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Multilayered nanostructures as devices
• Sandwich of metal-barrier-

metal with current moving 
perpendicular to the planes

• Nonlinear current-voltage 
characteristics

• Josephson junctions, diodes, 
thermoelectric coolers, 
spintronic devices, etc.

• Band insulators: AlOx MgO
• Correlated materials: FeSi, 

SrTiO3

• Near MIT: V2O3, TaxN
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Theoretical Approaches (charge transport)
• Ohm’s law: Rn=ρL/A, holds for bulk materials
• Landauer approach: calculate resistance by determining 

the reflection and transmission coefficients for 
quasiparticles moving through the inhomogeneous 
device (Rn=h/2e2

*[1-T]/T)
• Works well for ballistic metals, diffusive metals, and 

infinitesimally thin tunnel barriers (“delta function 
potentials”).

• Real tunnel barriers have a finite thickness---the 
quasiparticle picture breaks down inside the insulating 
barrier; not clear that Landauer approach still holds.

• As the barrier thickness approaches the bulk limit, the 
transport crosses over to being thermally activated in an 
insulator and is no longer governed by tunneling.
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Need a theory that can 
incorporate all forms of transport 
(ballistic, diffusive, incoherent, 
and strongly correlated) on an 

equal footing 

A self-consistent recursive Green’s function approach 
called inhomogeneous dynamical mean field theory
(developed by Potthoff and Nolting) can handle all of 
these different kinds of transport.
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Our model
• The metallic leads can be 

ballistic normal metals, 
mean-field theory 
ferromagnets, or BCS 
superconductors.

• Scattering in the barrier is 
included via charge 
scattering with “defects”
(Falicov-Kimball model)

• Scattering can also be 
included in the leads if 
desired, but we don’t do 
so here.
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Barrier
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Spinless Falicov-Kimball Model

•exactly solvable model in the local approximation using 
dynamical mean field theory.

•possesses homogeneous, commensurate/incommensurate CDW 
phases, phase segregation, and metal-insulator transitions.

•A self-consistent recursive Green’s function approach solves the 
inhomogeneous many-body problem (Potthoff-Nolting algorithm).
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Self-energy on each plane

Quasi 1D model (quantum 
zipper algorithm)

Planar Green’s functions

Sum over planar momenta

Local Green’s function

Dyson’s equation

Effective Medium

IDMFT

Algorithm is iterated until a self-consistent solution is achieved
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Computational Algorithm



Half-filling and
the particle-hole symmetric 
metal-insulator transition …
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Metal-insulator transition (half-filling)
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The Falicov-Kimball 
model has a metal-
insulator transition
that occurs as the 
correlation energy U is 
increased.  The bulk
interacting DOS shows 
that a pseudogap
phase first develops 
followed by the 
opening of a true gap
above U=4.9 (in the 
bulk). 
Note: the FK model is 
not a Fermi liquid in
its metallic state since 
the lifetime of 
excitations is finite.



Near the MIT (U=6)
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If we take t=0.25ev
then W=3ev, and the
gap size is about
100mev.

This is a correlated
insulator with a 
small gap, close to
the MIT.



L=a (Single plane barrier)
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Local DOS on the
central barrier plane.
Note how the upper
and lower Hubbard
bands form for the
Mott transition, but
there is always
substantial subgap DOS
from the localized
barrier states.
This DOS arises from 
quantum-mechanical
tunneling and has a 
metallic shape.



U=4 (anomalous metal) DOS
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U=5 (near critical) DOS
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U=6 (small-gap insulator) DOS
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U=6 Correlated insulator
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DOS has exponential tails, but never vanishes in the “gap”; the
exponential decay has the same characteristic length for all barrier thicknesses.



Charge transport
and the generalized
Thouless energy …
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Junction resistance

• The linear-response resistance can be 
calculated in equilibrium using a Kubo-
Greenwood approach.

• We must work in real space because there is 
no translational symmetry.

• Rn is calculated by inverting the 
conductivity matrix and summing all matrix 
elements of the inverse.
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Junction resistance (derivation)

• Maxwell’s equation gives ji=∑jσijEj where the 
index denotes a plane in the layered device. 
(The field at plane j causes a current at plane i.)

• Taking the matrix inverse gives Ei=∑jσ
-1

ijjj; but 
the current is conserved, so j does not depend on 
the planar index.

• Calculating the voltage gives V=a∑iEi=a∑ijσ
-1

ijj, 
so the resistance-area product is RnA=a ∑ijσ

-1
ij
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Resistance versus resistivity
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Temperature dependence (correlated metal)

The thin barrier 
appears more 
“metallic”; as the 
barrier is made 
thicker, the 
resistance is 
equal to a contact 
resistance plus an 
Ohmic
contribution, 
proportional to 
the bulk 
resistivity.
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Resistance for U=5 (near critical)

• Tunneling occurs 
when the junction 
resistance has little 
temperature 
dependence.  

• Incoherent transport 
occurs when the 
temperature 
dependence becomes 
strong.
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Resistance for U=6 (correlated insulator)

• Resistance here 
shows the 
tunneling 
plateaus more 
clearly, and a 
stronger 
temperature 
dependence in 
the incoherent 
regime. 
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Thouless energy
• The Thouless energy measures the quantum energy associated with 

the time that an electron spends inside the barrier region of width L 
(Energy extracted from the resistance).

• A unifying form for the Thouless energy can be determined from the 
resistance of the barrier region and the electronic density of states:

• This form produces both the ballistic and the                
diffusive forms of the Thouless energy.
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Thouless energy II
• The resistance can be considered as the ratio of the Thouless energy 

to the quantum-mechanical level spacing ΔE (with RQ=h/2e2 the 
quantum unit of resistance)

• The inverse of the level spacing is related to the density of states of 
the barrier via 

• Generalizing the above relation to an insulator by

gives the general form for the Thouless energy.
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Temperature dependence of ETh
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U=5 U=6



Temperature dependence (II)
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U=6 FK model

The Thouless energy determines the transition from tunneling to 
incoherent transport as a function of temperature!
Note that the crossover temperature is not simply related to the energy gap!

U=5 FK model



But,
Particle-hole asymmetry is

necessary for thermoelectric
devices …
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Particle-hole asymmetric MIT
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Pole formation and the MIT
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On the hypercubic lattice, the 
MIT and pole formation in the
self-energy coincide.  On the Bethe
lattice, the pole forms after the MIT
except at half filling.

On the Bethe lattice, the pole enters
from one band edge, and migrates closer
to the center of the gap as U is 
increased.  The pole appears to have
no effect on the transport.



Exact relaxation time for transport
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On the hypercubic lattice, the 
relaxation time has anomalous
behavior like quartic dependence
in the gap region and a constant
value at large frequencies.

On the Bethe lattice, the relaxation
time behaves as expected---it
vanishes in the gap and it vanishes
outside the band.

In both cases, the Jonson-Mahan theorem can be employed to find the thermal
transport.



Thermopower and ZT
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On the Bethe lattice, the figure of
merit can be nonzero at T=0 if the
system is insulating.  It typically
grows with T, yielding applications
more in the power generation spectrum
than for cooling.

On the Bethe lattice, the thermopower
can have a sharp peak at low T for
a small-gap insulator close to half
filling.



When we have
particle-hole asymmetry, 

we must have an electronic
charge reconstruction at the

interfaces …
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The chemical potential is set by the bulk leads. If the barrier is
at a different chemical potential in the bulk, then the device
will form screened dipole layers at each interface transfering
charge from the metal to the barrier, or vice versa.  This is
similar to the well-known Schottky barrier in semiconductor
devices.



Electronic charge reconstruction
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Using a scanning transmission electron microscope with
electron energy-loss spectroscopy, one can directly measure
the electronic charge at each plane of a strongly correlated
multilayered nanostructure.  Left are experimental results
by Varela et al. on YBCO/LCMO heterostructures, right
is a simple theory for a correlated nanostructure.



Theoretical treatment
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We employ a semiclassical treatment to handle the electronic
charge reconstruction.  We allow charge to be rearranged
on different planes, as determined by the electrochemical
potential at a given plane site, and then determine the classical
Coulomb potential from planes of net charge, with dielectric
constants that can vary from plane to plane.
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Coulomb potential
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The Coulomb potential develops a
kink at locations where the dielectric
constant changes (i.e. at the 
interfaces), and it goes to zero far 
from the interface due to overall 
conservation of charge.

As the screening length decreases,
the total charge that is rearranged
gets smaller for a fixed chemical
potential mismatch of the bulk
materials.
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DOS with electronic charge 
reconstruction

• There are a number of significant challenges to 
determining the DOS when there is a charge 
rearrangement.

• The most important is that the integrand for the 
local Green’s function develops poles that must be 
handled in a principal-value sense.  The number 
and location of these poles varies from plane to 
plane and from iteration to iteration.

• We do not yet have numerical results for the DOS 
in this case.



Thermal transport in
a multilayered 
nanostructure
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Heat Current Conservation
• Unlike the charge current, the heat current 

need not be conserved in a multilayered 
nanostructure.

• The experimental conditions will determine 
the boundary conditions for the heat current, 
which need to be employed to solve for the 
heat transport.

• We describe four important cases: the 
Seebeck effect, thermal conductivity, and a 
refrigerator/generator, the Peltier effect.
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Heat transport equations
In the presence of field and temperature gradients, 
the charge and heat currents satisfy:

ji=e2∑j L11
ij Ej – e ∑j L12

ij (Tj+1-Tj-1)/2a

jQi=∑j L21
ij Ej - ∑j L22

ij (Tj+1-Tj-1)/2a

Where the L matrices are found from the 
Jonson-Mahan theorem (current and heat-
current correlation functions in real space)
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Seebeck effect
In the Seebeck effect, we isolate the device and work with an 
open circuit.  Hence there is no heat created or destroyed in 
the steady state (i.e., the heat current is conserved) and the 
total charge current vanishes:
The E field becomes Ej =∑jk (L11)-1

ijL12
jk (Tk+1-Tk-1)/2a

The temperature gradients become
∑jM-1

ijjQ= -(Ti+1-Ti-1)/2a; M=-L21(L11)-1L12+L22

Hence, ΔT=-∑ijM-1
ijjQ, ΔV=-a∑ij[(L11)-1L12M-1]ijjQ, and the 

Seebeck coefficient is
S=ΔV/ΔT= a∑ij[(L11)-1L12M-1]ij/∑ijM-1

ij

Note the weighting by the matrix M, which is 
different for a nanostructure than in the bulk, where 
that factor cancels because it is a constant!
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Thermal conductance
For a thermal conductance measurement, we also isolate the 
device and work with an open circuit.  Hence there is no heat 
created or destroyed in the steady state (i.e., the heat current
is conserved) and the total charge current vanishes:

The algebra is the same as before, but now we examine the 
ratio of the heat current carried through the device to the 
change in the temperature of the device:

Hence, ΔT=-∑ijM-1
ij jQ and the thermal conductance is

κ=-jQ/ΔT= 1/∑ijM-1
ij ; M=L22 - L21(L11)-1L12 

Note the similarity to the resistance calculation for 
the charge transport---now we must use the matrix 
that yields the effective heat transport of the device!
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Refrigerator/generator
For a device, we also isolate the device but now drive 
electrical current through the system. Hence there is 
no heat created or destroyed in the steady state (i.e., 
the heat current is conserved):

The algebra is similar to before, but now we must 
include the charge current j:

We find that ΔT and ΔV are linear functions of j 
and jQ, with complicated coefficients that are 
functions of the matrices L11, L12, L21, L22, and 
M. The figure of merit can be written as            
ZT =TS2/Rnκ=T (ΔV/ΔT)2/(ΔV/j)/(jQ/ΔT)

= T (ΔV/ΔT) (j/jQ).
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Peltier effect
The Peltier effect is quite different from the cases examined so 
far.  In this case, the temperature of the device is kept fixed by 
contact with a thermal bath (like immersion in a liquid 
refrigerant).  Charge current flows through the device, and the 
heat current varies from plane to plane.  The total change in 
the heat current through the device yields the amount of heat 
that is exchanged with the reservoir to maintain the constant 
temperature profile.

The algebra is quite simple now---since the charge current is 
conserved, we find the heat current satisfies 

jQi = ∑jk L21
ij(L11)-1

jk j

The total change of the heat current is its value on the 
right minus its value on the left.  Dividing JQR-jQL by j 
yields the Peltier coefficient for the nanostructure.
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Conclusions
In this talk I have covered a number of topics in strongly 
correlated nanostructures.  These included the following: (i) DOS 
and charge transport in the particle-hole symmetric case, when 
the barrier is tuned through the Mott transition; (ii) a description 
of transport, including the tunneling to Ohmic crossover, via a 
generalized Thouless energy; (iii) electronic charge 
reconstruction, and how to self-consistently determine the 
screened dipole layers that lead to Schottky-like barriers; and (iv) 
the formalism for thermal transport (with results in the bulk).

In the future, we will complete the charge transport analysis and 
calculate self-consistent results for important quantities needed 
for real devices.

This formalism can be generalized to describe systems 
governed by the Hubbard or periodic Anderson model, and 
that work is currently underway.


