R,=h/2¢* the
quantum unit of resistance)

Ri=R, =
27
The inverse of the level spacing is related to the density of states of

the barrier via
Ae =VN(u)
Generalizing the above relation to an insulator by
df ()
dw

gives the general form for the Thouless energy.

Al = AL j daN ()
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Temperature dependence of E,
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Temperature dependence (II)

U=5 FK modd U=6 FK modd
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Note that the crossover temperature is not ssmply related to the energy gap!
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But,
Particle-hole asymmetry 1s
necessary for thermoelectric
devices ...
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Pole formation and the MIT

On the Bethe lattice, the pole enters
from one band edge, and migrates closer
to the center of the gap as U 1s
increased. The pole appears to have

no effect on the transport.
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Exact relaxatlon tlme for transport
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On the hypercubic lattice, the On the Bethe lattice, the relaxation
relaxation time has anomalous time behaves as expected---it
behavior like quartic dependence vanishes in the gap and it vanishes
in the gap region and a constant outside the band

value at large frequencies.

In both cases, the Jonson-Mahan theorem can be employed to find the thermal
transport.
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Figure of merit ZT
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On the Bethe lattice, the thermopower
can have a sharp peak at low T for
a small-gap insulator close to half

filling.
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When we have
particle-hole asymmetry,
we must have an electronic
charge reconstruction at the
interfaces ...

The chemical potential isset by the bulk leads. If thebarrier is
at adifferent chemical potential in the bulk, then the device
will form screened dipole layers at each interface transfering
charge from the metal tothebarrier, or viceversa. Thisis
similar to the well-known Schottky barrier in semiconductor
devices.
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Extra electrons per formula

Electronic charge reconstruction

0.2 0.54
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Using a scanning transmission electron microscope with
electron energy-loss spectroscopy, one can directly measure
the electronic charge at each plane of a strongly correlated
multilayered nanostructure. Left are experimental results
by Varela et al. on YBCO/LCMO heterostructures, right

1s a simple theory for a correlated nanostructure.
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Theoretical treatment
a a

A
\
A
Y

Q

Oq pol Oo+1

We employ a semiclassical treatment to handle the electronic
charge reconstruction. We allow charge to be rearranged

on different planes, as determined by the electrochemical
potential at a given plane site, and then determine the classical
Coulomb potential from planes of net charge, with dielectric
constants that can vary from plane to plane.
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Coulomb potential

The Coulomb potential develops a
kink at locations where the dielectric
constant changes (i.e. at the
interfaces), and 1t goes to zero far
from the interface due to overall
conservation of charge.

29 30 31 32
Plane number a

0 10 20 30 40 50 60
Plane number o

0.53 F
0.52 E .
051 E As the screening length decreases,
05 f the total charge that is rearranged
< 0.49 f gets smaller for a fixed chemical
0-48 ¢ potential mismatch of the bulk
0.47 E materials.
0.46 E
0.45 £
0

Plane number o
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DOS with electronic charge
reconstruction

* There are a number of significant challenges to
determining the DOS when there 1s a charge
rearrangement.

* The most important 1s that the integrand for the
local Green’s function develops poles that must be
handled in a principal-value sense. The number
and location of these poles varies from plane to
plane and from iteration to iteration.

» \We do not yet have numerical results for the DOS
In this case.

J. K. Freericks, Georgetown University, Hvar Thermoelectric Workshop, 2005



Thermal transport in
a multilayered
nanostructure
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Heat Current Conservation

e Unlike the charge current, the heat current
need not be conserved in a multilayered
nanostructure.

* The experimental conditions will determine
the boundary conditions for the heat current,
which need to be employed to solve for the
heat transport.

* We describe four important cases: the
Seebeck effect, thermal conductivity, and a
refrigerator/generator, the Peltier effect.
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Heat transport equations

In the presence of field and temperature gradients,
the charge and heat currents satisfy:

j=e2y LM E—e ¥, L2 (T,,-T,1)/2a
jo=2; L2 E;- 3122 (T,4-T )22

Where the L matrices are found from the
Jonson-Mahan theorem (current and heat-
current correlation functions in real space)
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Seebeck effect

In the Seebeck effect, we 1solate the device and work with an
open circuit. Hence thereisno heat created or destroyed in
the steady state (i.e., the heat current is conserved) and the
total charge current vanishes:

The temperature gradients become
ZjM-1iij= -(Ti+1-Ti-1 )/Za, M:_L21 (L1 1 )-1 L12+L22

Hence, AT=-3 ;Mjq, AV=-a} [(L")'L"*M],jo, and the
Seebeck coefficient is
S=AV/AT= azij[(L”)'1L12M'1]U/Z”M'1ij

Note the weighting by the matrix M, which is
different for a nanostructure than in the bulk, where
that factor cancels because it is a constant!
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Thermal conductance

For a thermal conductance measurement, we also 1solate the
device and work with an open circuit. Hence thereis no heat
created or destroyed in the steady state (i.e., the heat current
IS conserved) and the total charge current vanishes:

The algebra is the same as before, but now we examine the
ratio of the heat current carried through the device to the
change 1n the temperature of the device:

Hence, AT=-3 ;M j, and the thermal conductance is

Note the similarity to the resistance calculation for

the charge transport---now we must use the matrix
that yields the effective heat transport of the device!
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Refrigerator/generator

For a device, we also 1solate the device but now drive
electrical current through the system. Hencethereis
no heat created or destroyed in the steady state (i.e.,
the heat current is conserved):

The algebra 1s similar to before, but now we must
include the charge current j:

We find that AT and AV are linear functions of |
and j,, with complicated coefficients that are
functions of the matrices L1, L12, L21, 22 and
M. The figure of merit can be written as
ZT =TS?/R k=T (AV/AT)?/(AV/))/(jo/AT)

=T (AVIAT) (i/jq)-
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Peltier effect

The Peltier effect 1s quite different from the cases examined so
far. In this case, the temperature of the device 1s kept fixed by
contact with a thermal bath (like immersion in a liquid
refrigerant). Charge current flows through the device, and the
heat current varies from plane to plane. The total change in
the heat current through the device yields the amount of heat
that 1s exchanged with the reservoir to maintain the constant
temperature profile.

The algebra 1s quite simple now---since the charge current is
conserved, we find the heat current satisfies

Joi = ij Lzlij(Lll)_ljkj

The total change of the heat current is its value on the
right minus its value on the left. Dividing Jqog-jq. bY ]
yields the Peltier coefficient for the nanostructure.
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Conclusions

In this talk I have covered a number of topics in strongly
correlated nanostructures. These included the following: (1) DOS
and charge transport in the particle-hole symmetric case, when
the barrier 1s tuned through the Mott transition; (11) a descrlptlon
of transport, including the tunneling to Ohmic crossover, via a
generalized Thouless energy; (i11) electronic charge
reconstruction, and how to self-consistently determine the
screened dipole layers that lead to Schottky-like barriers; and (1v)
the formalism for thermal transport (with results in the bulk).

In the future, we will complete the charge transport analysis and
calculate self-consistent results for important quantities needed
for real devices.

This formalism can be generalized to describe systems
governed by the Hubbard or periodic Anderson model, and
that work is currently underway.
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