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Dynamical mean-field theory

• Invented in 1989 by Brandt and Mielsch
after Metzner and Vollhardt motivated 
looking at the large dimensional limit to 
simplify the many-body problem

• Has solved nearly all many-body models 
of solid state physics in equilibrium and is 
currently being applied to “real materials”

• Here we show how to generalize to 
nonequilibrium situations
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Our model involves the mixture of mobile 
electrons and localized electrons

• Localized f or d 
electrons

• Delocalized 
conduction 
electrons

• A metal-insulator 
transition can 
occur when the 
occupancies of the 
different types of 
electrons change
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Falicov-Kimball Model
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• Two kinds of particles: (i) 
mobile electrons and (ii) 
localized electrons.

• When both electrons are 
on the same site they 
interact with a correlation 
energy U.

• Metal-insulator transition 
occurs when the total 
number of electrons 
equals the number of 
lattice sites and U is large 
enough.



Physical importance of the Falicov-
Kimball Model

• Simplest many-body problem that has a Mott-like 
metal-insulator transition (but it has no Fermi-liquid 
behavior).

• Possible cold atom systems include mixtures of light 
alkali atoms (Li or K), with heavy atoms (Sr or Yb) in 
optical lattices.

• Possible solid-state systems include NiI2 and TaxN
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Bulk materials in large electric 
fields---quenching of Bloch 

oscillations
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k(t)

Uniform electric field drives current
• In a semiclassical picture, the electronic 

momentum, written as ħk=P, evolves with a 
linear time-dependence corresponding to the 
acceleration due to the “field”: k(t)=Et. 

• Periodicity modifies this picture: since the 
electrons are in a periodic lattice, the 
wavevector cannot increase outside of the 
first Brillouin zone; as it tries to move beyond 
the 1BZ it is Bragg reflected to the opposite 
side of the zone (so-called Bloch oscillations).

• Other electrons are sources of scattering, 
which also interrupt the evolution of the 
wavevector in the BZ.
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Many-body physics and the 
dynamical mean-field theory 
approach to nonequilibrium

problems
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Dynamical mean field theory
• Models of strongly correlated 

electrons are difficult to solve.
• Significant progress has been made 

over the past 19 years by examining 
the limit of large spatial dimensions.

• In this case, the lattice problem can 
be mapped onto a self-consistent 
impurity (single-site) problem, in a 
time-dependent field that mimics the 
hopping of electrons onto and off 
of the lattice sites.
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Kadanoff-Baym-Keldysh formalism

• Problems without time-translation invariance can be 
solved with a so-called Keldysh formalism.

• Green’s functions are defined with time arguments 
that run over the Kadanoff-Baym-Keldysh
contour.

• The electrons evolve in the fields forwards in time, 
then de-evolve in the fields backwards in time.

• Functional derivatives are then used to determine 
the Green’s functions.

J. K. Freericks, Georgetown University, FQMT, Prague, 2008

0 t

−iβ

Δ t imag

Δ t real λ  − χtc

λ   c



Dynamical mean-field theory algorithm

All objects (G and Σ) are matrices with 
each time argument lying on the contour.
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Σ=G0
-1-Gloc

-1

Gloc=Σk[Gk
non-1(E)-Σ]-1

G0=(Gloc
-1+Σ)−1

Gloc=Functional(G0)
{example: FK model:
Gloc=(1-w1)G0(μ)+w1G0(μ-U)}

Hilbert transform

Dyson equation

Solve impurity
problem

Dyson equation



Peierl’s substitution and the 
generalized Hilbert transform

The band structure is a sum of cosines on a hypercubic
lattice:

which becomes the sum of two “band energies” when the 
electric field lies in the diagonal direction.
These band energies have a joint Gaussian density of 
states, so a summation over the Brillouin zone can be 
replaced by a two-dimensional Gaussian integral.
We use about 100 Gaussian quadrature points in each 
dimension to perform the integration.
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Computational elements for a 
massively parallel solution of 

the many-body problem
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Computational 
elements

The key issue in calculating the real-time Green’s function is to 
evaluate the Dyson equation of a continuous integral 
operator defined on the Kadanoff-Baym-Keldysh contour.
This operator is first discretized on a grid to be represented by 
finite-dimensional matrices.
Next, we need to integrate the dependence of the matrix 
elements over a two-dimensional energy space.
Each matrix element is constructed from one matrix inverse
and two matrix multiplications. We typically work with 
(approximately 10,000) general complex matrices of size up 
to 5700X5700.
Since the only information needed to generate the matrices is 
the local self-energy matrix Σ, the electric field E, and the 
temperature T, this procedure is easily parallelized. 
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Computational Results

J. K. Freericks, Georgetown University, FQMT, Prague, 2008



Bloch oscillations in conductors (E=1)

As the scattering increases, the amplitude 
of the current decays faster, but we cannot 
tell whether the oscillations survive at long 
time, or are completely damped.
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Accuracy of results—scaling of the 
current (E=1, U=0.5)

The accuracy of the current is illustrated here 
with a plot showing results for different 
discretizations and the extrapolated current.
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Accuracy of the results---scaling of 
moments (E=1, U=0.5)

Exact results are known for the equal time Green’s 
functions and their first two derivatives.  
Extrapolating the results to zero discretization size 
yields excellent agreement with the exact results.
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Current in the Mott Insulator (E=1, U=2)

In the Mott insulator, the regular Bloch oscillations 
are replaced by irregular oscillations.  Note that they 
survive out to long times (albeit with low amplitude).
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Current in the Mott Insulator ctd.
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Notice how the oscillations change character from damped 
Bloch oscillations to irregular damped oscillations as the 
size of the gap in the Mott insulator increases.



Beats in the current at large field
When the field 
is large (E=2 
here), near 
beats develop 
with a beat 
period 
proportional to 
1/U.  The 
origin of the 
beats is a 
splitting in the 
DOS peaks by 
U.
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Transient density of states (E=1, U=0.5)
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Steady-state DOS (E=0.125)
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Steady state DOS (E=0.5)
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Steady state DOS (E=2)
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Steady-state approach and the 
Hubbard model
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Steady-state formalism

Make the ansatz that the self-energy is 
independent of average time.
Dyson equation on the lattice now 
couples frequencies that differ by the 
Bloch frequency---it can be solved via 
matrix algebra
Use the NRG impurity solver to solve the 
impurity problem---result is approximate 
for the DOS because it maps to an 
effective equilibrium problem

J. K. Freericks, Georgetown University, FQMT, Prague, 2008



Small field (E=0.5)
The system evolves 
from broadened 
Wannier-Stark ladder 
states to a Mott-
insulator-like band 
with a quasiparticle-
like peak in the 
center, but the self-
energy never looks 
like that of a Fermi 
liquid.
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Large field (E=2)
Now the Wannier-
Stark states are 
initially split by U and 
broadened. The 
splitting continues 
until they merge to 
create a Mott-like 
DOS.  
Commensuration 
effects give a zero-
frequency peak in the 
bottom panel.
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Conclusions
• Illustrated how one can generalize 

dynamical mean-field theory to solve a 
number of nonequilibrium problems

• Worked with a transient-response 
formalism and a steady-state formalism.

• A full steady-state formalism is not 
possible yet, due to the issue of needing to 
find the appropriate boundary condition for 
the Keldysh/lesser/greater Green’s 
functions, which is known only at t=-∞.
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