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We calculate the effects of vertex corrections, of nonconstant density of states arldeff@nsistently
determineg phonon self-energy for the Holstein model on a three-dimensional cubic lattice. We replace vertex
corrections with a Coulomb pseudopotentie! adjusted to give the sanie., and repeat the calculations, to
see which effects are a distinct feature of vertex corrections. This allows us to determine directly observable
effects of vertex corrections on a variety of thermodynamic properties of superconductors. To this end, we
employ conserving approximatiori the local approximationto calculate the superconducting critical tem-
peratures, isotope coefficients, superconducting gaps, free-energy differences, and thermodynamic critical
fields for a range of parameters. We find that the dressed valngso§ignificantly larger than the bare value.
While vertex corrections can cause significant changes in all the above qudetigeswvhen the bare electron-
phonon coupling is smallthe changes can usually be well modeled by an appropriate Coulomb pseudopo-
tential. The isotope coefficient proves to be the quantity that most clearly shows effects of vertex corrections
that can not be mimicked by ag . [S0163-182@08)05245-X]

I. INTRODUCTION surement that provided data for the tunneling conductance
out to an energy at least twice that of the maximal phonon
The theory of conventional, low-temperature superconfrequency of the bulk material. Then a tunneling inversion
ductors has been well understood for decades, within BC8ould be performed using only the experimental data out to
theory! and many material properties of superconductorsan energy of the maximal bulk phonon energy, and the re-
have been accurately described within the more appropriateults for Migdal-Eliashberg theory would be compared to the
Migdal-Eliashberg formalisri?® which includes the retarda- vertex-corrected theory for the experimental data that was
tion effects of the electron-phonon interaction in a realisticmeasured in the multiphonon region, at voltages above the
manner. The success of the formalism arises from Migdal’snaximal bulk phonon energy of the material. Unfortunately,
theorem? which says that vertex corrections can be ne-such an analysis has only been performed for{eadd in
glected when the ratio of the phonon energy scale to théhat case, the experimental data was not accurate enough in
electron energy scale is smaBuch as the value of Id  the multiphonon region to be able to see if effects of vertex
typical of conventional low-temperature supercondugtors corrections were observable. Similarly, high energy data
The physical reason being that the ion movement is typicallfrom optical conductivity experiments would indicate
too slow to respond to anything but the mean-field potentialvhether or not vertex corrections are important, but there

produced by the fast-moving electrons. again, the accuracy of the data might preclude seeing effects
In recent years there has been investigation of supercomf vertex corrections.
ducting materiats *°such as Ba_K,BiO3, K3Cqo, and the In order to determine what effects are unmistakenly due

A1l5’s, whose phonon energy scale is a larger fraction ofo vertex corrections, we fit a Coulomb pseudopotentigl
their electron energy scale. For such materials, the standatd a Migdal-Eliashberg theory so that the superconducting
Migdal-Eliashberg theory may no longer be valid, either be-transition temperatur&, is the same for the vertex-corrected
cause second-order processes in the electron-phonon caeory(with no 1) and the conventional Migdal-Eliashberg
pling (so-called vertex correctionsan not be neglected; ™ theory (with a X but no vertex correctionsin the case of
or because structure in the electronic density of states angressed phonons, we adjust both the electron-phonon inter-
finite-bandwidth effects become significéﬁtOur aimis to action energy andﬂé , in order to fit the same values a&f
identify those experiments which can clearly indicate whereand T, as the results with vertex corrections. This procedure
vertex corrections, or structure in the electronic density ofis exactly the procedure carried out in analyzing experimen-
states, are observable in real materials. In particular, we wista| data within the conventional theory. We carry out this
to uncover those effects which can not be mimicked by a‘experimental analysis” on a model system where we know
Coulomb pseudopotentialg as this would render them un- that vertex corrections have a large effect, in order to see the
observable in practice, becausg@ @ is typically fitted to the  extent to which the conventional analysis masks their obser-
experimental data. vation. Hence we look for differences in thermodynamic
The most compelling evidence for the effect of vertexquantities between these results and those with vertex cor-
corrections would come from a tunneling conductance mearections. Any quantities which are significantly different
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FIG. 1. The single-spin density of states for noninteracting elec-
trons on a 3D cubic tight-binding lattice. Note the nature of the van
Hove singularities, which lead to an abrupt fall in the density of d)
states. They occur at electron fillings wf0.45 andn~1.55. The
approximate form used in the calculations is also plotted, and is @ =2
indistinguishable by eye from the exact curve.

-y

when calculated with a fitteu¢ instead of vertex correc- FIG. 2. Different forms for the electron self-energy. All dia-
tions pin-point the experiments that can give the best indicagrams include the same initial Hartree term, followed by the spe-
tion that a material needs to have vertex corrections includegific Fock contribution and any other required diagrams. All elec-
in its description. tronic Green's functions are dressed, but phonon lines can be
Since this is the initial attempt at solving such a problem,undressedthin) or dressedthick) as in Fig. 3b). For bare phonons,
we study a simple model system, which has a nonconstari®) is with no vertex corrections, whiléb) includes the vertex-
electronic density of state¢Fig. 1), using both Migdal- corrected diagram. When the phonons are dres&ds without
Eliashberg formalism, and going beyond it, to include vertexvertex corrections, whiléd) includes them. A factor of 2 appears in
corrections. The vertex corrections are second-order digtont of each electron loop term, to indicate a sum over spins.
grams where a pair of phonon lines cross, as shown in the
self-energies of Fig. ®). In both cases, the phonon propa- frequencyQ. The strength of the bare electron—phonon Cou-
gators can be dressdde., with a phonon self-energy in- pling can be measured by the bipolaron binding endvgy
cluded or bare, as shown in Fig. 2. We find that dressing thevhere
phonons leads to a strong enhancement of the effective in-
teraction strength, exemplified by a large renormalization in g?
the value of the electron-phonon coupling paramater U=- MQ2 @
The specific model we study is the Holstein
Hamiltoniart” on a three-dimension&BD) cubic lattice. The  The chemical potential ig., and is always calculated self-
Hamiltonian consists of conduction electrons that hop fromeonsistently for a given average number of electrons per site
site to site, coupled to harmonic, localize@instein  n (0<n<2). Particle-hole symmetry occurs at half filling,
phonons: wheren=1 andu=U. We concentrate our work on super-
conductivity and ignore any possible charge-density wave
1 order that may occur near half filling.
O N= ote +Z2 2N 2 We carry out weak-coupling expansions within the con-
A= ul iJZo tiCioCjot g ME EI % serving approximations of Baym and Kadan®ff?! The
electron self-energ®. is given as a functional derivative of
+i2 P2+ > (gX%— )N, (1)  the free-energy functiona® with respect to the electron
2MT TS Green'’s functionG. When dressing the phonons, we main-
tain a conserving approximation by careful choice of the

~t - o ] phonon self-energy. In this case, there must be a free-energy
wherec;,, andc;,, are fermionic operators which create and fnctional & whose partial derivative with respect to the

destroy, respectively, an electron of spirin a single Wan-  ejectron Green’s function yields the electron self-enexgt
nier (tight-binding state on the lattice site whose total \hosepartial derivative with respect to the phonon Green’s
electron occupancy is given loy= cﬂ}ciﬁcﬂcil . The elec- functionD yields the phonon self-energy. In such cases there
tron hopping is between nearest neighbors only, such thatlways exists a related free-energy functiodel, which is
tjj=—tif i, are neighboring sites, withthe overlap inte- the skeleton-diagram expansion whdsk functional deriva-
gral, andt;;=0 otherwise. The phonons, of maks with tive with respect to the electron Green’s function yields the
displacemenx; and momentunp; are characterized by their electron self-energy. In all cases, the irreducible vertex func-
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tion is given by thefull functional derivative of the electron
self-energy with respect to the electron Green'’s function, i.e., VW - VWY - W\N\@V\N\’
T m=d2(iw,)/dG(i wy,).

We employ the local approximation in our calculations, a)
which means we neglect the momentum dependence in the @= ) O
self-energy and irreducible vertex functions. The local prob-
lem gives an exact solution in the infinite-dimensional
limit, 1222 but in this case it is an approximation, which, as b)
used in Migdal-Eliashberg theory, is expected to give good @= ZO + 5 @
guantitative results, though of course it means we can only
study s-wave pairing.

We use the formalism, described in detail in the next sec- FIG. 3. Dyson’s equation for the phonon propagators. Thin lines
tion, to calculate the critical temperatufe and the isotope indicate bare Green’s functions while thick lines indicate dressed
coefficienta by looking at the instability of the normal state. ones.(a is the phonon self-energy without vertex correctidiog is
Also, within the superconducting state, we calculate the sywith vertex corrections. The factors of 2 come from a sum over
perconducting gap\ and the thermodynamic critical field €lectron spins.

H. from the free-energy differendes— Fy . The conserving
nature of each approximation is evidenced from the fact thaf’
the T, determined by extrapolating the ordered-phase calcudVen by

lations to zero order parameter agrees withe Thefound Se(iwn)
from the Owen-Scalapino methddn the normal state. We TFn,m=5F.—n.

. : : . ; (lwy)
point out in particular those results which deviate from
Migdal-Eliashberg theory, and arise from vertex correctiongFigure 4 shows the Feynman diagrams which correspond to
or a nonconstant density of states. By including a Coulomhhe appropriate free-energy functionblfor each of the four
pseudopotential, which causes the same chandg &s ver-  calculations, while we defer the specific formulas to the ap-
tex corrections, we are able to demonstrate what experiments
can be used to differentiate between vertex corrections and a)

)
-

hile the irreducible vertex function for superconductivity is

Coulomb pseudopotential.

Section Il contains the formalism, describing the particu-
lar approximations we use, and explaining how our calcula- -
tions are carried out. Section Ill presents our computational
results, including a number of graphs depicting the various
guantities that can be determined experimentally for real sys-
tems. We make our conclusions in Sec. IV, which is fol-
lowed by an Appendix which gives the detailed formula o -
withheld from Sec. Il.

[ L
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I
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II. FORMALISM

In our calculations, we use four different types of con-
serving approximations, which will be expounded below.
Four different approximations are necessary, in order to re-_
veal how dressing the “bare” phonons affects solutions of
the model, as well as to demonstrate the effects of vertex ¢ -
corrections. Each approximation includes a specific self-
energy, and hence a specific vertex function, as shown ir
Figs. 2-5. In short, these can be describedasMigdal-
Eliashberg approximation with a truncated dressing of
phonons,(b) second-order perturbation theory, which con- d
tains vertex corrections and a truncated dressing of phonons
(c) Migdal-Eliashberg theory with dressed phonofadso d -
known as the shielded potential approximatipnand (d)
vertex-corrected theory with dressed phonons.

1 @
@ ' @
The calculations are carried out on the imaginary &is,
with the Green’s functions and self-energies defined at Mat- _ ) _
subara frequencieiso,=(2n+1)#iT, whereT is the tem- FIG. 4. Free-energy functiond} for the conserving approxima-

perature. The self-energies are calculated from the derivativiPns: Equationga) and(b) are with bare phonon propagators, while
of an appropriate free-energy functiorhlas (c) and(d) have dressed phonons. The first term on the right in each
equation is the Hartree term, which does not change and which is

D 5D not included ind’. (Its phonon line is always undressed, to avoid
dliw,)= S — , double counting The extra, final diagram irib) and (d) is the
oF* (1wy) vertex-correction term.

N =
=

0000 00 0O

o= 1 o
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The phonon propagatd® (i w,) is defined bg®
a)

0? B A
P D(iwv):mTZj fodrexqiwyr](ij(T)xj(o», @)

such that the bare propagator, with no self-energy,
DO(iw,), is equal to—Q%(w+Q?). The appropriate

Matsubara frequencies, in this case, are those which lead
r - ‘s . + . to bosonic statistics, such thab,=27iTv.
When we use bare phonons, and have no vertex correc-

tions, the electron self-energy is illustrated in Figa)2 The
first term is the Hartree contributiddn. It can be included
by a shift of the chemical potential as it only contributes a

° 9 constant to the diagonal part of the self-eneXgyw,). Such
r - § r - g + + + g a shift is implicitly included whenu appears in a Green's
function, so that the Hartree term is hereafter neglected. It is

followed by the Fock term, then a single-phonon dressing
FIG. 5. The irreducible vertex-function diagrams, for supercon-term, where the phonon line includes a single loop, which is
ductivity. (a) is with no vertex corrections, whil&) includes the the electron p0|al'i2abi|itle(O)(in)Z
three vertex-corrected diagrams. When the phonons are drésgsed,
is without vertex corrections, whil@l) includes them.

b)

m(iw,)=-2T2 [Gliwmn)G(iwn:,)
m
pendix. The functionad’ whosefull derivative leads to the _ Y
electronic self-energy, is equal tb when the phonons are —Fllon)F* (ion:,)], )

“bal’e,” but ConSiStS Of an |nf|n|te number Of Ske|et0n dia— W|th the factor Of 2 arising from the Summation over Spin.
grams when the phonons are dressed. The precise relatiofihe third term includes dressing of phonons in a truncated
ship betweerb’ and® is given in EqQ.(A18). manner, and allows us to make comparison with the com-
When calculating properties for the superconducting statelete second-order approximation, in Figb2 where the
we must use the Nambu formalisthwhere the electron only difference is the inclusion of the vertex-correction term.
Green’s function and self-energy are represented bx& 2 The specific formula for the extra term in Fig(b2, which
matrix enters our calculations when we include vertex corrections
Gl (iw,) Flion) using bare_phqnons, is given in Eq#7) and (A8). The
n n extra contributions to the self-energy coming from vertex
F*(iw,) —-G'(—iwy,) corrections have opposite sign to the Fock term, near half
filling, where the product of two electronic Green’s functions
:f p(o)(e)de[iwnz;; _ 6+M—§(iwn)]_l, 3) i; .negative(the Green’s fl_mctions are pur(? imaginary at half
= = filling). Away from half filling, the Green’s functions gain
wherep(©)(e) is the approximate form for the noninteracting €@l parts, Whi,Ch means that near the band edges the product
electron density of states on a 3D cubic lattice as shown if W0 Green's functions can be positive, and the vertex-

g(iwn>s(

Fig. 1, given by Uhrig?® and correction terms then add to the Fock term.
' ' In the calculations with dressed phonons, we have a Dys-
_ S(iwp)  ¢(iw,) on’s equation for the phonon propagator, as depicted in Fig.
Z0o=| v (i) S*(iwn) 3

D(iw,)=Dw,)+Dw,)(iw,)D(iw,), (9

1 0
1-3=(0 _1>. (4)  wherell(iw,) is the phonon self-energy. Note that within
N the conserving approximations, we must determine the pho-
Here, the diagonal and off-diagonal Green’s functions aréon self-energy by differentiating the free-energy functional:
defined respectively as 5 50

Niw,)=— —/——. (10
: 1 B . - - YT D

G (i) == 3 | drexstion (15,18, (0, (i)

IJo With no vertex corrections, the phonon self-energy is simply
) given by the electron polarization, as depicted in Fig).3

That is,
Flion == 3 [ drexttionn(T4, (8, 0)
®n NS Jo o OnTA TR TS R M(iw,)=Urw,). (11)

©) In this case, we use the contributions to the electron self-
where T. denotes time ordering im. The definitions of energy that are shown in Fig(@, whose explicit formula is
2 (iw,) and ¢(iw,) for each calculation are given in the given in Eqg.(A11). Note that the term with the single polar-

appendix, Eqs(A2)—(A16), and are represented in Fig. 2. ization bubble is missing, as all orders of such “necklace”
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diagrams are included in the Fock term with the dressed\s the pairing fluctuations lead to an instability of the nor-

phonon propagator. In fact, the approximation includingmal state]’, ,, must be calculated in the normal stéte., in

dressed phonons without vertex corrections is equivalent tthe limit F(i w,)—0].

the shielded potential approximation, whereby the infinite Figure 5 shows the contributions to the irreducible vertex

series of ring diagrams without vertex corrections are infunction for each of the four approximations. Each diagram

cluded in the skeleton-diagram functiorl . is achieved by removal of one electron Green'’s function line,
When we include vertex corrections, as well as dresseffom a self-energy diagram in Fig. 2. The algebraic expres-

phonons, the phonon self-energy gains the extra term showsions for each of the four sets of diagrams are given in the

in Fig. 3(b). The full expression is given in the Appendix Appendix. Note that because the calculations are carried out

[Eg. (A16)]. Note that a fully dressed phonon propagator isin the normal state, witliFr—0, rings within the self-energy

included in the phonon self-energy. As shown in Figd)2 can not be broken, as the resulting ladder diagrams give zero

the electron self-energy now has the expected extra terrontribution.[Compare Fig. &) arising from Fig. 2a)].

with a crossing of phonon lines. It is almost identical to the As we wish to uncover more than the phase diagram

extra term in Fig. B), except of course, now the phonons given by the different perturbation approximations, we move

are dressed. Again, the details of the formula can be found ion to describe how we calculate other properties. In order to

the Appendix. find the superconducting gap and thermodynamic quantities,
Our calculations all involve iteration of the Green’s func- calculations are required within the superconducting state,

tions and self-energies, until a self-consistent solution ivut a simple addition to the previous computations in the

reached. We begin with the noninteracting Green’s functionsiormal state allows us to calculate the isotope coefficient.

(set the self-energies to z¢rand use it to calculate an initial The isotope coefficienr describes how the critical tem-

estimate of the self-energies, according to E4®)—(A16).  perature changes with the phonon mbéslt is defined as

The new self-energies are used to calculate updated Green’s

functions, according to Eqg3) and (9). The procedure is

iterated, so that at each step there is an updated self-energy, dinT,

which includes a fraction of the previous self-energy, the N TYE (17)

exact fraction variable, dependent upon the progress of the

iteration. We stop the process when the change in all the

self-energies is less than one part in 1) which is typically ~ so thatT.<M~“. The weak-coupling limit of BCS theory,

after tens, but sometimes after hundreds of iteration steps.and Migdal-Eliashberg theory with no Coulomb repulsion,
Superconductivity occurs below a critical temperaflige  predict «=0.5, which corresponds t6,%1/JM. The pho-

where the normal state becomes unstable to fluctuations inon frequency changes with mass, accordindt@1/\/M,

the pairing potentialthe Cooper instability The instability ~ so both the producMQ? and the interaction energy re-

shows itself as a divergence in the pairing susceptibity, main constant. Hence we calculate the isotope coefficient

which is given by simply by changing the phonon frequency by 1%orre-

sponding to a typical mass change of 2% between isoiopes
(12 and comparing the change in critical temperature. To be pre-

— (0)5 -T (0)1“
Xmn=Xm 2m,n ZI Xm L miXi,m: cise, we computer by

wherel', , is the irreducible vertex function, to be defined

shortly. The bare susceptibility in the superconducting chan- T(new _ (old) Q (ol
nel for momentuny is defined as a=05 - < . , (18)
Tf:dd) Q(new) _ Q(old)
1 . .
Xm (=52 Glion K)G(~—ion,~k+a), (13
so the BCS result is achieved T« ().
which becomes in the local approximatidgfor the zero- According to standard method§;°the energy gap in the
momentum pajr superconducting statk requires a self-consistent calculation
. within the superconducting state. Note, the order parameter
<o>:|m[G(f“’m)] (14) on the imaginary axis is related to the off-diagonal self-
" opZ(ion) energy through
where

The transition temperatufg. occurs when the largest eigen- _ .

value of the matrix—Tx{OT,,| passes through unity. We Where Z(iwy,) is the mass-enhancement parameter, calcu-

calculate the highest eigenvalue using the power method. lated from the electronic self-ener@y(iw,) as given in Eq.
The irreducible vertex functiofi , , is given by the func- (15). The gap itself is found from the order parameter on the

tional derivative of the off-diagonal self-energy, with respect’al axis, at the point where Ri(w)]=w. We carry out a
to the off-diagonal Green’s function Padeanalytic continuatiotf3! to obtain the order parameter
on the real axis, and hence the value of the gap.
TT . m= 8¢ (i wn)! SF (i wpy). (16) The free energy can be found from the fornfard*
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1 - iw
F=—2T; [Eln[—lldeg(iwn)] ’é:UC/[l—ZTUCE IM{G(iom)] )

Nc+1 Wm
1 where the diagonal Green’s functi@y(iw.,) is at high fre-
+ ST (i wn)E(iwn)] quency, where the self-energies may be neglected, but must

2 include the self-consistent chemical potengial In our cal-
culations, with the frequency cutoff on the scale of the band-

+ IE {In[—1/D(iw,)] width such that 256 or 512 Matsubara frequencies are used,
2% there is a very smalltypically 1 or 2 %) reduction irJc.
+T(iw,)D(iw,)} + B+ u(n—1). (20) This is different from the conventional approach in real ma-

terials because here our energy cutoff is governed by the

The free-energy functionab whose partial differential with ~ €/ectronic bandwidth, not some multiple of the maximum
respect to the electrofor phonon Green’s function gives phonon frequency. To make contact with the standard for-
the electror(or phonon self-energy is depicted in Fig. 4 and Malism, we define a dimensionless pseudopotenyigl
evaluated in Eqs(A2), (A6), (A11), and(A15). We are in- =p@(u)-UE, where p®(u) is the noninteracting elec-
terested in the free-energy difference between normal antionic density of states at the chemical potential. In calcula-
superconducting states at fixed electron fillingin which  tions at different temperaturel, is kept fixed, so thagg
case the first, Hartree, term ¢h is neglected as it is a con- varies to a small extent.
stantUn?/2. The final termu(n—1) cannot be neglected, Finally, we wish to make clear how, the measure of the
because the chemical potential can differ considerably beelectron-phonon coupling strength, is defined in our work. A
tween the superconducting and normal state when one irprecise definition is required, because different methods of
cludes the effects of nonconstant density of states. calculating\ lead to different results away from the weak-
We calculate the thermodynamic critical field in the su-coupling limit, especially when the phonons are dressed.
perconducting statél, from the free-energy difference be- Here,\ is given by
tween the superconducting and normal state, according to the 0
formulaFs—Fy= — uoH?2. The thermodynamic field varies A=p'%(u)-U-D(0), (24)

with temperature in an almost quadratic manner, so that calyhereD(0) is the zero-frequency component of thessed
culation of the deviation function, which is defined as thepnonon propagator, which can be significantly different from
d|fferenc§ betweertd .(T) and the quadratic form (0)[1  that of the bare propagat®@(®(0). This value of\ is usu-
—(T/Tc)"] gives a sensitive test of changes in thermody-gjy gifferent from the electronic mass enhancement param-
namic quantities. o _ eter,i.e.\#Z(0)—1, as the two are only equal in the weak-
In the calculations which include a Coulomzlg repU|5'0ncoupIing limit and with Q—0. The definition of \ is
termUc, we make the standard SI.mpIIflcatil('i‘W‘ ofonly jgentical to that commonly calculated from the electron-
including its effects on the off-diagonal self-energy. This phonon spectral densi®,a’F(w), namely,
simplification is valid, as the normal-state Green’s functions
in reality include the Coulomb repulsion effects, and these »a’F(w)dw
change by very little for the diagonal part of the Green’s )\ZZJ _— (25
function when superconducting order is present. As our
model does not include the effects Bf. on the diagonal where
Green'’s functions, it is not strictly the solution of a simple
Hamiltonian with aU¢ term included® However, the sim-
plification does allow us to compare the effects of including
a Coulomb repulsion versus adding vertex corrections, on the ) )
superconducting properties and transition temperature from &he real-axis form of the phonon propagaid{w) is calcu-
similar normal state and it is precisely the method employedated from its imaginary-axis valuds(iw,) by a Padeana-
in analyzing experimental data on real materials. With thes&/tic continuation.
comments understood, the only changes to the calculations
that are necessary with the inclusion of a Coulomb term, are Il. RESULTS
that both the off-diagonal self-energ§(i w,) and the irre-
ducible vertex functiod’,, , gain an extra term:

0 w

1
azF(w)=p(°)(,u)|U|;lm[D(w)]- (26)

In choosing the parameters used to carry out the calcula-
tions, a number of criterion had to be satisfied. First, we
wished to operate outside the weak-coupling regime, so that

diw)—d(iw,)+UcTY Fliom), (21)  Vertex corrections would not be negligible. The phonon fre-
m quency needed to be large compared to conventional low-
temperature superconductors, but not so large that it gave no
Tyl hmtUc. (22 realistic point of contact with those superconductors men-
tioned in the introduction. So we choo8es=t, equal to one
In the computational calculations, the Matsubara frequencywelfth of the bandwidth. We had to ensure the electron-
sum is cut off after a constant numbb, of terms. This  phonon coupling strength was not so strong that the ground
leads to a renormalization which reduces the Coulomistate would contain bipolaroiémaking the perturbation ex-
term'®*to a pseudopotentidl & given by pansion about a Fermi liquid state invalid. A maximum cou-
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0.20 / \ i
/ \ FIG. 7. Transition temperature as a function of filling. The
dashed lines indicate vertex corrections are included, while solid
e N lines are without them. The lines with circles have dressed phonons.
’ e Both diagrams show an enhancd@d by dressing the phonons,
0.0 0.5 1.0 15 2.0 while vertex corrections reduck. near half filling. In all casesT,
Frequency, ®/ ¢ falls rapidly above a filling oh=1.55, where the density of states
drops rapidly.
FIG. 6. «°F(w), calculated from the dressed phonon propagator
on the real frequency axis far=1 and(Q =t. Increased coupling
leads to a greater downwards shift in frequency from the initial
delta function atw=t.

0.02 FESEZTTS \

o«’F(®)

0.00

The two curves with dressed phonons in Fig. 7 show a
greater disparity than the two curves with bare phonons in
the same figure, which means that dressing the phonons,
) o which increases the effective coupling, enhances the effect of
pling of U= —2t, hence a bare <0.5 ensured this. Finally, vertex corrections. Although it is hard to distinguish the
in order to calculate properties in an achievable time, while;yrves due to the loW . near the band edge, above a filling
ensuring the imaginary frequency cutoffs were at energiegf n=1.75 the vertex corrections do lead to an enhancement
larger than the band-width, the temperature of the calculayy T.. This result is in agreement with previous wdf
i -3 : . S
tions could not be too small, hende>2X10"°t. The last  Note that all results show particle-hole symmetry, that is,
condition meant that results within the superconducting statéhey are symmetric about half-filling. The figures just show
were best carried out for as largeand () as possible, S0 hajf of the band 1>1), neglecting a mirror image below
that T would be high. Hence, calculations near the banchgif filling.
edges, where the density of states was low, prove to be in- |t js clear that vertex corrections do chariieby a con-
accurate, due to the very low transition temperatures theresjgerable amount, but for any experimental measurement,
Our first result is that dressing the bare phonon propagaiqghere the microscopic parameters are not known, a Coulomb
Iﬁads tlo cor}sm(jzratt))lle refnorm_allzsnon eﬁl‘ectsdf IO t32e specifigseudopotentigh’, can always be fitted to give the saffig
the value ofk doubles from its bare value 0f=0.21, 10 a5 yertex corrections. Hence we continue with other results,
)\~0.4_after dressing the phonons, using parameferst 15 gee where vertex corrections can not simply be mimicked
andU=—1.5%, near half filling. Moreover, at the increased by an appropriateu’, which would cause the effects of

';tﬁr?gt't?]n s\jr?ngthﬂ?{z ;éth ); |sn<cajrr1hanc§d Eyr? fnacttor ,?rf vertex corrections to be unobservable. So we fitzato give
N € value ol =420 Tor undressed pnonons 10 e y,o same value off. as vertex corrections, and go on to

dressed valug 0i=0.9. SUCh an enhar_lcement indicates thatChange the unobservable electron-phonon coupling strength
the perturbation expansion would be inaccurate at bare co

ling strengths lower than might be naively expected. Fi urLtl o give the same. as vertex corrections, when phonons
bling 9 P ; 9 . y exp - "19Ur% e dressed. Hence the effects of vertex corrections can show
6 shows howa“F(w) is altered from its bare value, a delta

X . . up as discrepancies over a range of quantities compared to
function situated atv=Q=t, when it is dressed. Note that P P 9 N P

. . o
there is both a shift to lower frequencies as well as a broadt-he yalues o_btameq with flttqqc andA.
Figure 8 is a direct comparison between the effects of

ening of the spectrum. The shift to lower frequencies shows .
that a Holstein model with bare phonon frequencies of neaf€/ex corrections and a Coulomb pseudopotepifalon the

10% of the bandwidth can be required to lead to dresseMalue of the gap parameter. Ourfirst_ method is to fix the bare
phonon frequencies at approximately 5% of the bandwidth®!€Ctron-phonon coupling and to adjust the valudJgfand
Hence the exact phonon self-energy used is an importarﬁlence'“c in a calculation W|thoqt vertex corrections, until
factor when modeling electron-phonon systems, near thf€ Samel¢ is reached as found in the calculation with ver-
crossover between the weak-coupling and strong-couplin{fX correctionsshown in Fig. T)]. Uc is then used un-
regimes. Changed, to calculate other properties such as the gap param-
The preceding paragraph explains some of the dramatigter- The Coulomb pseudopotentjaf varies with electron
differences between the critical temperatu'ﬂ'@)(va]ues for fllllng at TC as shown in the inset. Notice that an artificial
the different approximations, shown in Fig. 7. In particular, value of ug <0 is required whem>1.7, as vertex correc-
the T, for dressed phonons is markedly higher than that fotions enhancé. in this region. Near half filling, wherg¢ is
bare phonons, which is to be expected\as also higher. positive, and reduce$, as vertex corrections, the gap pa-
Note that the transition temperatures fall rapidly with in- rameter is reduced by a smaller amount. Hence a Coulomb
creasing filling, above a filling of about=1.5, as the elec- repulsion leads to slightly higher gap ratio than vertex cor-
tronic density of states drops significantly in this region. Ver-rections.
tex corrections seriously redudg near half filing (h=1). The second curve, with a lower value pf , is an alter-
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\‘ FIG. 9. Gap ratio A/kT, as a function of fillingn. Dressed
0ot v A phonons(with circles exhibit strong coupling behavior, by the in-
\ creased gap ratio. Vertex correctiofashed lingsreduce the ef-
Ny fective coupling strength in the center of the band, hence the gap
0'001_0 112 1‘_4 116 1.8 ratio is lower in this region. The dotted lines indicate how a Cou-
Electron Filling, lomb pseudopotential alters the gap rdtidenT, is matched tdr;

with vertex corrections, and where triangles indicate thad also

FIG. 8. A comparison between the effects of vertex correctiongnatched, by adjusting)). With dressed phonons, the Coulomb
and a Coulomb pseudopotentiglg on the superconducting gap. repulsion clearly has less of an effect than do vertex corrections, but
The calculations are with dressed phonons, Witk —2t and () this is not the case with bare phonons.
=t. The dashed curve is with vertex corrections, while the dotted
curves include & , whose value changes with filling as shown in
the inset, to ensure the two correspondingcurves are exactly the
same. The dotted curve with triangles indicates a fit to the same
by adjustingU as well asu§ .

finite bandwidth means that the number of states coupled
together includes a factor independent of phonon frequency,
so T, does not increase with as it might if there were an

infinite number of electron states extending through all ener-

gies.
nate approach, where both the dressed value afidT. are It is knowr?® that Migdal-Eliashberg theory with a fi-

fitted to the results with vertex corrections. A simple filio hite pangwidth and including a Coulomb repulsion, leads to
with a fixed bare coupling leads to a highemwith a Cou- 0 410wed range of values for the isotope coefficient,

lomb repulsion than with vertex corrections, becadsés : ;
; ’ 0<a=0.5. Including a nonconstant density of staté8can
determined through the dressed phonon propagator. As .a « 9 ty

: . ; . in principle lead to any positive value af. The reason being
conventional analysis would fit to the experimental data, as .
" . o that T, increases because extra electron states near the
well as ué, this second method follows the spirit of our

. . . chemical potential are able to couple together when the pho-
paper by trying to fit conventional theory to the vertex- . . .
corrected results. In order to give the same values,ahe non frequency increases. If the density of states increases
electron-phonon interaction energy had to be varied, and iﬁlgm];lcgntly mhthe rheg',on of e”eTfQY where; nhejwh statre]s are
fact reduced by 10% at half filling. The result is a lower couple toget_ er, the increase I is much higher than
value of the gap ratio than with only® fitted, but still a Would otherwise be expected, and can be large, even
slightly larger value than with vertex corrections alone. greater than 0.5. The corollary is that if the density of states

Although the magnitude of the gap varies considerablydecreases away from the chemical potential,also de-
depending upon the approximation used, Fig. 9 shows thatreases, but never to less than zeroJ asloes not go down
the gap ratio A/kT, varies less markedly. The gap ratio is When the number of states coupled together goes up.
greater than 4 in the case of dressed phonons without vertex Figure 10 shows that the inclusion of vertex corrections in
corrections, which is typical of the strong coupling regimethe calculations with dressed phonons not only reduges
(A>0.5). Note that when the phonons are bare, so the colbut can in fact lead to negative values. Indeed, the strongest
pling is less strong, the inclusion of vertex corrections, whilereduction ina by vertex corrections occurs near half filling,
strongly reducingdl; and A individually, has little effect on and at strong coupling, whef&. is comparatively large. By
the ratio 2A/kT,. comparison, in all cases the Coulomb pseudopotential, which

The isotope coefficien& has a value of 0.5 in the sim- gives the same reduction i, as vertex corrections, leads to
plest, BCS, approximation, and in Migdal-Eliashberg theorya much smaller reduction ia. In Migdal-Eliashberg theory,
with no Coulomb repulsion. The reason is that the phonora very small value ofr requires a very lowl ...
frequency provides the only cutoff for the coupling between Hence, any observation of isotope effects which have
different states, and phonon frequencies are proportional ta<<0, or a smalla with moderate to highT., implies
M~ %5 whereM is the ionic mass. Inclusion of a frequency- that either vertex corrections are involved or some other
independent Coulomb repulsid#h: leads to a reduction in mechanism outside of Migdal-Eliashberg theory is impor-
@, as does a finite bandwidth. The reductiominindicates tant. Paramagnetic impuritié5*? proximity effects?®
that the increase in phonon frequency is less effective anharmonicity’**°> and an isotopic dependence of the elec-
increasingT . than otherwise. Higher-frequency phonons re-tron density in the conduction bad#l?* can also lead to a
duce the retardation in the electron-electron attraction, so thiew or negativea without requiring a lowT.. One or more
Coulomb repulsion between electrons is less shielded. Thef these effects may be important, in those materials with
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FIG. 10. The isotope coefficient plotted against electron fill- . .
ing n for (8 U=—1.5 and(b) U= —2t. Vertex corrections, indi- 12 14 1.6
cated by dashed lines, reduee As does dressing the phonons, Electron Filling, n
seen by the lines with circlegb) exhibits the unusual feature of

a<0 for dressed phonons, with vertex corrections included. The FIG. 11. Condensatlo_n energfs—Fy . Circles |nd|cat_e the
dotted curve in(b) is the result with the Coulomb repulsiqat; phonons are dressed, which leads to a greater condensation energy.

. . - - ' The dotted lines indicate dressed phonons with a Coulomb pseudo-
shown in the inset in the previous figure. potential, to mimic the vertex-correpcté'q, the triangles indicaﬁng
anomalously low values ofr,*6=° but vertex corrections thatU is also adjusted to mimic the obtained with vertex correc-
should also be considered. tions. The dashed, vertex-corrected curve shows smaller condensa-

An important effect of dressing the phonons is that ation energy fom<1.55, though the difference can not be seen with
small increase in the bare phonon frequency does not juf@re phonons.
result in a constant shift ak’F (), through a rescaling of
the frequency variable. When calculating the isotope effectgorrections cause quantities to be closer to the weak-
it is common to assume that a mass substitution simply resoupling values than does a Coulomb pseudopotential fitted
cales the frequency, otherwise maintaining the same form abr the sameT.. The values at a filling oh=1.6 are all
a’F(w). However, the phonon self-energy is not indepen-closer to the weak-coupling limit, as expected when the den-
dent of frequency, so the magnitude @fF (w) at its peak,  sity of states falls. The result is 0.163 for dressed phonons
which is inversely proportional to the imaginary part of the without vertex corrections, changing little to 0.165 with a
self-energy at that frequency, does not remain constant. IToulomb pseudopotential and 0.158 with vertex corrections.
fact, the peak height is reduced by an increase in peak fre- |t is worthwhile pointing out that the difference in ther-
quency, resulting in a slight reduction k. Hence the in-  modynamic potentials, which is usually calculated as an ap-
crease inT; with bare frequency is less than otherwise ex-proximation to the free-energy difference, leads to very dif-
pected, reducing the isotope coefficient for dressed phononferent results away from half filling. The approximation is

Interestingly, when the phonons are undressed, the Colased on the assumption that the chemical potential changes
lomb repulsion leads to a very small increaseadin This little between normal and superconducting states, but this is
arises, because the term with a single polarization bubblaot necessarily the case when there is a nonconstant density
(the first order term coming from dressed phonois of states. In fact, there is a particularly large shift from the
present. The term acts to reduee but is less significant at normal-state chemical potentialy to that in the supercon-
the lower transition temperatures caused by the CoulomBucting stateus if uy lies near the van Hove singularity,
pseudopotential. Meanwhile, the increasegifi with tem-  where the noninteracting density of states is falling precipi-
perature, which acts to redueeis a much smaller effect.  tously. This can be understood, by considering how states

The free-energy differencAF =Fs—Fy is plotted as a above and below the normal-state chemical poteniigl
function of filling n in Fig. 11. In the simplest picture, true in couple together and create an energy gap. When the density
the weak-coupling limit, one expects the magnitude of theof states is falling rapidly with increasing energy, electronic
free-energy difference to be approximately equal tostates from a larger energy region abqug couple to those
p(m)A?/2, representing a number of statp$u)A each in a small region belowwy. The resulting energy gap is
shifted by an average energy of ord®f2. Although, with  skewed up in energy, so the chemical potential in the super-
p(u) given by Z(0)p®(u), the weak-coupling result pre- conducting stateug, which sits in the middle of the gap,
dicts too high a condensation enerdyit does explain the becomes greater thamy. In the mirrored example below
qualitative changes between the different curves of Fig. 11half filling, nearn=0.4, ug is also pushed away from half

In fact, the dimensionless quantityT2/(87AF) [the filling, so we find us< uy there.
Sommerfeld constant,y=2m?k3p(?(1)Z(0)/3] changes The thermodynamic critical field. is effectively the
little for these curves. At half filling, with dressed phonons, square root of the free-energy difference, so shows qualita-
the value is reduced from the BCS constant result of 0.168 ttively the same effectdd; is knowrf’ to vary with tempera-
a strong-coupling value of 0.137. The value with vertex cor-ture in a manner close to the behavidr(T)=H.(0)[1
rections is 0.157, while with the Coulomb pseudopotential it— (T/T)?] which corresponds to the two-fluid model. The
is 0.149. Hence, as with the gap ratio, near half filling, vertexdeviation function, plotted in Fig. 12, is the difference be-

-0.0012
1.0
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0.02 stant density of states on the physical properties of strong-
coupling superconductors. We solved the Holstein model,
using four distinct perturbation theories, within conserving

approximations.

The necessity of incorporating a realistic phonon self-
energy is of considerable importance to those working with
- o0 - model Hamiltonians. The use of dressed phonons in the Hol-
00 02 04 06 08 10 00 02 04 06 08 10 stein model, leads to a large renormalization of the param-
Reduced Temperature, T/T, Reduced Temperature, T/T, eters — in particular, the value af can be enhanced by a

factor of 3, when its bare value of 0.28 would suggest the
—(T/T.)?]. Solid lines are without, dashed lines are with vertex system is in the weak-coupling regime. Such an enhance-

corrections. The dotted lines with and without triangles include theMeNt OfA reveals itself in increasedc, a, A, Hc, and a
Coulomb pseudopotentiajs of Fig. 8, inset. All results are for 9ap ratio (2A/kT.) greater than 4. The real-frequency data

dressed phononsa) is at half filling, n=1 while (b) is at a filing ~ Shows that the Einstein spectrui@ delta function af}) is

0.00 r <a..

-0.02

Deviation Function

FIG. 12. Critical-field deviation functionH(T)/H.(0)—[1

of n=1.6. Note the shift in scale for the second graph. both broadened and peaked at a lower frequency, when the
bare, Einstein phonons are dressed.

tween the reduced critical field (T)/H,(0) and the qua-  The nonconstant density of states affects Migdal-

dratic fit 1— (T/T,)>. Eliashberg results in both expected and unexpected ways.

The curve without vertex corrections at half filling shows Firstly, all quantities which depend on the density of states as
a small positive deviation, with a maximum of 0.02, typical @ parameter within Migdal-Eliashberg theory change in the
of strong-coupling superconductors. Interestingly, when verexpected manner as the electron band filling changes. Note
tex corrections are included, the deviation function at halithat any sharp features in the normal electronic density of
filing becomes negative, showing a minimum of about States have their effects reduced by the “averaging” over a
—0.03, which is more typical of weak-coupling supercon-large phonon frequency range. Hence the strong fall in
ductors(BCS theory predicts a minimum of 0.037). This andA is expected at both small and large fillings<(0.45
result fits in with those for other properties, demonstratingandn>1.55) due to the rapid fall in the density of states in
that vertex corrections reduce the effective coupling strengthQur model. More subtle, is the result that the chemical po-
near half filling. A Coulomb pseudopotential, with the sametential shifts by a considerable amount between the normal
power to reducd , as vertex corrections, also decreases thénd superconducting states, if it lies near a van Hove singu-
deviation function, but to a lesser extent than vertex correclarity. To observe such an effect, the superconductor would
tions do so. This is still true when the value bfis also  have to be coupled to one with a more constant density of
fitted, by alteringU as necessary. The calculations awaystates.
from the band center, at=1.6, lead to a negative deviation ~ We find, in agreement with previous wotk;*'***that
for all approximations. The reduced density of states at thigertex corrections lead to results that correspond to a reduced
filling leads to weak-coupling behavior. effective strength of the electron-phonon coupling near half

Other thermodynamic quantities, which can be derivedilling, but an increased coupling strength near the band
from the free-energy data, are affected in similar ways. Thagdges. These effects are exemplified by reductions in critical
is, vertex corrections reduce the effective coupling strengthtemperaturel ., superconducting gap, isotope coefficient
to a greater extent than does a Coulomb repulsion giving the, and thermodynamic critical fiel . near half filling. As
sameT . For example, vertex corrections reduce the specifi®iearly all of these effects can be modeled by an appropriate
heat jump,AC at T, as does a Coulomb repulsion to a Coulomb pseudopotential¢ it makes it extremely difficult
lesser extent. The following results are obtained by a numerifor any single experiment to reveal that vertex corrections
cal differentiation, so are not completely accurate in themhave played a significant role. However, we do find some
selves,(perhaps only to 10%but as much of the error is trends worth pointing out.
systematic, the trends are reliable. At half-filling, the dimen-  First, if there is difficulty in fitting bothT. and A with a
sionless quantity,AC/yT. is reduced from the strong- givena?F(w) anduf, then this is an indication that vertex
coupling value of 2.44, to 1.63 with vertex corrections andcorrections may contribute, since they affect the ratio
1.88 with a Coulomb pseudopotentiéhe BCS result is 2A/kT, for fixed T, reducing it near half filling. Second, if
1.43. Again, notice the typical result that near half filling, the experimentally measured deviation function for the ther-
vertex corrections lead to a weaker-coupling result than doesodynamic critical field lies below the predicted valuéth
inclusion of a Coulomb pseudopotential. At an electron fill-a givena?F () andu&] vertex corrections could be import
ing of n=1.6, the results indicate less strong coupling, giv-ant. Thirdly, a theoretical prediction, ignoring vertex correc-
ing AC/yT.=1.66 for dressed phonons, with the value re-tions, will overestimate the specific heat jumprat Finally,
duced to 1.53 by vertex corrections, and to 1.44 by & more striking result, is in the isotope coefficient which
Coulomb repulsion. vertex corrections reduce much more markedly than does
e . Indeed, vertex corrections can leadde:0, which ug
alone can never dt Hence materials that have moderate to
largeT.s, but small isotope coefficients can still be electron-

We have completed a numerical investigation of the efphonon mediated superconductors with vertex corrections in-
fects of vertex corrections, dressing phonons and a noncortluded. As the isotope coefficient is the single experimental

IV. CONCLUSIONS
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guantity affected the most by vertex corrections, it is impor-  Functional differentiation with respect to the diagonal
tant to consider materials which have unexplained by electron Green'’s functio®, and off-diagonal Green's func-
Migdal-Eliashberg theory. tion F} leads respectively to the diagonal term in the self-
Anomalously low, and even negative isotope coefficientsenergy, (i w,),
have been observed in materials, such ad®Ruuranium?’
PdH* and Lg -, SKCu0, ,49-%lwhere vertex corrections are 3baqj ) =UTn+UTY, G,D
probably not important, and other mechanisms, such as an- m
harmonicity, conduction electron density variations and para-
magnetic impurities play a role. However, a system such as —uT> Gpm? DY 12, (A2)
Rb;Cqo,%2°3 where the phonon frequency is a sizable frac- m
tion of the electron bandwidth, is much more likely to haveand the off-diagonal terng(i w,,),
vertex corrections affect the value af
Still, the best way to see the effects of vertex corrections
is to directly view their contribution in the multiphonon re-
gion of a tunnel junction, or in the high-energy region of the
optical conductivity. So, in order to unequivocally demon-
strate the presence of strong vertex corrections in a material,
more accurate dynamical measurements at energies beyond

P2 i w,)= —UT§ F.DQ

—U2T§ For® [DQ 12, (A3)

the highest phonon frequencies need to be carried out. We only require the superconducting vertex part, which is
given by the derivative:
TERA= S¢b(i wy)! OF (A4)
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APPENDIX: CONSERVING APPROXIMATION FORMULA U2T3

vC__
In this appendix, we give the specific formulas for the %= 4 n,Em,l 175 Gn 73 Gm 73.G1 73 Cn-m+1]

free-energy functional, self-energy and irreducible vertex

functions for each of the four conserving approximations. xD® D . (A6)
Figures 4, 5 are the representations of these equations
Feynman diagrams. Hereafter, we employ the shortened n

: ey Mhdvind o
tation G,=G(iwy), G, =G(—iw,) and similarly forF,, The extra term in the self-energy is found by differentia-

D,, a”d_W(V)- Note that the difference of two fermionic o of the above term. For the diagonal and off-diagonal
frequencies leads to a bosonic frequency, iByn-n  parts, respectively, this leads to

=D(iogn—iw,)=D(iw,), wherev=m-—n.
The calculations with no vertex corrections and a bare
phonon propagator have the free-energy functional

#Fe total free-energy functional for bare phonons with vertex
Qorrections included i et dve,

EUC(iwn>=u2T2§ (Gl GIGnoms1—FIFF_ mi/

- I:n—m+IFI*]_G‘I* FmF:—m+I}D§10—)mDI(9)m!

—-uT?
PP —D, Tr[ 73 Go] Tr{ 73 GmID*(@=0) (A7)
2 H —112T12
TS G r 6D+ $%(i0) =UT2 2 {F ol Ff Fromii = GiGn-me
2 n,m == = == - '
U2T _GﬁmeGl*]_FIGmG:—m+I}D$1()2mDI(9)m1
— = [7DP, (A1) (A8)

The extra term leads to the new self-enely: 3 Pae+ S ve
© - N . - and ¢:¢bare+ ¢UC.
where,” is the electron polarizability, defined in E(B). When the vertex correction term is added to the self-
The inclusion of ther; matrices, ensures that each pair of energy, three new terms appear in the irreducible vertex
off-diagonal Green’s functions? F,, corresponding to Coo- function, coming from each of three Green’s functions that
per pair creation then annihilation, enters the product with a&an be differentiated. The extra diagrams in Fi¢)%xon-
minus sign. tribute a total of
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273
T
Pin=U?T2 {[=GiGn-ms1 = Gromei G 1D DI ®vP=—— > T 13Gn 75 Gm 731 73 G- 1]
~GiGh4m-iDRiDiL (A9) X DDy, (A15)
leading toI',, ,='®®+ ['°C  as the irreducible vertex func- Where now the total free-energy functional for dressed
m,n m,n m,n : : ; ressed ve2
tion for bare phonons, with vertex corrections. phonons with vertex corrections included®s"®ssed pve2,
The calculations with no vertex corrections, but a dressed Differentiation of the above contribution now leads to an
phonon propagator have the free-energy functional extra term in the phonon self-enerdy”®, as well as the
extra electronic self-energy termH"¢ is the term shown
-uT? with crossed phonon lines in Fig(8:

peressel —— n§m§ T 73 Gn]TH 75 G D (0=0)
1"(iw,)=—U2T2Y, Tr[73Gm., 73Gm 3G 73G,]
m,l = = pr—

UT?
+ TZ TG Gm]Dn—mm- (A10)
nmo == XDj|_pm. (A16)

Functional differentiation with respect to the diagonalHence the full phonon self-energy is noM(iw,)=
electron Green’s functio,, and off-diagonal Green’s func- I1M(iw,) +11°(iw,). The vertex functions and self-
tion F* leads respectively to the diagonal term in the elecenergies for electrons gain terms equivalent to those in Egs.
tron self-energys dressei ¢ ), (A7)—(A9) only with bare phonon propagatde§” replaced
by dressed oneb ,, .

In the normal state, the expressions for the free-energy
functionals and self-energies are simplified, by setting all
off-diagonal contributions to zerd;,=0 and ¢(i w,)=0.

s dresseflj o, )= Un+ UTE GrDnom (A11)
m

and the off-diagonal terng™*>*{i wy,), Note that the above formulas for irreducible vertex functions
are only calculated in the normal state.
pessefiy )= —UTY, F Dy (A12) To conclude, we present the explicit form for the
m

skeleton-diagram expansion of the functiodél in terms of
Similarly, differentiation with respect to the dressed phononthe free-energy functionad, which has been calculated

propagator leads to the phonon self-energy above:
’ T H
HW(i0,)=~2UTS [GuGrsy~FuFie.l, ¢’ =52 {In[~1D(iw,)]
(A13) —IN[~1D(iw,)]+T(iw,)D(iw,)}+®
where the factor of 2 indicates a sum over electron spins. (AL7)

The superconducting vertex function still retains its
simple form, differentiation of Eq(A12) giving T
=52 {IN[1-D%(iw,)(iw,)]

dressed_ 2
Faim*&—UDy . (Al4) v

Analogously to the case of bare phonons, there is only +(iw,)D(iw,)}+® (A18)
one extra term which comes from vertex corrections in thdt can be noted that when the phonons are not dressed
free-energy functional. It is equal to [MT(iw,)=0] then®'=d.
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