Superconductor-Correlated metal-Superconductor Josephson junctions for high-speed digital electronics

J. K. Freericks, B. Nikolić, and P. Miller*
Department of Physics, Georgetown University, Washington, DC 20057
*Department of Physics, Brandeis University, Waltham, MA
freericks@physics.georgetown.edu
(202) 687-6159 (voice) (202) 687-2087 (fax)
Review article (to appear IJMPB): cond-mat/0201342

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
Digital Electronics and RSFQ logic

- **Rapid single-flux quantum logic** is used for high-speed applications. A loop of superconducting material has one JJ interrupting it. The absence or presence of a flux quantum in the loop is the binary 0 and 1 of the device.

- The flux is changed by generating a **voltage pulse** through the junction, whose time integral is equal to a flux quantum. Since the voltage scale is set by the product I_cR_n, which is on the order of a few mV in low-Tc superconductors, **operating speeds of up to 770 GHz** have been already demonstrated.

- New superconducting materials like MgB_2 and novel barriers like TaN_x show a promise for even higher characteristic voltages, and hence faster operating speeds of circuits.
Navy Interest

- 100 GHz low phase noise clocks for running ultrafast electronic circuitry.
- Superconducting digital electronics may provide the solution.
- The theoretical calculation and modeling is a scalable massively parallel solution to a scientific problem. The computational engine can have application to other nanoscale electronics design and optimization of interest to the community.

J. K. Freericks, Georgetown University, Josephson Junction Talk, 2002
Optimization of the speed of a JJ

- Three elements are needed for high speed digital electronics based on JJs: (i) a large figure-of-merit \(I_cR_n \); (ii) good thermal stability of the characteristic voltage within the operating temperature range; and (iii) nonhysteretic current-voltage characteristics.

- Can the next generation of JJ technology be built out of a new class of SCmS junctions where the correlated metal barrier has its thickness and metallicity tuned to lie close to the metal-insulator transition?
Many-Body Formalism

- **Inhomogeneous system**, with planes stacked along the z-direction.

- $$H = - \sum t_{ij} c^*_{i\sigma} c_{j\sigma} + \sum U_i n_{i\uparrow} n_{i\downarrow} + \sum U_{FK} (n_{i\uparrow} + n_{i\downarrow}) w_i$$

- Local dynamical correlations are explicitly included for each plane via the **dynamical mean field theory**. The self-consistency relation is now modified to include effects that couple the effective medium between the planes.

- The superconductor is described by the H-F approximation, which is identical to a **self-consistent solution** of the Bogoliubov-deGennes equations for a short-coherence length, s-wave superconductor. The correlated metal is described by an exact form of the **coherent-potential approximation** which displays a metal-insulator transition.

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
The Falicov-Kimball model has a metal-insulator transition that occurs as the correlation energy U is increased. The interacting DOS shows that a pseudogap phase first develops followed by the opening of a true gap above $U=4.9$ (in the bulk). Note: the FK model is not a Fermi liquid in its metallic state since the lifetime of excitations is always finite.
Bulk superconducting properties

- $T_c = 0.112t$, $\Delta = 0.198t$, $2\Delta/k_B T_c = 3.56$ --- behaves like a BCS superconductor
- Bulk coherence length $\xi_S = 3.7a = v_F^S / \pi \Delta$ --- short coherence length superconductor

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
Thouless energy

• The Thouless energy measures the quantum energy associated with the time that an electron spends inside the barrier region of width L.

$$E_{Th} = \frac{\hbar}{t_{Dwell}}$$

• A unifying form for the Thouless energy can be determined from the resistance of the barrier region and the electronic density of states:

$$E_{Th} = \frac{\hbar}{2e^2 \int d\omega N(\omega) \frac{df(\omega)}{d\mu} R_N a^2 L}$$

• This form produces both the ballistic $E_{Th} = \frac{\hbar \nu_F^N}{\pi L}$ and the diffusive $E_{Th} = \frac{\hbar D}{L^2}$ forms of the Thouless energy.

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
Length scales

- The **Fermi wavelength** is determined by the inverse wavevector at the Fermi surface (here $\lambda_F \sim 2a$).

- The bulk **superconductor coherence length** is $\xi_S = \xi v_F^S/\pi \Delta$ (here $\sim 3.7a$).

- The **Josephson junction coherence length** ξ_0 is found by determining the width L when the Thouless energy is equal to the superconducting gap ($E_{th} = \Delta$). This produces the well-known results of $\xi v_F^N/\pi \Delta$ in the ballistic case and $\sqrt{\xi D/\Delta}$ in the diffusive case (here $\xi_0 < 4a$).

- The **barrier coherence length** ξ_B is found by determining the width L when the Thouless energy is equal to the thermal energy ($E_{TH} = \pi k_B T$). This produces the well-known results of $\xi v_F^N/\pi k_B T$ in the ballistic case and $\sqrt{\xi D/2\pi k_B T}$ in the diffusive case (here $\xi_B < 40 a$).

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
Critical current yields barrier coherence length (low T)

- Exponential fit of the critical current for: (i) ballistic metal; (ii) weakly correlated metal; (iii) strongly correlated metal (pseudogap); and (iv) correlated insulator.

\[I_c = A L^x \exp \left[-L / \xi_B \right] \]

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
The bulk coherence length ξ_S determines the decay of F in the SC, the JJ coherence length ξ_0 determines the initial decay from the SN boundary, and the barrier coherence length ξ_B determines how F decays at the center of the barrier.

- At low T oscillations develop in F when the barrier becomes correlated. One can also see Fermi wavelength oscillations. The barrier oscillations rapidly disappear as T increases. The oscillations in the superconductor are only slightly reduced as T_c is approached.

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
“Ballistic” SNS and SINIS junctions

- At low T, the JJ coherence length is much smaller than the barrier coherence length, hence one can enter a regime where $\xi_0 \ll L \ll \xi_B$. Here I_{cRn} will be independent of L for a range of L, but because F has been reduced on the length scale of ξ_0, we expect I_{cRn} to be diminished.

- This phenomenon has been seen by Klapwijk’s group on NbInAsNb JJs!

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
Quasiclassical theory predicts a **universal form for dirty metals**, but we see different behavior for the correlated insulator which predicts a greater sensitivity to "intrinsic pinholes".

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
Optimization of IcRn

- We reproduce the AB result of IcRn independent of the properties of the insulator for thin junctions, but our value for IcRn is reduced by about 15% due to the inverse proximity effect.

- IcRn grows, seemingly without bound for a bilayer, but we expect hysteresis to enter as the barrier becomes more insulating.

- IcRn is maximized just on the insulating side of the MIT for moderately thick junctions!

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
Thermal properties

- Thin insulating junctions follow the AB prediction exactly (solid line)!
- SCmS junctions suffer a faster initial drop for 0<T<0.3Tc, but then the slope becomes similar to that of the AB form for 0.3Tc<T<0.7Tc. Since the curve is only reduced by about 15-20% in this range, the 50% increase of IcRn at low T wins and properties of this junction are superior to self-shunted SIS!
- SNS junctions have poor thermal stability and will not function well in circuits.

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
Benefits of SCmS junctions

- When properly optimized for thickness and proximity to the MIT, SCmS junctions have significantly enhanced IcRn products.
- The thermal stability of SCmS junctions over the reasonable operating range of 0.3Tc-0.7Tc is as good as the best case of an SIS junction.
- Overall SCmS junctions can have the best properties of any proposed junction type.

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
Potential problems of SCmS junctions

• SCmS junctions may need fine-tuning to reach the “optimization zone”.

• Intrinsisic pinholes may appear if the JJ coupling is highly sensitive to the thickness of the junction (producing dead zones or hot zones that can dominate the JJ effect).

• Fabrication uniformity may be difficult to achieve.
Outstanding Technical Issues

• Generalize the formalism to calculate nonequilibrium effects needed to determine IV characteristics, to calculate subgap structure, and to determine when hysteresis enters.

• Develop a many-body-theory model for the MIT in bulk TaN.

• Incorporate more realistic real materials modeling for NbTiN-TaN-NbTiN SCmS junctions.

• Develop a multiband and multigap version of the computational engine to model MgB$_2$ including realistic sheets of the Fermi surface and of the intra and interband electron-phonon coupling.

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002
Conclusions

- Examined properties of a Josephson junction tuned through a metal-insulator transition.
- Saw that optimization of the characteristic voltage requires a careful understanding of the correlations, thickness, and operating temperature of the device.
- Found an optimization on the insulating side of the metal-insulator transition for moderately thick barriers in the range $0.3T_c<T<0.7T_c$.
- Discovered that temperature effects are similar to the best case of an SIS junction in the expected operating range for a circuit.
- Conjecture that an “intrinsic pinhole effect” may make fabrication uniformity difficult for SCmS junctions.

J. K. Freericks, Georgetown University, Josephson Junction talk, 2002