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k(t)

Electrons driven by a constant electric field

• In a semiclassical picture, the electron 
momentum, written as ħk=P, evolves with a 
linear time-dependence corresponding to the 
acceleration due to the field: k(t)=eEt/ħ. 

• Periodicity modifies this picture: since the 
electrons are in a periodic lattice, the 
wavevector cannot increase outside of the 
first Brillouin zone; as it tries to move beyond 
the 1BZ it is Bragg reflected to the opposite 
side of the zone.

• Defects, impurities, lattice vibrations, and 
other electrons are sources of scattering, 
which also interrupt the evolution of the 
wavevector in the BZ.
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Bloch Oscillations (Bloch 1928, Zener 1932)

• When on a periodic lattice, the electrons’ motion 
is governed by their electronic bandstructure
ε(k). In metals the last band is partially filled, so 
electrons can easily move.  In insulators, the 
bands are completely filled, with a band-gap to 
the first unoccupied band.

• The electrons move with an effective velocity 
v(k)=dε(k)/dħk. So they carry a current equal to 
ev(k) summed over all wavevectors k.

• As the wavevector evolves over the 1BZ, it 
changes periodically, and so does v(k).

• Hence, Bragg reflection makes the current 
periodic in time! A dc electric field creates a 
periodic ac current in a perfect metal with 
electrons moving in a crystalline lattice.
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But this is never seen in any 
conventional metal no matter 

how clean it is.
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Quenching Bloch oscillations
• Tunneling between bands makes the electrons move as 

if the lattice was not there. They continue to accelerate 
and do not undergo periodic motion. In this case there are 
no Bloch oscillations.  It only occurs if the energy stored in 
the field is large enough to induce a tunneling between 
bands. This will not be considered in this work.

• If the scattering due to defects, impurities, lattice 
vibrations, or other electrons is frequent enough, the 
electrons won’t have enough time to undergo the Bloch 
oscillation, as their wavevector becomes randomly 
changed with each scattering event, and they must start 
their acceleration in the field again. This is why Bloch 
oscillations are not commonly seen in metals.
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Many-body physics and the 
dynamical mean-field theory 
approach to nonequilibrium

problems
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Dynamical mean field theory
• Models of strongly correlated 

materials are difficult to solve.
• Significant progress has been made 

over the past 18 years by examining 
the limit of large spatial dimensions.

• In this case, the lattice problem can 
be mapped onto a self-consistent 
impurity (single-site) problem, in a 
time-dependent field that mimics the 
hopping of electrons onto and off 
of the lattice sites.
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Falicov-Kimball Model
• Two kinds of particles: (i) 

mobile electrons and (ii) 
localized electrons.

• When both electrons are 
on the same site they 
interact with a correlation 
energy U.

• Many-body physics 
enters from an annealed 
average over all 
localized electron 
configurations.

J. K. Freericks, Georgetown University, Augsburg talk, 2007

t

t

t

t

U

U



Physical importance of the Falicov-
Kimball Model

• Simplest many-body problem that has a Mott-like 
metal-insulator transition (but it has no Fermi-liquid 
behavior).

• Possible solid-state systems include NiI2 and TaxN
• Possible cold atom systems include mixtures of light 

alkali atoms (Li or K), with heavy alkali atoms (Rb or 
Cs) in optical lattices.
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Dissipation in nonequilibrium systems
• Our many-body models have no explicit 

dissipation in the Hamiltonian, i.e. no 
phonons.

• But dissipation occurs and steady states can 
be reached, because we have an open 
system attached to infinite reservoirs which 
exchange particles and energy with the 
system, and allow for the Joule heat created 
by the driving electric field (J·E) to be 
transported to and deposited into the 
attached reservoirs.

J. K. Freericks, Georgetown University, Augsburg talk, 2007



Kadanoff-Baym-Keldysh formalism

• Problems without time-translation invariance can be solved 
with a so-called Keldysh formalism.

• Green’s functions are defined with time arguments that run 
over the Kadanoff-Baym-Keldysh contour.

• The electrons evolve in the fields forwards in time, then de-
evolve in the fields backwards in time (we use the 
Hamiltonian gauge, where the scalar potential vanishes).

• Functional derivatives are then used to determine the 
Green’s functions and other correlation functions of interest.
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Dynamical mean-field theory algorithm

All objects (G and Σ) are matrices with 
each time argument lying on the contour.
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Peierl’s substitution and the Hilbert 
transform

The band structure is a sum of cosines on a hypercubic
lattice:

which becomes the sum of two “band energies” when the 
field lies in the diagonal direction after the Peierl’s
substitution.
These band energies have a joint Gaussian density of 
states, so a summation over the Brillouin zone can be 
replaced by a two-dimensional Gaussian-weighted 
integral.
We use about 100 Gaussian quadrature points in each 
dimension to perform the integration.

J. K. Freericks, Georgetown University, Augsburg talk, 2007

)](sin[)](cos[)](cos[
2

cos
2

)(
1

*

1

*

teAteAteAk
d

tk
d

tk i
i

i
i

i εεε +=−−⇒−= ∑∑
==



Steady state formalism

• When we have a uniform field turned on at a 
given time, then one can change variables in the 
retarded Green’s function and find a 
representation that depends solely on the 
relative time.  This allows the retarded Green’s 
function of a nonequilibrium system to be solved 
with an equilibrium-like formalism.

• We have not yet determined whether such a 
simplification is also possible for the lesser 
Green’s function and are working on that 
problem currently
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Computational elements for a 
massively parallel solution of 

the many-body problem
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Computational 
elements

The key issue in calculating the real-time Green’s function is to 
evaluate the Dyson equation of a continuous integral 
operator defined on the Kadanoff-Baym-Keldysh contour.
This operator is first discretized on a grid to be represented by 
finite-dimensional matrices.
Next, we need to integrate the dependence of the matrix 
elements over a two-dimensional energy space.
Each matrix element is constructed from one matrix inverse
and two matrix multiplications. We typically work with 
(approximately 10,000) general complex matrices of size up 
to 5700X5700.
Since the only information needed to generate the matrices is 
the local self-energy matrix Σ, the electric field E, and the 
temperature T, this procedure is easily parallelized. 
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Parallel implementation
(1) Solve for the local self-energy using Dyson’s equation 
on the master node.
(2) Broadcast the self-energy Σ(t,t’), the field E, and the 
temperature T to all slave nodes.
(3) Send each slave node a value of energies for the 
momentum dependence of the Green’s function and 
compute the matrix that enters the two-dimensional 
quadrature. LAPACK routines are used for efficiency.
(4) Store data on the slave nodes for accumulation; use
recursive binary gather to accumulate for the master.
(5) Solve the impurity problem on the master node to 
determine the new self energy.
(6) Repeat until converged. Then extract the 
interesting time-dependent quantities like the current as 
a function of time, or the distribution of the electrons.

J. K. Freericks, Georgetown University, Augsburg talk, 2007



Scaling The algorithm has a 
natural 
parallelizable piece 
and a serial piece, 
so it can never 
achieve pure linear 
scaling for strong 
scaling.  The green 
curve is the strong 
scaling prediction, 
red squares the 
actual data.
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When originally scaled, the data showed a bottleneck 
when increased beyond about 900 processors.  This
was a communications issue, resolved by using a
recursive binary gather operation.  Scaling is sublinear,
but achieves about 70% of linear efficiency on 1500 procs.



Recursive Binary Gather
• In computing the two-dimensional matrix-valued 

integration, we originally used a many-to-one
communication, sending results to the master 
node immediately after being completed.

• But all nodes finished at about the same time, 
creating a data bottleneck with the master node.

• The recursive binary gather operation has 
each node store their results until all 
computation is finished, then the slave nodes 
are divided in two, and one half sends their data 
to the other half.

• The sending of data and “collapsing” of the 
nodes is repeated until all data is on one node, 
which is then sent to the master node.
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Computational Results
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Bloch oscillations in metals (E=1)

As the scattering increases, the amplitude 
of the current decays faster, but we cannot 
tell whether the oscillations survive at long 
time, or are completely damped.
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Accuracy of results—scaling of the 
current (E=1, U=0.5)

The accuracy of the current is illustrated here 
with a plot showing results for different 
discretizations and the extrapolated current.

J. K. Freericks, Georgetown University, Augsburg talk, 2007



Accuracy of the results---scaling of 
moments (E=1, U=0.5)

Exact results are known for the equal time Green’s 
functions and their first two derivatives.  
Extrapolating the results to zero discretization size 
yields excellent agreement with the exact results.
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Current in the Mott Insulator (E=1, U=2)

In the Mott insulator, The regular Bloch oscillations 
are replaced by irregular oscillations.  Note that they 
survive out to long times.
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Current in the Mott Insulator ctd.
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Notice how the oscillations change character from damped 
Bloch oscillations to irregular damped oscillations as the 
size of the gap in the Mott insulator increases.



Beats in the current at large field
When the 
field is large 
(E=2 here), 
near beats 
develop with 
a beat period 
proportional 
to 1/U.  The 
origin of the 
beats is not 
known.

J. K. Freericks, Georgetown University, Augsburg talk, 2007



Density of states (E=1, U=0.5)
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Density of states (E=0.125)
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Density of states (E=2)
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Density of states (Hubbard, E=1)
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Distribution function of the electrons

In a cold atom system, one can detune 
the optical lattice, so it acts like it is being 
pulled in a particular direction.  If we 
“pull” in the diagonal direction, this is 
equivalent to applying an electric field in 
the diagonal direction.  The distribution of 
the light atoms through the Brillouin zone 
can be measured via a time-of-flight 
experiment.  Theoretically, it is given by 
the equal-time lesser Green’s function.
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Gauge invariant vs. in a gauge
The measurable distribution function is the so-called 
gauge-invariant Green’s function.  This is related to 
the Hamiltonian-gauge Green’s function by a 
transformation to a rotating frame with the rate of 
rotation set by the electric field strength.
For example, in the noninteracting system, the 
distribution function is a Fermi-Dirac distribution in 
the Hamiltonian gauge f(ε) and a rotating Fermi-Dirac 
distribution f(εcos[Et]+εsin[Et]) in the gauge-invariant 
case.
When interactions are included, the distribution is 
smoothed out due to scattering and can change its 
character as the field strength increases.
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Strongly scattering metal (small 
field)
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Strongly scattering metal (large 
field)
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Two-d simulation results (R=12.9)
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Two-d simulation results (R=17)
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Two-d local density approximation 
Comparison of 
the T=0 lda to 
the finite-T 
qmc for the 
two cases: 
R=12.9 (top) 
and R=17 
(bottom).  
Note the 
remarkable 
agreement.
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Conclusions
• Showed how to implement an efficient parallel 

algorithm to solve the Keldysh problem for 
strongly correlated electrons described by the 
Falicov-Kimball model.

• The procedure was applied to the question of 
Bloch oscillations and how they disappear as 
scattering is increased.

• Our algorithm showed efficient usage and 
good scaling to thousands of processors on a 
Cray-XT3, an SGI Altix, and a Sun Opteron
(we used a total of about 2,300,000 cpu-hours
on the project and sustained over 60% peak 
speed on the Altix).
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