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Mixtures of different mass 
atoms in an inhomogeneous 

trap on a two-dimensional 
square lattice
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Spin polarized heavy and light 
fermionic atoms on an optical lattice
• Heavy atoms 

(Sr or Yb)
• Light atoms    

(Li or K)
• Optical trap to 

allow different 
trapping 
frequencies for 
each species.
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Falicov-Kimball Model
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• Two kinds of particles: (i) 
mobile atoms and (ii) 
localized atoms.

• When both atoms are on 
the same site they 
interact with a correlation 
energy U.

• Work on a 50x50 square 
lattice and keep ωH=1/30 
fixed, but vary ωL.

• Keep 625 heavy and 625 
light atoms in the lattice.



Physical importance of the Falicov-
Kimball Model

• Simplest many-body problem that has a Mott-like 
metal-insulator transition (but it has no Fermi-liquid 
behavior).

• Possible cold atom systems include mixtures of light 
alkali atoms (Li or K), with heavy atoms (Sr or Yb) in 
optical lattices.

• Possible solid-state systems include NiI2 and TaxN
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Possible realizations of the FK model in 
cold atoms

• Each experimental measurement is like a 
QMC “snapshot” with the configuration 
chosen according to the equilibrium 
probability distribution.

• The heavy atoms are not fully localized 
but the quantum effects of their kinetic 
energy can be ignored, approximating 
the annealed averaging of the FK model.
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Two-d QMC simulation results (U=5)
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Top, heavy atom density (red) and bottom, light atom density
The trap for the lights sharpens from left to right. The QMC
snapshot is the analog of a cold-atom imaging experiment.



Viscous fingering, labyrinthine 
patterns, and stripes

The system has a strong tendency to phase 
separate. The viscous fingering-like 
arrangement of the atoms as one atomic 
species is squeezed relative to the other (via 
changing the trap frequency) occurs because 
axial stripe phases are stabilized in the 
intermediate regime, which create the fingering 
effect, and results solely from the 
inhomogeneity. The specific patterns appear 
similar to the labyrinthine patterns in ferrofluids.
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Two-d QMC simulation results (U=1)
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Ordered pattern formation

For weaker coupling (U=1), the system 
can form a number of different ordered 
phases, like the checkerboard phase, 
or higher period phases, in addition to 
the phase separation.
The ordering temperature can be fairly 
low though.
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Bragg diffraction: Look for peaks 
appearing at (π,π) for the 
checkerboard phase, and at (π,0) 
or (0,π) for the axial stripe phases.  
If these peaks rise above the noise 
floor, one can image the pattern 
formation.

Noise-correlation spectroscopy: By 
examining the shot-to-shot noise 
of a time-of-flight experiment, one 
can measure density-density 
correlation functions which will 
exhibit peaks at the same 
momentum points when the 
pattern formation has occurred.

Measurement of the patterns
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Local density approximation
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Two-d local density approximation 
Comparison of 
the T=0 LDA to 
the finite-T QMC 
snapshot for the 
two cases with 
U=1: 
ω=1/12.9 (top)
and ω=1/17
(bottom).  

Note the 
remarkable 
agreement.
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Local Density approximation
Nonmonotonicity: The local density 

approximation does not vary monotonically for 
the radial density of either atomic species or for 
the total density.  This occurs due to the 
presence of ordered phases, which can break 
the nonmonotonic behavior.  The curves for the 
light atom density are, of course, piecewise 
monotonic when the system is in one particular 
ordered phase and the chemical potential for 
the light atoms increases as we move outward 
in radius.
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Faceting and the 
inhomogeneous dynamical 
mean-field theory approach
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Inhomogeneous DMFT

• Assume the self-energy is local, but can vary 
from one lattice position to another.

• The lattice Dyson equation needs to be solved 
in real space, but requires determining the 
diagonal of the inverse of a sparse matrix.

• Expect transition temperatures to be higher 
because of the neglecting of spatial 
fluctuations.
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U=1, ωL=1/12.9, IDMFT approximation

T=0.05 no 
order seen.
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U=1, ωL=1/12.9, IDMFT approximation

T=0.04, 
checkerboard 
order begins 
in the high 
density ring.
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U=1, ωL=1/12.9, IDMFT approximation

• T=0.03, the 
annulus 
closes---
note the 
faceting of 
the hole, 
and of the 
outer edge 
of the 
annulus.

J. K. Freericks, Georgetown University, JQI talk, 2007



U=1, ωL=1/12.9, IDMFT approximation
• T=0.02; 

perhaps 
order 
nucleates in 
the center 
and pushes 
the 
disordered 
phase 
outward. 
(Results not 
converged 
yet).
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Summary of pattern formation

• Pattern formation appears to be 
ubiquitous in mixtures of light and heavy 
fermionic atoms.

• Similar results to be expected if the 
heavy atoms are bosonic as well.

• Should be observable if one can get to 
the low temperatures needed to freeze in 
the ordered patterns.
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Nonequilibrium distribution 
functions for homogeneous 
systems in “pulled” optical 

lattices
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k(t)

Atoms in a “pulled” lattice
• In a semiclassical picture, the atomic 

momentum, written as ħk=P, evolves with a 
linear time-dependence corresponding to the 
acceleration due to the “field”: k(t)=Et. 

• Periodicity modifies this picture: since the 
atoms are in a periodic optical lattice, the 
wavevector cannot increase outside of the 
first Brillouin zone; as it tries to move beyond 
the 1BZ it is Bragg reflected to the opposite 
side of the zone (so-called Bloch 
oscillations).

• Other atoms are sources of scattering, 
which also interrupt the evolution of the 
wavevector in the BZ.
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Many-body physics and the 
dynamical mean-field theory 
approach to nonequilibrium

problems
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Dynamical mean field theory
• Models of strongly correlated atoms 

are difficult to solve.
• Significant progress has been made 

over the past 18 years by examining 
the limit of large spatial dimensions.

• In this case, the lattice problem can 
be mapped onto a self-consistent 
impurity (single-site) problem, in a 
time-dependent field that mimics the 
hopping of atoms onto and off of 
the lattice sites.
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Kadanoff-Baym-Keldysh formalism

• Problems without time-translation invariance can be 
solved with a so-called Keldysh formalism.

• Green’s functions are defined with time arguments 
that run over the Kadanoff-Baym-Keldysh
contour.

• The atoms evolve in the fields forwards in time, 
then de-evolve in the fields backwards in time.

• Functional derivatives are then used to determine 
the Green’s functions.
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Dynamical mean-field theory algorithm

All objects (G and Σ) are matrices with 
each time argument lying on the contour.
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Σ=G0
-1-Gloc

-1

Gloc=Σk[Gk
non-1(E)-Σ]-1

G0=(Gloc
-1+Σ)−1

Gloc=Functional(G0)
{example: FK model:
Gloc=(1-w1)G0(μ)+w1G0(μ-U)}

Hilbert transform

Dyson equation

Solve impurity
problem

Dyson equation



Pulled lattice and the generalized 
Hilbert transform

The band structure is a sum of cosines on a hypercubic
lattice:

which becomes the sum of two “band energies” when the 
lasers are detuned so that the lattice is “pulled” in the 
diagonal direction.
These band energies have a joint Gaussian density of 
states, so a summation over the Brillouin zone can be 
replaced by a two-dimensional Gaussian integral.
We use about 100 Gaussian quadrature points in each 
dimension to perform the integration.
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Computational elements for a 
massively parallel solution of 

the many-body problem
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Computational 
elements

The key issue in calculating the real-time Green’s function is to 
evaluate the Dyson equation of a continuous integral 
operator defined on the Kadanoff-Baym-Keldysh contour.
This operator is first discretized on a grid to be represented by 
finite-dimensional matrices.
Next, we need to integrate the dependence of the matrix 
elements over a two-dimensional energy space.
Each matrix element is constructed from one matrix inverse
and two matrix multiplications. We typically work with 
(approximately 10,000) general complex matrices of size up 
to 5700X5700.
Since the only information needed to generate the matrices is 
the local self-energy matrix Σ, the electric field E, and the 
temperature T, this procedure is easily parallelized. 
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Scaling The algorithm has a 
natural 
parallelizable piece 
and a serial piece, 
so it can never 
achieve pure linear 
scaling for strong 
scaling.  The green 
curve is the strong 
scaling prediction, 
red squares the 
actual data.
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When originally scaled, the data showed a bottleneck 
when increased beyond about 900 processors.  This
was a communications issue, resolved by removing many-
to-one sends in the quadrature.  Scaling is sublinear,
but achieves about 70% of linear efficiency on 1500 procs.



Computational Results
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Bloch oscillations in conductors (E=1)

As the scattering increases, the amplitude 
of the current decays faster, but we cannot 
tell whether the oscillations survive at long 
time, or are completely damped.
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Accuracy of results—scaling of the 
current (E=1, U=0.5)

The accuracy of the current is illustrated here 
with a plot showing results for different 
discretizations and the extrapolated current.
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Accuracy of the results---scaling of 
moments (E=1, U=0.5)

Exact results are known for the equal time Green’s 
functions and their first two derivatives.  
Extrapolating the results to zero discretization size 
yields excellent agreement with the exact results.
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Current in the Mott Insulator (E=1, U=2)

In the Mott insulator, the regular Bloch oscillations 
are replaced by irregular oscillations.  Note that they 
survive out to long times (albeit with low amplitude).
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Current in the Mott Insulator ctd.
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Notice how the oscillations change character from damped 
Bloch oscillations to irregular damped oscillations as the 
size of the gap in the Mott insulator increases.



Beats in the current at large field
When the field 
is large (E=2 
here), near 
beats develop 
with a beat 
period 
proportional to 
1/U.  The 
origin of the 
beats is a 
splitting in the 
DOS peaks by 
U.
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Transient density of states (E=1, U=0.5)
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Density of states (E=0.125)
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Density of states (E=0.5)
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Density of states (E=2)
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Application to ultracold atoms
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Distribution function of the light atoms

The distribution of the light atoms through 
the Brillouin zone can be measured via a 
time-of-flight experiment.  Theoretically, it 
is given by the equal-time lesser Green’s 
function. It may be necessary to average 
over numerous “shots” to create images 
appropriate for the annealed averaging 
over the heavy atomic positions.
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Equilibrium distribution function

The equilibrium distribution function 
depends only on the band energy.  It 
decreases in magnitude for negative 
energies as U increases.
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Scaling of distribution function

The distribution function scales well 
when we use a quadratic scaling for 
the three smallest discretization
sizes. Left is U=0.5 and right is U=2. 
This point in the BZ is ε=-2 and ε=-2.
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Dependence on U
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Long-time oscillations
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Strongly scattering conductor 
(E=0.5, U=0.5)
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Strongly scattering conductor  
(E=2, U=0.5)
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Mott insulator  (E=0.5, U=1.5)
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Mott insulator  (E=2, U=1.5)
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Conclusions
• Illustrated a range of complex phenomena 

that can occur in cold atom mixtures of 
fermionic atoms with different masses.

• Pattern formation shows both labyrinthine 
patterns and ordered geometrical phases.

• By pulling the lattice in a particular 
direction, one can generate a 
nonequilibrium distribution of the atoms, 
which illustrate complex evolutions in time.
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