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Possible experimentally observable effects of vertex corrections in superconductors
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We calculate the effects of vertex corrections, of nonconstant density of states and of a~self-consistently
determined! phonon self-energy for the Holstein model on a three-dimensional cubic lattice. We replace vertex
corrections with a Coulomb pseudopotentialmC* adjusted to give the sameTc , and repeat the calculations, to
see which effects are a distinct feature of vertex corrections. This allows us to determine directly observable
effects of vertex corrections on a variety of thermodynamic properties of superconductors. To this end, we
employ conserving approximations~in the local approximation! to calculate the superconducting critical tem-
peratures, isotope coefficients, superconducting gaps, free-energy differences, and thermodynamic critical
fields for a range of parameters. We find that the dressed value ofl is significantly larger than the bare value.
While vertex corrections can cause significant changes in all the above quantities~even when the bare electron-
phonon coupling is small!, the changes can usually be well modeled by an appropriate Coulomb pseudopo-
tential. The isotope coefficient proves to be the quantity that most clearly shows effects of vertex corrections
that can not be mimicked by amC* . @S0163-1829~98!05245-X#
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I. INTRODUCTION

The theory of conventional, low-temperature superc
ductors has been well understood for decades, within B
theory,1 and many material properties of superconduct
have been accurately described within the more approp
Migdal-Eliashberg formalism,2,3 which includes the retarda
tion effects of the electron-phonon interaction in a realis
manner. The success of the formalism arises from Migd
theorem,2 which says that vertex corrections can be n
glected when the ratio of the phonon energy scale to
electron energy scale is small~such as the value of 1024

typical of conventional low-temperature superconducto!.
The physical reason being that the ion movement is typic
too slow to respond to anything but the mean-field poten
produced by the fast-moving electrons.

In recent years there has been investigation of super
ducting materials4–10 such as Ba12xKxBiO3, K3C60, and the
A15’s, whose phonon energy scale is a larger fraction
their electron energy scale. For such materials, the stan
Migdal-Eliashberg theory may no longer be valid, either b
cause second-order processes in the electron-phonon
pling ~so-called vertex corrections! can not be neglected,11–15

or because structure in the electronic density of states
finite-bandwidth effects become significant.16 Our aim is to
identify those experiments which can clearly indicate wh
vertex corrections, or structure in the electronic density
states, are observable in real materials. In particular, we w
to uncover those effects which can not be mimicked b
Coulomb pseudopotentialmC* as this would render them un
observable in practice, because amC* is typically fitted to the
experimental data.

The most compelling evidence for the effect of vert
corrections would come from a tunneling conductance m
PRB 580163-1829/98/58~21!/14498~13!/$15.00
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surement that provided data for the tunneling conducta
out to an energy at least twice that of the maximal phon
frequency of the bulk material. Then a tunneling inversi
could be performed using only the experimental data ou
an energy of the maximal bulk phonon energy, and the
sults for Migdal-Eliashberg theory would be compared to
vertex-corrected theory for the experimental data that w
measured in the multiphonon region, at voltages above
maximal bulk phonon energy of the material. Unfortunate
such an analysis has only been performed for lead12 and in
that case, the experimental data was not accurate enoug
the multiphonon region to be able to see if effects of ver
corrections were observable. Similarly, high energy d
from optical conductivity experiments would indica
whether or not vertex corrections are important, but th
again, the accuracy of the data might preclude seeing eff
of vertex corrections.

In order to determine what effects are unmistakenly d
to vertex corrections, we fit a Coulomb pseudopotentialmC*
to a Migdal-Eliashberg theory so that the superconduct
transition temperatureTc is the same for the vertex-correcte
theory~with no mC* ) and the conventional Migdal-Eliashber
theory ~with a mC* but no vertex corrections!. In the case of
dressed phonons, we adjust both the electron-phonon in
action energy andmC* , in order to fit the same values ofl
andTc as the results with vertex corrections. This proced
is exactly the procedure carried out in analyzing experim
tal data within the conventional theory. We carry out th
‘‘experimental analysis’’ on a model system where we kno
that vertex corrections have a large effect, in order to see
extent to which the conventional analysis masks their ob
vation. Hence we look for differences in thermodynam
quantities between these results and those with vertex
rections. Any quantities which are significantly differe
14 498 ©1998 The American Physical Society
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PRB 58 14 499POSSIBLE EXPERIMENTALLY OBSERVABLE EFFECTS . . .
when calculated with a fittedmC* instead of vertex correc
tions pin-point the experiments that can give the best ind
tion that a material needs to have vertex corrections inclu
in its description.

Since this is the initial attempt at solving such a proble
we study a simple model system, which has a noncons
electronic density of states~Fig. 1!, using both Migdal-
Eliashberg formalism, and going beyond it, to include ver
corrections. The vertex corrections are second-order
grams where a pair of phonon lines cross, as shown in
self-energies of Fig. 2~b!. In both cases, the phonon prop
gators can be dressed~i.e., with a phonon self-energy in
cluded! or bare, as shown in Fig. 2. We find that dressing
phonons leads to a strong enhancement of the effective
teraction strength, exemplified by a large renormalization
the value of the electron-phonon coupling parameterl.

The specific model we study is the Holste
Hamiltonian17 on a three-dimensional~3D! cubic lattice. The
Hamiltonian consists of conduction electrons that hop fr
site to site, coupled to harmonic, localized~Einstein!
phonons:

Ĥ2mN̂5 (
i , j ,s

t i j ĉis
† ĉ j s1

1

2
MV2(

i
x̂i

2

1
1

2M(
i

p̂i
21(

i
~gx̂i2m!n̂i , ~1!

whereĉis
† and ĉis are fermionic operators which create a

destroy, respectively, an electron of spins in a single Wan-
nier ~tight-binding! state on the lattice sitei, whose total
electron occupancy is given byni5 ĉi↑

† ĉi↑1 ĉi↓
† ĉi↓ . The elec-

tron hopping is between nearest neighbors only, such
t i j 52t if i , j are neighboring sites, witht the overlap inte-
gral, and t i j 50 otherwise. The phonons, of massM with
displacementxi and momentumpi are characterized by the

FIG. 1. The single-spin density of states for noninteracting e
trons on a 3D cubic tight-binding lattice. Note the nature of the v
Hove singularities, which lead to an abrupt fall in the density
states. They occur at electron fillings ofn'0.45 andn'1.55. The
approximate form used in the calculations is also plotted, an
indistinguishable by eye from the exact curve.
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frequencyV. The strength of the bare electron-phonon co
pling can be measured by the bipolaron binding energyU,
where

U52
g2

MV2
. ~2!

The chemical potential ism, and is always calculated self
consistently for a given average number of electrons per
n (0<n<2). Particle-hole symmetry occurs at half filling
wheren51 andm5U. We concentrate our work on supe
conductivity and ignore any possible charge-density wa
order that may occur near half filling.

We carry out weak-coupling expansions within the co
serving approximations of Baym and Kadanoff.18–21 The
electron self-energyS is given as a functional derivative o
the free-energy functionalF with respect to the electron
Green’s functionG. When dressing the phonons, we mai
tain a conserving approximation by careful choice of t
phonon self-energy. In this case, there must be a free-en
functional F whose partial derivative with respect to the
electron Green’s function yields the electron self-energyand
whosepartial derivative with respect to the phonon Green
functionD yields the phonon self-energy. In such cases th
always exists a related free-energy functionalF8, which is
the skeleton-diagram expansion whosefull functional deriva-
tive with respect to the electron Green’s function yields t
electron self-energy. In all cases, the irreducible vertex fu

-
n
f

is

FIG. 2. Different forms for the electron self-energy. All dia
grams include the same initial Hartree term, followed by the s
cific Fock contribution and any other required diagrams. All ele
tronic Green’s functions are dressed, but phonon lines can
undressed~thin! or dressed~thick! as in Fig. 3~b!. For bare phonons
~a! is with no vertex corrections, while~b! includes the vertex-
corrected diagram. When the phonons are dressed,~c! is without
vertex corrections, while~d! includes them. A factor of 2 appears i
front of each electron loop term, to indicate a sum over spins.
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14 500 PRB 58P. MILLER, J. K. FREERICKS, AND E. J. NICOL
tion is given by thefull functional derivative of the electron
self-energy with respect to the electron Green’s function,
TGn,m5dS( ivn)/dG( ivm).

We employ the local approximation in our calculation
which means we neglect the momentum dependence in
self-energy and irreducible vertex functions. The local pro
lem gives an exact solution in the infinite-dimension
limit,11,22 but in this case it is an approximation, which,
used in Migdal-Eliashberg theory, is expected to give go
quantitative results, though of course it means we can o
studys-wave pairing.

We use the formalism, described in detail in the next s
tion, to calculate the critical temperatureTc and the isotope
coefficienta by looking at the instability of the normal state
Also, within the superconducting state, we calculate the
perconducting gapD and the thermodynamic critical fiel
Hc from the free-energy differenceFS2FN . The conserving
nature of each approximation is evidenced from the fact
the Tc determined by extrapolating the ordered-phase ca
lations to zero order parameter agrees withe theTc found
from the Owen-Scalapino method23 in the normal state. We
point out in particular those results which deviate fro
Migdal-Eliashberg theory, and arise from vertex correctio
or a nonconstant density of states. By including a Coulo
pseudopotential, which causes the same change inTc as ver-
tex corrections, we are able to demonstrate what experim
can be used to differentiate between vertex corrections a
Coulomb pseudopotential.

Section II contains the formalism, describing the partic
lar approximations we use, and explaining how our calcu
tions are carried out. Section III presents our computatio
results, including a number of graphs depicting the vario
quantities that can be determined experimentally for real s
tems. We make our conclusions in Sec. IV, which is f
lowed by an Appendix which gives the detailed formu
withheld from Sec. II.

II. FORMALISM

In our calculations, we use four different types of co
serving approximations, which will be expounded belo
Four different approximations are necessary, in order to
veal how dressing the ‘‘bare’’ phonons affects solutions
the model, as well as to demonstrate the effects of ve
corrections. Each approximation includes a specific s
energy, and hence a specific vertex function, as show
Figs. 2–5. In short, these can be described as~a! Migdal-
Eliashberg approximation with a truncated dressing
phonons,~b! second-order perturbation theory, which co
tains vertex corrections and a truncated dressing of phon
~c! Migdal-Eliashberg theory with dressed phonons~also
known as the shielded potential approximation19!, and ~d!
vertex-corrected theory with dressed phonons.

The calculations are carried out on the imaginary axi22

with the Green’s functions and self-energies defined at M
subara frequenciesivn5(2n11)p iT, whereT is the tem-
perature. The self-energies are calculated from the deriva
of an appropriate free-energy functionalF as

S~ ivn!5
1

T

dF

dG↑↑~ ivn!
, f~ ivn!5

1

T

dF

dF* ~ ivn!
,
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while the irreducible vertex function for superconductivity
given by

TGn,m5
df~ ivn!

dF~ ivm!
.

Figure 4 shows the Feynman diagrams which correspon
the appropriate free-energy functionalF for each of the four
calculations, while we defer the specific formulas to the a

FIG. 3. Dyson’s equation for the phonon propagators. Thin lin
indicate bare Green’s functions while thick lines indicate dres
ones.~a! is the phonon self-energy without vertex corrections,~b! is
with vertex corrections. The factors of 2 come from a sum o
electron spins.

FIG. 4. Free-energy functionalF for the conserving approxima
tions. Equations~a! and~b! are with bare phonon propagators, whi
~c! and~d! have dressed phonons. The first term on the right in e
equation is the Hartree term, which does not change and whic
not included inF8. ~Its phonon line is always undressed, to avo
double counting!. The extra, final diagram in~b! and ~d! is the
vertex-correction term.
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pendix. The functionalF8 whosefull derivative leads to the
electronic self-energy, is equal toF when the phonons ar
‘‘bare,’’ but consists of an infinite number of skeleton di
grams when the phonons are dressed. The precise rela
ship betweenF8 andF is given in Eq.~A18!.

When calculating properties for the superconducting st
we must use the Nambu formalism,24 where the electron
Green’s function and self-energy are represented by a 232
matrix

G~ ivn![S G↑↑~ ivn! F~ ivn!

F* ~ ivn! 2G↓↓~2 ivn!
D

5E r~0!~e !de@ ivnt3 2e1m2S~ ivn!#21, ~3!

wherer (0)(e) is the approximate form for the noninteractin
electron density of states on a 3D cubic lattice as shown
Fig. 1, given by Uhrig,25 and

S~ ivn![S S~ ivn! f~ ivn!

f* ~ ivn! S* ~ ivn!
D ,

t35S 1 0

0 21D . ~4!

Here, the diagonal and off-diagonal Green’s functions
defined respectively as

Gss~ ivn!52
1

N(
j
E

0

b

dtexp~ ivnt!^Ttĉ j s~t!ĉ j s
† ~0!&,

~5!

F~ ivn!52
1

N(
j
E

0

b

dtexp~ ivnt!^Ttĉ j↑~t!ĉ j↓~0!&,

~6!

where Tt denotes time ordering int. The definitions of
S( ivn) and f( ivn) for each calculation are given in th
appendix, Eqs.~A2!–~A16!, and are represented in Fig. 2.

FIG. 5. The irreducible vertex-function diagrams, for superco
ductivity. ~a! is with no vertex corrections, while~b! includes the
three vertex-corrected diagrams. When the phonons are dresse~c!
is without vertex corrections, while~d! includes them.
on-

e,

in

e

The phonon propagatorD( ivn) is defined by26

D~ ivn!5
mV2

N (
j
E

0

b

dt exp@ ivnt#^Tx̂j~t!x̂ j~0!&, ~7!

such that the bare propagator, with no self-ener
D (0)( ivn), is equal to 2V2/(vn

21V2). The appropriate
Matsubara frequenciesvn in this case, are those which lea
to bosonic statistics, such thativn52p iTn.

When we use bare phonons, and have no vertex cor
tions, the electron self-energy is illustrated in Fig. 2~a!. The
first term is the Hartree contributionUn. It can be included
by a shift of the chemical potential as it only contributes
constant to the diagonal part of the self-energyS( ivn). Such
a shift is implicitly included whenm appears in a Green’s
function, so that the Hartree term is hereafter neglected.
followed by the Fock term, then a single-phonon dress
term, where the phonon line includes a single loop, which
the electron polarizabilityp (0)( ivn):

p~0!~ ivn!522T(
m

@G~ ivm!G~ ivm1n!

2F~ ivm!F* ~ ivm1n!#, ~8!

with the factor of 2 arising from the summation over sp
The third term includes dressing of phonons in a trunca
manner, and allows us to make comparison with the co
plete second-order approximation, in Fig. 2~b!, where the
only difference is the inclusion of the vertex-correction ter
The specific formula for the extra term in Fig. 2~b!, which
enters our calculations when we include vertex correcti
using bare phonons, is given in Eqs.~A7! and ~A8!. The
extra contributions to the self-energy coming from vert
corrections have opposite sign to the Fock term, near
filling, where the product of two electronic Green’s functio
is negative~the Green’s functions are pure imaginary at h
filling !. Away from half filling, the Green’s functions gain
real parts, which means that near the band edges the pro
of two Green’s functions can be positive, and the verte
correction terms then add to the Fock term.

In the calculations with dressed phonons, we have a D
on’s equation for the phonon propagator, as depicted in
3,

D~ ivn!5D ~0!~ ivn!1D ~0!~ ivn!P~ ivn!D~ ivn!, ~9!

whereP( ivn) is the phonon self-energy. Note that with
the conserving approximations, we must determine the p
non self-energy by differentiating the free-energy function

P~ ivn!5
22

T

dF

dD~ ivn!
. ~10!

With no vertex corrections, the phonon self-energy is sim
given by the electron polarization, as depicted in Fig. 3~a!.
That is,

P~ ivn!5Up~0!~ ivn!. ~11!

In this case, we use the contributions to the electron s
energy that are shown in Fig. 2~c!, whose explicit formula is
given in Eq.~A11!. Note that the term with the single pola
ization bubble is missing, as all orders of such ‘‘necklac

-
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diagrams are included in the Fock term with the dres
phonon propagator. In fact, the approximation includi
dressed phonons without vertex corrections is equivalen
the shielded potential approximation, whereby the infin
series of ring diagrams without vertex corrections are
cluded in the skeleton-diagram functionalF8.

When we include vertex corrections, as well as dres
phonons, the phonon self-energy gains the extra term sh
in Fig. 3~b!. The full expression is given in the Append
@Eq. ~A16!#. Note that a fully dressed phonon propagator
included in the phonon self-energy. As shown in Fig. 2~d!,
the electron self-energy now has the expected extra t
with a crossing of phonon lines. It is almost identical to t
extra term in Fig. 2~b!, except of course, now the phonon
are dressed. Again, the details of the formula can be foun
the Appendix.

Our calculations all involve iteration of the Green’s fun
tions and self-energies, until a self-consistent solution
reached. We begin with the noninteracting Green’s functi
~set the self-energies to zero!, and use it to calculate an initia
estimate of the self-energies, according to Eqs.~A2!–~A16!.
The new self-energies are used to calculate updated Gre
functions, according to Eqs.~3! and ~9!. The procedure is
iterated, so that at each step there is an updated self-en
which includes a fraction of the previous self-energy, t
exact fraction variable, dependent upon the progress of
iteration. We stop the process when the change in all
self-energies is less than one part in 10210, which is typically
after tens, but sometimes after hundreds of iteration step

Superconductivity occurs below a critical temperatureTc ,
where the normal state becomes unstable to fluctuation
the pairing potential~the Cooper instability!. The instability
shows itself as a divergence in the pairing susceptibilityxm,n
which is given by

xm,n5xm
~0!dm,n2T(

l
xm

~0!Gm,lx l ,m , ~12!

whereGm,n is the irreducible vertex function, to be define
shortly. The bare susceptibility in the superconducting ch
nel for momentumq is defined as

xm
~0!~q![

1

N(
k

G~ ivm ,k!G~2 ivm ,2k1q!, ~13!

which becomes in the local approximation~for the zero-
momentum pair!:

xm
~0!5

Im@G~ ivm!#

vmZ~ ivm!
, ~14!

where

vmZ~ ivm!5vm2Im@S~ ivm!#. ~15!

The transition temperatureTc occurs when the largest eigen
value of the matrix2Txm

(0)Gm,l passes through unity. W
calculate the highest eigenvalue using the power method

The irreducible vertex functionGm,n is given by the func-
tional derivative of the off-diagonal self-energy, with respe
to the off-diagonal Green’s function

TGn,m5df~ ivn!/dF~ ivm!. ~16!
d

to
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As the pairing fluctuations lead to an instability of the no
mal state,Gn,m must be calculated in the normal state@i.e., in
the limit F( ivn)°0].

Figure 5 shows the contributions to the irreducible ver
function for each of the four approximations. Each diagra
is achieved by removal of one electron Green’s function li
from a self-energy diagram in Fig. 2. The algebraic expr
sions for each of the four sets of diagrams are given in
Appendix. Note that because the calculations are carried
in the normal state, withF°0, rings within the self-energy
can not be broken, as the resulting ladder diagrams give
contribution.@Compare Fig. 5~a! arising from Fig. 2~a!#.

As we wish to uncover more than the phase diagr
given by the different perturbation approximations, we mo
on to describe how we calculate other properties. In orde
find the superconducting gap and thermodynamic quantit
calculations are required within the superconducting st
but a simple addition to the previous computations in
normal state allows us to calculate the isotope coefficien

The isotope coefficienta describes how the critical tem
perature changes with the phonon massM . It is defined as

a52
d ln Tc

d ln M
, ~17!

so thatTc}M 2a. The weak-coupling limit of BCS theory
and Migdal-Eliashberg theory with no Coulomb repulsio
predict a50.5, which corresponds toTc}1/AM . The pho-
non frequency changes with mass, according toV}1/AM ,
so both the productMV2 and the interaction energyU re-
main constant. Hence we calculate the isotope coeffic
simply by changing the phonon frequency by 1%~corre-
sponding to a typical mass change of 2% between isoto!
and comparing the change in critical temperature. To be p
cise, we computea by

a50.5•
Tc

~new!2Tc
~old!

Tc
~old!

•

V~old!

V~new!2V~old!
, ~18!

so the BCS result is achieved ifTc}V.
According to standard methods,27–29the energy gap in the

superconducting stateD requires a self-consistent calculatio
within the superconducting state. Note, the order param
on the imaginary axis is related to the off-diagonal se
energy through

D~ ivn!5f~ ivn!/Z~ ivn!, ~19!

where Z( ivn) is the mass-enhancement parameter, ca
lated from the electronic self-energyS( ivn) as given in Eq.
~15!. The gap itself is found from the order parameter on
real axis, at the point where Re@D(v)#5v. We carry out a
Padéanalytic continuation30,31 to obtain the order paramete
on the real axis, and hence the value of the gap.

The free energy can be found from the formula32–34
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F522T(
n

H 1

2
ln[ 21/detG( ivn)]

1
1

2
TrS( ivn)G( ivn)J

1
T

2(n
$ ln@21/D~ ivn!#

1P~ ivn!D~ ivn!%1F1m~n21!. ~20!

The free-energy functionalF whose partial differential with
respect to the electron~or phonon! Green’s function gives
the electron~or phonon! self-energy is depicted in Fig. 4 an
evaluated in Eqs.~A2!, ~A6!, ~A11!, and~A15!. We are in-
terested in the free-energy difference between normal
superconducting states at fixed electron fillingn in which
case the first, Hartree, term inF is neglected as it is a con
stantUn2/2. The final term,m(n21) cannot be neglected
because the chemical potential can differ considerably
tween the superconducting and normal state when one
cludes the effects of nonconstant density of states.

We calculate the thermodynamic critical field in the s
perconducting stateHc from the free-energy difference be
tween the superconducting and normal state, according to
formula FS2FN52m0Hc

2 . The thermodynamic field varie
with temperature in an almost quadratic manner, so that
culation of the deviation function, which is defined as t
difference betweenHc(T) and the quadratic formHc(0)@1
2(T/Tc)

2# gives a sensitive test of changes in thermod
namic quantities.

In the calculations which include a Coulomb repulsi
termUC , we make the standard simplification16,27–29of only
including its effects on the off-diagonal self-energy. Th
simplification is valid, as the normal-state Green’s functio
in reality include the Coulomb repulsion effects, and the
change by very little for the diagonal part of the Green
function when superconducting order is present. As
model does not include the effects ofUC on the diagonal
Green’s functions, it is not strictly the solution of a simp
Hamiltonian with aUC term included.35 However, the sim-
plification does allow us to compare the effects of includi
a Coulomb repulsion versus adding vertex corrections, on
superconducting properties and transition temperature fro
similar normal state and it is precisely the method emplo
in analyzing experimental data on real materials. With th
comments understood, the only changes to the calculat
that are necessary with the inclusion of a Coulomb term,
that both the off-diagonal self-energyf( ivn) and the irre-
ducible vertex functionGn,m gain an extra term:

f~ ivn!°f~ ivn!1UCT(
m

F~ ivm!, ~21!

Gn,m°Gn,m1UC . ~22!

In the computational calculations, the Matsubara freque
sum is cut off after a constant numberNc of terms. This
leads to a renormalization which reduces the Coulo
term16,36 to a pseudopotentialUC* given by
d
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UC* 5UC Y H 122TUC (
Nc11

`
Im@G~ ivm!#

vm
J , ~23!

where the diagonal Green’s functionG( ivm) is at high fre-
quency, where the self-energies may be neglected, but m
include the self-consistent chemical potentialm. In our cal-
culations, with the frequency cutoff on the scale of the ba
width such that 256 or 512 Matsubara frequencies are u
there is a very small~typically 1 or 2 %) reduction inUC .
This is different from the conventional approach in real m
terials because here our energy cutoff is governed by
electronic bandwidth, not some multiple of the maximu
phonon frequency. To make contact with the standard
malism, we define a dimensionless pseudopotentialmC*
5r (0)(m)•UC* , where r (0)(m) is the noninteracting elec
tronic density of states at the chemical potential. In calcu
tions at different temperatures,UC is kept fixed, so thatmC*
varies to a small extent.

Finally, we wish to make clear howl, the measure of the
electron-phonon coupling strength, is defined in our work
precise definition is required, because different methods
calculatingl lead to different results away from the wea
coupling limit, especially when the phonons are dress
Here,l is given by

l5r~0!~m!•U•D~0!, ~24!

whereD(0) is the zero-frequency component of thedressed
phonon propagator, which can be significantly different fro
that of the bare propagatorD (0)(0). This value ofl is usu-
ally different from the electronic mass enhancement para
eter, i.e.,lÞZ(0)21, as the two are only equal in the wea
coupling limit and with V°0. The definition of l is
identical to that commonly calculated from the electro
phonon spectral density,27 a2F(v), namely,

l52E
0

`a2F~v!dv

v
, ~25!

where

a2F~v!5r~0!~m!uUu
1

p
Im@D~v!#. ~26!

The real-axis form of the phonon propagatorD(v) is calcu-
lated from its imaginary-axis valuesD( ivn) by a Pade´ ana-
lytic continuation.

III. RESULTS

In choosing the parameters used to carry out the calc
tions, a number of criterion had to be satisfied. First,
wished to operate outside the weak-coupling regime, so
vertex corrections would not be negligible. The phonon f
quency needed to be large compared to conventional l
temperature superconductors, but not so large that it gav
realistic point of contact with those superconductors m
tioned in the introduction. So we chooseV5t, equal to one
twelfth of the bandwidth. We had to ensure the electro
phonon coupling strength was not so strong that the gro
state would contain bipolarons,37 making the perturbation ex
pansion about a Fermi liquid state invalid. A maximum co
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pling of U522t, hence a barel,0.5 ensured this. Finally
in order to calculate properties in an achievable time, wh
ensuring the imaginary frequency cutoffs were at energ
larger than the band-width, the temperature of the calc
tions could not be too small, henceT.231023t. The last
condition meant that results within the superconducting s
were best carried out for as largeU and V as possible, so
that Tc would be high. Hence, calculations near the ba
edges, where the density of states was low, prove to be
accurate, due to the very low transition temperatures the

Our first result is that dressing the bare phonon propag
leads to considerable renormalization effects. To be spec
the value ofl doubles from its bare value ofl50.21, to
l'0.4 after dressing the phonons, using parametersV5t
andU521.5t, near half filling. Moreover, at the increase
interaction strength ofU522t, l is enhanced by a factor o
3 from the value ofl50.28 for undressed phonons to th
dressed value ofl'0.9. Such an enhancement indicates t
the perturbation expansion would be inaccurate at bare
pling strengths lower than might be naively expected. Fig
6 shows howa2F(v) is altered from its bare value, a del
function situated atv5V5t, when it is dressed. Note tha
there is both a shift to lower frequencies as well as a bro
ening of the spectrum. The shift to lower frequencies sho
that a Holstein model with bare phonon frequencies of n
10% of the bandwidth can be required to lead to dres
phonon frequencies at approximately 5% of the bandwid
Hence the exact phonon self-energy used is an impor
factor when modeling electron-phonon systems, near
crossover between the weak-coupling and strong-coup
regimes.

The preceding paragraph explains some of the dram
differences between the critical temperature (Tc) values for
the different approximations, shown in Fig. 7. In particul
the Tc for dressed phonons is markedly higher than that
bare phonons, which is to be expected asl is also higher.
Note that the transition temperatures fall rapidly with i
creasing filling, above a filling of aboutn51.5, as the elec-
tronic density of states drops significantly in this region. V
tex corrections seriously reduceTc near half filling (n51).

FIG. 6. a2F(v), calculated from the dressed phonon propaga
on the real frequency axis forn51 andV5t. Increased coupling
leads to a greater downwards shift in frequency from the ini
delta function atv5t.
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The two curves with dressed phonons in Fig. 7 show
greater disparity than the two curves with bare phonons
the same figure, which means that dressing the phon
which increases the effective coupling, enhances the effec
vertex corrections. Although it is hard to distinguish th
curves due to the lowTc near the band edge, above a fillin
of n51.75 the vertex corrections do lead to an enhancem
of Tc . This result is in agreement with previous work.12,14

Note that all results show particle-hole symmetry, that
they are symmetric about half-filling. The figures just sho
half of the band (n.1), neglecting a mirror image below
half filling.

It is clear that vertex corrections do changeTc by a con-
siderable amount, but for any experimental measurem
where the microscopic parameters are not known, a Coulo
pseudopotentialmC* can always be fitted to give the sameTc

as vertex corrections. Hence we continue with other resu
to see where vertex corrections can not simply be mimic
by an appropriatemC* , which would cause the effects o
vertex corrections to be unobservable. So we fit amC* to give
the same value ofTc as vertex corrections, and go on
change the unobservable electron-phonon coupling stre
U to give the samel as vertex corrections, when phonon
are dressed. Hence the effects of vertex corrections can s
up as discrepancies over a range of quantities compare
the values obtained with a fittedmC* andl.

Figure 8 is a direct comparison between the effects
vertex corrections and a Coulomb pseudopotentialmC* on the
value of the gap parameter. Our first method is to fix the b
electron-phonon coupling and to adjust the value ofUC and
hencemC* in a calculation without vertex corrections, unt
the sameTc is reached as found in the calculation with ve
tex corrections@shown in Fig. 7~b!#. UC is then used un-
changed, to calculate other properties such as the gap pa
eter. The Coulomb pseudopotentialmC* varies with electron
filling at Tc as shown in the inset. Notice that an artifici
value of mC* ,0 is required whenn.1.7, as vertex correc
tions enhanceTc in this region. Near half filling, wheremC* is
positive, and reducesTc as vertex corrections, the gap p
rameter is reduced by a smaller amount. Hence a Coulo
repulsion leads to slightly higher gap ratio than vertex c
rections.

The second curve, with a lower value ofmC* , is an alter-

r

l

FIG. 7. Transition temperature as a function of filling. Th
dashed lines indicate vertex corrections are included, while s
lines are without them. The lines with circles have dressed phon
Both diagrams show an enhancedTc by dressing the phonons
while vertex corrections reduceTc near half filling. In all cases,Tc

falls rapidly above a filling ofn51.55, where the density of state
drops rapidly.
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nate approach, where both the dressed value ofl andTc are
fitted to the results with vertex corrections. A simple fit toTc
with a fixed bare coupling leads to a higherl with a Cou-
lomb repulsion than with vertex corrections, becausel is
determined through the dressed phonon propagator. A
conventional analysis would fitl to the experimental data, a
well as mC* , this second method follows the spirit of ou
paper by trying to fit conventional theory to the verte
corrected results. In order to give the same values ofl, the
electron-phonon interaction energy had to be varied, an
fact reduced by 10% at half filling. The result is a low
value of the gap ratio than with onlymC* fitted, but still a
slightly larger value than with vertex corrections alone.

Although the magnitude of the gap varies considerab
depending upon the approximation used, Fig. 9 shows
the gap ratio 2D/kTc varies less markedly. The gap ratio
greater than 4 in the case of dressed phonons without ve
corrections, which is typical of the strong coupling regim
(l.0.5). Note that when the phonons are bare, so the c
pling is less strong, the inclusion of vertex corrections, wh
strongly reducingTc andD individually, has little effect on
the ratio 2D/kTc .

The isotope coefficienta has a value of 0.5 in the sim
plest, BCS, approximation, and in Migdal-Eliashberg theo
with no Coulomb repulsion. The reason is that the phon
frequency provides the only cutoff for the coupling betwe
different states, and phonon frequencies are proportiona
M 20.5, whereM is the ionic mass. Inclusion of a frequenc
independent Coulomb repulsionUC leads to a reduction in
a, as does a finite bandwidth. The reduction ina, indicates
that the increase in phonon frequency is less effective
increasingTc than otherwise. Higher-frequency phonons
duce the retardation in the electron-electron attraction, so
Coulomb repulsion between electrons is less shielded.

FIG. 8. A comparison between the effects of vertex correcti
and a Coulomb pseudopotential,mC* on the superconducting gap
The calculations are with dressed phonons, withU522t and V
5t. The dashed curve is with vertex corrections, while the dot
curves include amC* , whose value changes with filling as shown
the inset, to ensure the two correspondingTc curves are exactly the
same. The dotted curve with triangles indicates a fit to the saml
by adjustingU as well asmC* .
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finite bandwidth means that the number of states coup
together includes a factor independent of phonon frequen
so Tc does not increase withV as it might if there were an
infinite number of electron states extending through all en
gies.

It is known38,16 that Migdal-Eliashberg theory with a fi
nite bandwidth and including a Coulomb repulsion, leads
the allowed range of values for the isotope coefficie
0<a<0.5. Including a nonconstant density of states39,40can
in principle lead to any positive value ofa. The reason being
that Tc increases because extra electron states near
chemical potential are able to couple together when the p
non frequency increases. If the density of states increa
significantly in the region of energy where new states
coupled together, the increase inTc is much higher than
would otherwise be expected, anda can be large, even
greater than 0.5. The corollary is that if the density of sta
decreases away from the chemical potential,a also de-
creases, but never to less than zero, asTc does not go down
when the number of states coupled together goes up.

Figure 10 shows that the inclusion of vertex corrections
the calculations with dressed phonons not only reducesa,
but can in fact lead to negative values. Indeed, the stron
reduction ina by vertex corrections occurs near half filling
and at strong coupling, whereTc is comparatively large. By
comparison, in all cases the Coulomb pseudopotential, wh
gives the same reduction inTc as vertex corrections, leads t
a much smaller reduction ina. In Migdal-Eliashberg theory,
a very small value ofa requires a very lowTc .

Hence, any observation of isotope effects which ha
a,0, or a small a with moderate to highTc , implies
that either vertex corrections are involved or some ot
mechanism outside of Migdal-Eliashberg theory is imp
tant. Paramagnetic impurities,41,42 proximity effects,43

anharmonicity,44,45 and an isotopic dependence of the ele
tron density in the conduction band,42,43 can also lead to a
low or negativea without requiring a lowTc . One or more
of these effects may be important, in those materials w

s

d

FIG. 9. Gap ratio 2D/kTc as a function of fillingn. Dressed
phonons~with circles! exhibit strong coupling behavior, by the in
creased gap ratio. Vertex corrections~dashed lines! reduce the ef-
fective coupling strength in the center of the band, hence the
ratio is lower in this region. The dotted lines indicate how a Co
lomb pseudopotential alters the gap ratio~whenTc is matched toTc

with vertex corrections, and where triangles indicate thatl is also
matched, by adjustingU). With dressed phonons, the Coulom
repulsion clearly has less of an effect than do vertex corrections
this is not the case with bare phonons.
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anomalously low values ofa,46–53 but vertex corrections
should also be considered.

An important effect of dressing the phonons is tha
small increase in the bare phonon frequency does not
result in a constant shift ofa2F(v), through a rescaling o
the frequency variable. When calculating the isotope eff
it is common to assume that a mass substitution simply
cales the frequency, otherwise maintaining the same form
a2F(v). However, the phonon self-energy is not indepe
dent of frequency, so the magnitude ofa2F(v) at its peak,
which is inversely proportional to the imaginary part of t
self-energy at that frequency, does not remain constan
fact, the peak height is reduced by an increase in peak
quency, resulting in a slight reduction inl. Hence the in-
crease inTc with bare frequency is less than otherwise e
pected, reducing the isotope coefficient for dressed phon

Interestingly, when the phonons are undressed, the C
lomb repulsion leads to a very small increase ina. This
arises, because the term with a single polarization bub
~the first order term coming from dressed phonons! is
present. The term acts to reducea, but is less significant a
the lower transition temperatures caused by the Coulo
pseudopotential. Meanwhile, the increase inm* with tem-
perature, which acts to reducea is a much smaller effect.

The free-energy differenceDF5FS2FN is plotted as a
function of filling n in Fig. 11. In the simplest picture, true i
the weak-coupling limit, one expects the magnitude of
free-energy difference to be approximately equal
r(m)D2/2, representing a number of statesr(m)D each
shifted by an average energy of orderD/2. Although, with
r(m) given by Z(0)r (0)(m), the weak-coupling result pre
dicts too high a condensation energy,28 it does explain the
qualitative changes between the different curves of Fig.

In fact, the dimensionless quantitygTc
2/(8pDF) @the

Sommerfeld constant,g52p2kB
2r (0)(m)Z(0)/3# changes

little for these curves. At half filling, with dressed phonon
the value is reduced from the BCS constant result of 0.16
a strong-coupling value of 0.137. The value with vertex c
rections is 0.157, while with the Coulomb pseudopotentia
is 0.149. Hence, as with the gap ratio, near half filling, ver

FIG. 10. The isotope coefficienta plotted against electron fill-
ing n for ~a! U521.5t and~b! U522t. Vertex corrections, indi-
cated by dashed lines, reducea. As does dressing the phonon
seen by the lines with circles.~b! exhibits the unusual feature o
a,0 for dressed phonons, with vertex corrections included. T
dotted curve in~b! is the result with the Coulomb repulsionmC*
shown in the inset in the previous figure.
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corrections cause quantities to be closer to the we
coupling values than does a Coulomb pseudopotential fi
for the sameTc . The values at a filling ofn51.6 are all
closer to the weak-coupling limit, as expected when the d
sity of states falls. The result is 0.163 for dressed phon
without vertex corrections, changing little to 0.165 with
Coulomb pseudopotential and 0.158 with vertex correctio

It is worthwhile pointing out that the difference in the
modynamic potentials, which is usually calculated as an
proximation to the free-energy difference, leads to very d
ferent results away from half filling. The approximation
based on the assumption that the chemical potential cha
little between normal and superconducting states, but thi
not necessarily the case when there is a nonconstant de
of states. In fact, there is a particularly large shift from t
normal-state chemical potentialmN to that in the supercon
ducting statemS if mN lies near the van Hove singularity
where the noninteracting density of states is falling prec
tously. This can be understood, by considering how sta
above and below the normal-state chemical potentialmN
couple together and create an energy gap. When the de
of states is falling rapidly with increasing energy, electron
states from a larger energy region abovemN couple to those
in a small region belowmN . The resulting energy gap i
skewed up in energy, so the chemical potential in the sup
conducting statemS , which sits in the middle of the gap
becomes greater thanmN . In the mirrored example below
half filling, nearn50.4, mS is also pushed away from ha
filling, so we findmS,mN there.

The thermodynamic critical fieldHc is effectively the
square root of the free-energy difference, so shows qua
tively the same effects.Hc is known27 to vary with tempera-
ture in a manner close to the behaviorHc(T)5Hc(0)@1
2(T/Tc)

2# which corresponds to the two-fluid model. Th
deviation function, plotted in Fig. 12, is the difference b

e FIG. 11. Condensation energy,FS2FN . Circles indicate the
phonons are dressed, which leads to a greater condensation en
The dotted lines indicate dressed phonons with a Coulomb pse
potential, to mimic the vertex-correctedTc , the triangles indicating
that U is also adjusted to mimic thel obtained with vertex correc-
tions. The dashed, vertex-corrected curve shows smaller conde
tion energy forn,1.55, though the difference can not be seen w
bare phonons.
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tween the reduced critical fieldHc(T)/Hc(0) and the qua-
dratic fit 12(T/Tc)

2.
The curve without vertex corrections at half filling show

a small positive deviation, with a maximum of 0.02, typic
of strong-coupling superconductors. Interestingly, when v
tex corrections are included, the deviation function at h
filling becomes negative, showing a minimum of abou
20.03, which is more typical of weak-coupling superco
ductors~BCS theory predicts a minimum of20.037). This
result fits in with those for other properties, demonstrat
that vertex corrections reduce the effective coupling stren
near half filling. A Coulomb pseudopotential, with the sam
power to reduceTc as vertex corrections, also decreases
deviation function, but to a lesser extent than vertex corr
tions do so. This is still true when the value ofl is also
fitted, by alteringU as necessary. The calculations aw
from the band center, atn51.6, lead to a negative deviatio
for all approximations. The reduced density of states at
filling leads to weak-coupling behavior.

Other thermodynamic quantities, which can be deriv
from the free-energy data, are affected in similar ways. T
is, vertex corrections reduce the effective coupling stren
to a greater extent than does a Coulomb repulsion giving
sameTc . For example, vertex corrections reduce the spec
heat jump,DC at Tc , as does a Coulomb repulsion to
lesser extent. The following results are obtained by a num
cal differentiation, so are not completely accurate in the
selves,~perhaps only to 10%! but as much of the error is
systematic, the trends are reliable. At half-filling, the dime
sionless quantity,DC/gTc is reduced from the strong
coupling value of 2.44, to 1.63 with vertex corrections a
1.88 with a Coulomb pseudopotential~the BCS result is
1.43!. Again, notice the typical result that near half filling
vertex corrections lead to a weaker-coupling result than d
inclusion of a Coulomb pseudopotential. At an electron fi
ing of n51.6, the results indicate less strong coupling, g
ing DC/gTc51.66 for dressed phonons, with the value
duced to 1.53 by vertex corrections, and to 1.44 by
Coulomb repulsion.

IV. CONCLUSIONS

We have completed a numerical investigation of the
fects of vertex corrections, dressing phonons and a non

FIG. 12. Critical-field deviation functionHc(T)/Hc(0)2@1
2(T/Tc)

2#. Solid lines are without, dashed lines are with vert
corrections. The dotted lines with and without triangles include
Coulomb pseudopotentialsmC* of Fig. 8, inset. All results are for
dressed phonons.~a! is at half filling, n51 while ~b! is at a filling
of n51.6. Note the shift in scale for the second graph.
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stant density of states on the physical properties of stro
coupling superconductors. We solved the Holstein mod
using four distinct perturbation theories, within conservi
approximations.

The necessity of incorporating a realistic phonon se
energy is of considerable importance to those working w
model Hamiltonians. The use of dressed phonons in the H
stein model, leads to a large renormalization of the para
eters — in particular, the value ofl can be enhanced by
factor of 3, when its bare value of 0.28 would suggest
system is in the weak-coupling regime. Such an enhan
ment of l reveals itself in increasedTc , a, D, Hc , and a
gap ratio (2D/kTc) greater than 4. The real-frequency da
shows that the Einstein spectrum~a delta function atV) is
both broadened and peaked at a lower frequency, when
bare, Einstein phonons are dressed.

The nonconstant density of states affects Migd
Eliashberg results in both expected and unexpected w
Firstly, all quantities which depend on the density of states
a parameter within Migdal-Eliashberg theory change in
expected manner as the electron band filling changes. N
that any sharp features in the normal electronic density
states have their effects reduced by the ‘‘averaging’’ ove
large phonon frequency range. Hence the strong fall inTc
and D is expected at both small and large fillings (n,0.45
andn.1.55) due to the rapid fall in the density of states
our model. More subtle, is the result that the chemical
tential shifts by a considerable amount between the nor
and superconducting states, if it lies near a van Hove sin
larity. To observe such an effect, the superconductor wo
have to be coupled to one with a more constant density
states.

We find, in agreement with previous work,11,12,14,15that
vertex corrections lead to results that correspond to a redu
effective strength of the electron-phonon coupling near h
filling, but an increased coupling strength near the ba
edges. These effects are exemplified by reductions in crit
temperatureTc , superconducting gapD, isotope coefficient
a, and thermodynamic critical fieldHc near half filling. As
nearly all of these effects can be modeled by an appropr
Coulomb pseudopotentialmC* it makes it extremely difficult
for any single experiment to reveal that vertex correctio
have played a significant role. However, we do find so
trends worth pointing out.

First, if there is difficulty in fitting bothTc andD with a
givena2F(v) andmC* , then this is an indication that verte
corrections may contribute, since they affect the ra
2D/kTc for fixed Tc , reducing it near half filling. Second, i
the experimentally measured deviation function for the th
modynamic critical field lies below the predicted value@with
a givena2F(v) andmC* ] vertex corrections could be impor
ant. Thirdly, a theoretical prediction, ignoring vertex corre
tions, will overestimate the specific heat jump atTc . Finally,
a more striking result, is in the isotope coefficienta, which
vertex corrections reduce much more markedly than d
mC* . Indeed, vertex corrections can lead toa,0, whichmC*
alone can never do.16 Hence materials that have moderate
largeTcs, but small isotope coefficients can still be electro
phonon mediated superconductors with vertex corrections
cluded. As the isotope coefficient is the single experimen

e
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quantity affected the most by vertex corrections, it is imp
tant to consider materials which havea unexplained by
Migdal-Eliashberg theory.

Anomalously low, and even negative isotope coefficie
have been observed in materials, such as Ru,46 a-uranium,47

PdH,48 and La22xSrxCuO4,49–51where vertex corrections ar
probably not important, and other mechanisms, such as
harmonicity, conduction electron density variations and pa
magnetic impurities play a role. However, a system such
Rb3C60,52,53 where the phonon frequency is a sizable fra
tion of the electron bandwidth, is much more likely to ha
vertex corrections affect the value ofa.

Still, the best way to see the effects of vertex correctio
is to directly view their contribution in the multiphonon re
gion of a tunnel junction, or in the high-energy region of t
optical conductivity. So, in order to unequivocally demo
strate the presence of strong vertex corrections in a mate
more accurate dynamical measurements at energies be
the highest phonon frequencies need to be carried out.
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APPENDIX: CONSERVING APPROXIMATION FORMULA

In this appendix, we give the specific formulas for t
free-energy functional, self-energy and irreducible ver
functions for each of the four conserving approximatio
Figures 4, 5 are the representations of these equation
Feynman diagrams. Hereafter, we employ the shortened
tation Gn[G( ivn), Gn* [G(2 ivn) and similarly for Fn ,
Dn , and pn

(0) . Note that the difference of two fermioni
frequencies leads to a bosonic frequency, i.e.,Dm2n
5D( ivm2 ivn)5D( ivn), wheren5m2n.

The calculations with no vertex corrections and a b
phonon propagator have the free-energy functional

Fbare5
2UT2

2 (
n,m

Tr@t3 Gn# Tr@t3 Gm#D ~0!~v50!

1
UT2

2 (
n,m

Tr@t3 Gn t3 Gm#Dn2m
~0! 1

U2T

4 (
n

@pn
~0!Dn

~0!#2, ~A1!

wherepn
(0) is the electron polarizability, defined in Eq.~8!.

The inclusion of thet3 matrices, ensures that each pair
off-diagonal Green’s functionsFn* Fm corresponding to Coo
per pair creation then annihilation, enters the product wit
minus sign.
-

s

n-
-
s

-

s

al,
nd

8.
r-
e

of
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x
.
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o-
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a

Functional differentiation with respect to the diagon
electron Green’s functionGn and off-diagonal Green’s func
tion Fn* leads respectively to the diagonal term in the se
energyS( ivn),

Sbare~ ivn!5UTn1UT(
m

GmDn2m
~0!

2U2T(
m

Gmpn2m
~0! @Dn2m

~0! #2, ~A2!

and the off-diagonal termf( ivn),

fbare~ ivn!52UT(
m

FmDn2m
~0!

2U2T(
m

Fmpn2m
~0! @Dn2m

~0! #2. ~A3!

We only require the superconducting vertex part, which
given by the derivative:

TGn,m
bare5df~ ivn!/dFm , ~A4!

taken in the limitFm°0. Hence with bare phonons and n
vertex corrections, the vertex function is that shown in F
5~a!:

Gn,m
bare52UDn2m

~0! 2U2pn2m
~0! @Dn2m

~0! #2. ~A5!

There is only one extra term which comes from the inc
sion of vertex corrections in the free-energy functional. It
the diagram in Fig. 4~b! with crossed phonon lines, and
equal to

Fvc5
U2T3

4 (
n,m,l

Tr@t3 Gn t3 Gm t3 Gl t3 Gn2m1 l #

3Dn2m
~0! Dl 2m

~0! . ~A6!

The total free-energy functional for bare phonons with ver
corrections included isFbare1Fvc.

The extra term in the self-energy is found by different
tion of the above term. For the diagonal and off-diagon
parts, respectively, this leads to

Svc~ ivn!5U2T2(
m,l

$Gm@GlGn2m1 l2FlFn2m1 l*

2Fn2m1 lFl* #2Gl* FmFn2m1 l* %Dn2m
~0! Dl 2m

~0! ,

~A7!

fvc~ ivn!5U2T2(
m,l

$Fm@Fl* Fn2m1 l2GlGn2m1 l

2Gn2m1 l* Gl* #2FlGmGn2m1 l* %Dn2m
~0! Dl 2m

~0! ,

~A8!

The extra term leads to the new self-energyS5Sbare1Svc

andf5fbare1fvc.
When the vertex correction term is added to the se

energy, three new terms appear in the irreducible ver
function, coming from each of three Green’s functions th
can be differentiated. The extra diagrams in Fig. 5~b! con-
tribute a total of



-

se

a
-
ec

o

.
its

n
th

ed

an

-
qs.

rgy
all

ns

e

d

sed

PRB 58 14 509POSSIBLE EXPERIMENTALLY OBSERVABLE EFFECTS . . .
Gm,n
vc 5U2T(

l
$@2GlGn2m1 l2Gn2m1 l* Gl* #Dn2m

~0! Dl 2m
~0!

2GlGn1m2 l* Dn2 l
~0! Dm2 l

~0! %, ~A9!

leading toGm,n5Gm,n
bare1Gm,n

vc as the irreducible vertex func
tion for bare phonons, with vertex corrections.

The calculations with no vertex corrections, but a dres
phonon propagator have the free-energy functional

Fdressed5
2UT2

2 (
n,m

Tr@t3 Gn#Tr@t3 Gm#D ~0!~v50!

1
UT2

2 (
n,m

Tr@GnGm#Dn2m . ~A10!

Functional differentiation with respect to the diagon
electron Green’s functionGn and off-diagonal Green’s func
tion Fn* leads respectively to the diagonal term in the el
tron self-energySdressed( ivn),

Sdressed~ ivn!5Un1UT(
m

GmDn2m ~A11!

and the off-diagonal termfdressed( ivn),

fdressed~ ivn!52UT(
m

FmDn2m . ~A12!

Similarly, differentiation with respect to the dressed phon
propagator leads to the phonon self-energy

P~1!~ ivn!522UT(
m

@GmGm1n2FmFm1n* #,

~A13!

where the factor of 2 indicates a sum over electron spins
The superconducting vertex function still retains

simple form, differentiation of Eq.~A12! giving

Gn,m
dressed52UDn2m . ~A14!

Analogously to the case of bare phonons, there is o
one extra term which comes from vertex corrections in
free-energy functional. It is equal to
ys

p
re

r-
i-
d

l

-

n

ly
e

Fvc25
U2T3

4 (
n,m,l

Tr@t3 Gn t3 Gm t3 Gl t3 Gn2m1 l #

3Dn2mDl 2m , ~A15!

where now the total free-energy functional for dress
phonons with vertex corrections included isFdressed1Fvc2.

Differentiation of the above contribution now leads to
extra term in the phonon self-energyPvc, as well as the
extra electronic self-energy terms.Pvc is the term shown
with crossed phonon lines in Fig. 3~b!:

Pvc~ ivn!52U2T2(
m,l

Tr@t3 Gm1n t3 Gm t3 Gl t3 Gl 1n#

3Dl 2m . ~A16!

Hence the full phonon self-energy is nowP( ivn)5
P (1)( ivn)1Pvc( ivn). The vertex functions and self
energies for electrons gain terms equivalent to those in E
~A7!–~A9! only with bare phonon propagatorsDn

(0) replaced
by dressed onesDn .

In the normal state, the expressions for the free-ene
functionals and self-energies are simplified, by setting
off-diagonal contributions to zero,Fn50 and f( ivn)50.
Note that the above formulas for irreducible vertex functio
are only calculated in the normal state.

To conclude, we present the explicit form for th
skeleton-diagram expansion of the functionalF8 in terms of
the free-energy functionalF, which has been calculate
above:

F85
T

2(n
$ ln@21/D~ ivn!#

2 ln@21/D ~0!~ ivn!#1P~ ivn!D~ ivn!%1F

~A17!

5
T

2(n
$ ln@12D ~0!~ ivn!P~ ivn!#

1P~ ivn!D~ ivn!%1F ~A18!

It can be noted that when the phonons are not dres
@P( ivn)50# thenF85F.
S.
n,
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