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Motivation: granular thin-film 
superconductors
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Dynes et al. PRL 69, 3567 (1992);
Bi films have the sc gap go to zero at the 

superfluid-insulator transition.

But, Dynes et al. PRB 49, 3409 (1994);
shows that in Pb films, the sc gap remains

essentially at the bulk value at the
superfluid-insulator transition.

●Local pairing, but no global phase coherence



He4 films on vycor or aerogel

• Reppy, et al. PRL 75, 1106 
(1995) show that in the 
presence of disorder, Bose 
systems can still have an 
excitation gap at low 
temperature (Cv/T drops 
rapidly at low-T).

• This implies that the Bose glass 
does not always form in 
disordered cases, as suggested 
by Fisher, Weichman, 
Grinstein, and Fisher.
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Bose Hubbard model

• Mobile soft-core bosons interacting with an on-site 
Coulomb interaction---the bosonic version of the 
Hubbard model (magnetic field enters in the phase of tij)

• Granular superconductors
• He4 in porous materials
• Josephson junctions (vortices: EJ~U, EC~t; Cooper 

pairs: EJ~t, EC~U)
• Optical lattices and ultracold atoms
• Calculational methods: QMC, DMRG, RG, PERT THEORY
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t=0 phase diagram

• Pure case:       
E(n)=Un(n-1)/2-µn 
E(n+1)-E(n)=Un-µ

• Disordered case: 
(bounded disorder |ε|<∆)  
E(n+1)-E(n)=εi+Un-µ
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Perturbation theory in t

• The Mott phase has exactly n bosons per site. No 
charge fluctuations are allowed, so the system is an 
incompressible fluid with a gap.

• Consider the excitation energy to the (defect) state 
with one extra or one fewer boson.

• As the gap vanishes, there is a transition to a 
compressible phase (Bose glass or superfluid).  
Easy to calculate, just equate the energies.

• Perform perturbation theory in single-particle 
operator “t+ε”.
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D=1, no disorder
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Josephson junction arrays
• Experimental data on 1-d 

Josephson arrays.
• Horizontal axis is 

analogue of the chemical 
potential µ.

• Vertical axis is analogue 
of t/U (curves shifted by 
value of ratio EC/EJ).

J. K. Freericks, Georgetown University, Bose Hubbard model talk, 2002

Data from Mooij’s group.



Josephson junction arrays

• Effective gap energy can 
also be extracted from the 
experimental data.

• Note how the results have 
a cusp-like feature just 
like the perturbation 
theory showed.
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D=1, disordered

• Rare regions indicate that the 
critical behavior at the tip 
disappears for any value of 
disorder.

• Finite-size effects are large 
since these systems have no 
rare regions.

• Results strongly suggest that 
the Mott phase is completely 
surrounded by the Bose glass 
phase.
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2D pure case and disordered

• Now the tip of the 
lobes in the pure 
case have a power 
law dependence.

• Disorder once again 
will break the 
“critical behavior” 
at the tip and 
produce a 
discontinuity in the 
slope.
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2D case, magnetic field

•Hofstadter problem is needed to determine the first-order degenerate 
perturbation theory.

•The presence of a magnetic field stabilizes the Mott insulator and increases the 
size of the Mott lobe.  As the field increases the perturbation theory breaks 
down .  The tip is expected to be “first-order” here as well.
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Josephson junctions, 2D
• Now we use the Cooper-pair picture rather than the vortex picture.
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Increasing the magnetic field helps
stabilize the Mott insulating phase.



Josephson junctions, 2D ct’d
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Excitation gap as a function of magnetic field shows similar
behavior in theory and experiment.



Exact solution as d→∞

• Must scale t=t*/d.
• Dashed line is the 

exact solution for the 
infinite-range hopping 
model.

• Region between dotted 
and dashed line is 
where the 
compressibility will be 
exponentially small.
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Summary of disorder for all D

• The dependence of tip 
location on disorder is 
strongest in 1d, since 
the lobe is so sharp at 
the end.

• Dimensions 2 and 
higher have similar 
dependence on 
disorder (and weaker 
than 1D).
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Optical lattices
• Hänsch et al. have 

shown how to create 
a 3D lattice that 
traps ultracold
atoms.

• The lattice is 
superimposed on the 
magnetic trap, 
which makes the 
system 
inhomogeneous 
overall.
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Superfluid-Insulator transition

• Coherence peaks indicate superfluidity (or at least 
delocalization through the lattice).

• The broad structure indicates the localized phase.
• By adjusting t/U, the superfluid and insulating phase 

can be entered again and again.
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New frontiers (theory)

• Accurate calculation of the Bose-glass-
superfluid transition is lacking.

• Does disorder immediately remove the critical 
behavior at the tip of the Mott lobe, or is there 
a critical disorder where it changes character.

• Inhomogeneous systems including a trap 
potential---is there a real Mott transition, and 
how is it characterized.
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New frontiers (experiment)

• Can the analogue of magnetic fields be 
introduced into optical lattices?

• Can controlled experiments with disorder be 
performed?

• Can a lattice be constructed without a 
harmonic trap?

• Can one control longer range interactions and 
look for novel behavior like supersolids.
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