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Gap ratio in anharmonic charge-density-wave systems
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Many experimental systems exist that possess charge-density-wave order in their ground state. While this
order should be able to be described with models similar to those used for superconductivity, nearly all systems
have a ratio of the charge-density-wave order parameter to the transition temperature that is too high for
conventional theories. Recent work explained how this can happen in harmonic systems, but when the lattice
distortion gets large, anharmonic effects should play an increasingly important role. Here we show that the
explanation for the large gap ratios survives for anharmonic systems as well.
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The appearance of stripe ordering in materials related tean still explain the large gap ratios of charge-density-wave
the high-temperature superconducting oxtdesd of charge  systems in the presence of anharmonic potentials.
and orbital ordering in the colossal magnetoresistance We will be investigating the static anharmonic Holstein
material$ has provided a renewed interest in the physicgmodel, whose Hamiltonian ™
that drives charge-density-wave order. This phenomenon has L
been seen in a wide variety of materials ranging from quasi- ,, _ + — + —
one-dimensional systentehere Peierls distortion physics is H= i,,z,a t”Ci"Cj"+zi (9% = m)(mig 1))+ 2@ Xi
importan} such as the organic conductdrsp the di- and
trichalcogenidessuch as 2H-TaSeor NbSe, so-called A15 + aanE xﬁf 1)
materials such as \{Si, blue bronzessuch as KMoQ, cu- i
bic oxideg such as Ba ,K,BiOz, and Verwey transition i
materialé such as F¢O,. Standard notatlons_ are _u_se(_i herih_:(ci,,) creatﬁs(des_troyss
There has been much theoretical work on this problem a8 €lectron at lattice site with spin o, nj,=¢;,Ci, is the
well. The dynamical mean field theory was employed toelectron number operatqg, is the chemical potential, and
solve for the charge-density-wave phase in the orderedstatés the phonon coordinate at lattice siteWe examine the
and the puzzle of the large gap ratio was resolved for harstatic (or classical phonon case here, so there is no kinetic
monic system&® The resolution involves properly account- €nNergy of the phonon. The hopping of the electrons is re-
ing for phonon renormalizations, for nonvanishing effectsStricted to nearest neighbors on a hybercubic lattice di-

from vertex corrections, and from effects due to nonconstarf’€nsions. We take the limd—c and scale;; =t*/(2\ﬁ)
electronic density of stategsince conventional Migdal- " order to have nontrivial results. The rescaled hopping

Elisahberg approaches cannot produce gap ratidéT2 integ_ralt* determines our energy s_cale*(:l). The_ bare
larger than about eightThe anharmonic problem was also density of states becomes a Gaussan exp(\m, with .
examined with dynamical mean-field thetnand it was the_ band energy. The Iocal_ phonon is ta"e’? as a_cla_ssmal
found that the transition temperature satisfied a scaling Ia“\f{igaglr?ﬁ;%:gﬂmy has a spring constanassociated W't.h It

ic potential is chosen to be of the simplest

with the wave-function renormalization parameter for a wide . . .
form, a quartic term with a strength,,. The deformation
range of parameter space.

Here we concentrate on the issue of whether or not thgotennal(or electron-phonon interaction strengit denoted

ap ratio can remain large when anharmonic effects are’ 9 and measures an energy per unit length.
gre?sent The scaling law fogr the transition temperature showg Itis useful to shift the phonon coordinate, in order to see
that anharmonicity does not have a dramatic effecTon xplicitly the particle-hole symmetry present in the harmonic

but as the system is cooled downTe=0, the lattice distor- Model. We shiftx;—x;+x" with g(n)+ «x’+3agnx £0
tion becomes larger and larger, generating the full Charge(wnh_(n).the.average total electron fillingto transform the
density-wave gap. Naively, we would expect anharmonicity {@miltonian into

to reduce the lattice distortiotrelative to a harmonic sys-

tem) because the higher powers in the phonon potential do |- _ > tijCiTnga+E (9% — ) (ni;+ i —(n))

not allow the phonon coordinate to move as far away from i, i

the origin. Hence, one expects that anharmonicity will ge- 1

nerically reduce the gap ratio, sinde will be unaffected, - 2 3 4

but A will be reduced relative to ths results of a harmonic " 2 KEi: X +'Ban§i: X +aan§i: X @
system with the same value of the wave-function renormal- . ) .

ization parameter. We need to verify whether this effect ocwith k= k+ 12w, X 2, Ban=4aaX', andu=u—gx’. It is
curs and determine how large it can be to see whether orthe presence of the cubic term, wheg,# 0 that removes
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the particle-hole symmett§ from the problem when.=0 1 ' ' ' ' '
and(n)=1, since the Hamiltonian is no longer unchanged
under the transformation;,—1—n;, and x;— —X;. Note

that the system still will possess charge-density-wave order
at half filling and weak couplingfor all smallg>0) because

the band structure is still nested at half filling, even though
the Hamiltonian is not particle-hole symmetric.

Our calculations are performed using standard techniques
of dynamical mean-field theo*® we iterate a series of
equations to self consistency that involvedetermining the
local Green’s function from the self enerdpy integrating 0.2 0 02040608 1
over the noninteracting density of state@i) extracting the /T,
effective medium(by removing the self energy from the lo- 0 L L L L
cal Green’s functiop (iii) calculating the probability distri- 6 02 04 06 08 1
bution of the phonon coordinatey solving the atomic path Temperature T/T,
integral in a time-dependent figld(iv) extracting the elec- ) ,
tronic self energyafter determining the local Green’s func- /G- 1. Charge-density-wave order parameter as a function of
tion from an integral over the phonon coordinate distribu-t€MPerature for three cases of anharmonigtychosen to be at the
tion). This procedure is standaf@ven for the case of the Tax'mal TC_) M 9=2, asn=0.16, T°=0'1277(50"(1..."”‘3)’_(") g
ordered phage and we do not describe any further details = ' #an=0.03, Tc=0.1326 (dashed ling and (iii) 9=1.19,

. S o aan=0, T,=0.1340(dotted ling. The figure is renormalized to plot
here. Our calculations are performed at half fillimg=1. In A(T)/A.. andT/T,. Inset is a plot of the average phonon coor-

the harmonic case, we he_lye:O, bUt_ the a_nharmonlc prob-_ dinate on theA andB sublattices. Note that all the curves are sym-
lem must have the chemical potential adjusted as a functiopeyric, put their average value moves away from zero for the an-

of temperature to yield the right filling. harmonic cases.
When the system is in an ordered charge-density-wave
state, there are two probability distributions for the phonontween theA and B sublattices, so the particle-hole asymme-
coordinate—one for tha sublatticew,(x) and one for thé8  try only affects the midline of the phonon coordinate, not its
sublattice wg(x). The order parameter for the charge- distortion in the ordered phase.
density-wave phase is defined to be In summary, we can accurately estimate the value of the
T=0 gap by performing calculations dt=T./10 and the
shape of the order paramef@s a function ofT) is not too
A(T)=9f dx{Wa(x) —wg(X)]X, (3 strongly dependent on the strength of the anharmonicity. In
addition, we find that the main effect of the anharmonic in-
which measures the average difference in the phonon cooteraction is to change the average of the phonon coordinate
dinate between thé and B sublattices multiplied by the values on each sublatticeX)+(Xg))/2 and shrink the
deformation potential. magnitude of the distortion. This does not mean that the gap
In Fig. 1, we show a plot of this charge-density-waveis reduced by as much, though, because systems that share
order parameter as a function of temperature. The plots inthe same approximate value ©f will have different values
clude three cases, all at the maximum valud ofor a given  of both g and a,,,. The reduction in the distortion of the
value ofg and arbitrarya,,. The parameters chosen aye  phonon coordinate can be compensated by a correspondingly
=2, a,,=0.16, which hasl,.=0.1277;9=1.5, «,,=0.03, larger value ofg.
which hasT;=0.1326; andy=1.19, «,,=0, which hasT, We now present results for the charge-density-wave gap
=0.1340. The curves are normalized by the maximal ga@s a function of the anharmonicity. The most reasonable way
value calculated alT~T./8, which is very close to th§  to present these results is to plot the gap versus a measure of
=0 value, and by .. Note that rather than approaching one,the anharmonic potential energy in equilibrilﬂn. We can de-
there is a small decrease &(T)/A .« at the lowest tem-  termine what the equilibrium phonon coordinate x* is for
peratures. This is an accuracy issue with our calculationghe atomic problenidetermined by Eq(1) with t;=0 and
(which are performed with a fixed number of 5000 Matsub-(n)=1] and then plot results versus,,x**. These results
ara frequencies for the energy cujoffVe estimate that our are summarized in Fig. 2. Note that this measure of the an-
error in theT=0 gap is no larger than about 1%. Theseharmonic potential energy is double valued whgis large,
curves have the correct generic behavior that we expect fagince it approaches 0 in both the small and ladggg limits.
mean-field systems: the order parameter increases likehe general shapes of these curves are quite similar, but the
JT.—T away from the transition temperature and then rapscales change with the coupling strength and the stronger
idly saturates. We see no significant difference in the shapeoupled cases show more curvat(med eventually a double
of these curves for different values of the anharmonicity.valuedness
Inset into this figure is a plot ofx,) upper curves an¢xzg) We can examine the static Holstein model in both a
lower curves. Note how the anharmonic systems are botbtrong-coupling® and a weak-coupliri§ limit. In the strong-
shifted upwards and have narrower spreads in the averag®upling limit, the transition temperature approaches zero as
phonon coordinate, but that the curves are symmetric bet/(2g[x,—X»]), while the zero temperature gap becomes
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) FIG. 3. Ratio of twice the charge-density-wave daplculated
FIG. 2. Charge-density-wave gap calculatedTatlO plotted  4¢1 /10) to the charge-density-wave transition temperafirplot-
versus the anharmonic “energy’,x*“ determined from the aver- o4 yersus the wave-function renormalization parameter. The har-
age value_of the phonon coordinate for the atomic problem. Notg,nic limit is connected by a thin solid lingvith g ranging from
how the different curvesg=0.725, 0.95, 1.19, 1.5, and 2.0ave g 525 {9 3, while the renormalizeddotted and unrenormalized
the same general shape, which become double valued for the Stro(Hasheaj weak-coupling approximations are also included. Note
gest coupling cases shown here. how the anharmonic systems generically lie close to the harmonic

) ) results for a wide range of parameters.
large asg(xg—X,)/2, and hence, the ratio can diverge

[2A/(kgT)=29%(Xo—X2)?]. Here,x; satisfies The weak-coupling limit is much more complicated.
_ ) . There are many approaches that can be tak&hbut none
9(i = 1)+ kXi+ 3BanX; +4aanx; =0. (4 produce good agreement with the transition temperature over

a wide range of coupling strengtkisut the zero-temperature
ap is approximated wellHere we will concentrate on just
o different strategiesfor the harmonic case only(i) the
normalized phonon methdwhere a certain class of ver-
X correction terms can be neglected from the analysis, but
one needs to work with renormalized phondrenormalized
%y the electron-hole bubble diagramand (i) a similar
approximatioft’ that employs the identical set of diagrams,
but does not renormalize the phonons.
In Fig. 3, we show the results for the gap ratio in the
rmonic case, five different anharmonic cases, and the two
proximation schemes described above. In order to check
r universal behavior, we plot the results as a function of the
wave-function renormalization paraméferZ [which is
evaluated as in Ed5)]. One can see some striking behavior
in this plot. First, we find that the gap ratio can become as
large as one would like as the coupling strength gets bigger
and bigger. Furthermore, the gap ratio rises very rapidly
above the weak-coupling limit of 3.52, so evErfactors of
. . 1.25(which would correspond to very weak electron-phonon
Z=1— § Im2 (i wo) _E Im(iw,) (5) coupling would have a gap ratio larger than six. We find that
2w 2 o ) the calculated results lie in between the two different weak-
coupling schemes indicating that phonon renormalization is
important, but the summation of the bubble diagrams renor-
malizes the phonons too strongly in the general ¢&de-
B 1_3 1 n 1_3 9%|Xo| x| ©6) nally, we notice that except for the case of very strong cou-
18 7212 9 212 pling (g=2), the gap ratio is modified by at most about 20%
from the harmonic case. This finding is most surprising, but
SinceZ is a function ofxg andx, and 2A/(kgT.) is a func-  can be explained in relatively simple terms. As the anhar-
tion of xo—X,, we don’t expect universal behavior at ex- monic potential increases, the effective coupling strength be-
tremely strong coupling for the anharmonic case. But, in thecomes weaker, because the anharmonic potential prevents
harmonic case we haJeg|=|x,|, SO we expect deviations the phonon coordinate from deviating far from the origin. In
from universality only whemx,|/|x,| deviates far from unity. the limit of very weak effective coupling, the transition is

This ratio becomes infinite as the coupling strength in-
creases, hence, there is no limit to the magnitude of the g
ratio. Note that this result is also true for the superconductinge
order, when one includes the effect of a nonconstant densi%
of states, since the strong-coupléd will approach zero
there as well. This result comes entirely from the fact that th
phonon-coordinate distortion grows linearly wigtin strong
coupling, but the transition temperature decreases g& 1/
due to the strong-coupling physics.

We can also investigate the possibility of universal behav]a|a
ior in strong coupling. Since the system consists of empty,
sites and preformed pairs, the self energy has a low-energ;
pole and takes the fornk(w)=al/(w+id)+0O(w°) for
small |o| with a«>0. Plugging this form into the self-
consistent equations for the Green’s function yields
—1/2+g?|xol|x2| (which is larger than zero fog large
enough. Defining the wave-function renormalization param-
eter by a scaling along the imaginary dxis

with iw;=i7T(2]+1), yields
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dominated by a nesting instability that can be describeghase, where one would expect the effects of the anharmo-
within a BCS-like format. Hence, all results must agree innicity to be felt more strongly. Hence, we find that the analy-
the strong anharmonic limitf one properly identifies the net sis given for the large gap ratio in the harmonic electron-
strength of the attractive interactipriFurthermore, when the phonon problem remains essentially unchanged as
system has small anharmonicity, the anharmonic effects cagnharmonicity is introduced except in the limit of extremely
be treated perturbatively, and the system remains close to thgrong electron-phonon couplifghich may be so unphysi-
harmonic limit there as well. Since the curves are pinned tQg|ly |arge that is is not attained in any real matéridhe

be close to the harmonic limit for small anharmonicity and eason why this holds is essentially a continuity argument:
for large anharmonicity, we find that they generically do notso; small and large anharmonicity, the system must be close
stray far from the harmonic curve in the intermediate regimeq the harmonic results—hence, it remains close for interme-
As the coupling strength increases, so this intermediate regizte values as well. We do not expect these results to be
gime becomes larger, the deviations can also become signifinanged much for small phonon frequencies, because we
cant, as we see for thg=2.0 case. But we find it SUrprising o thatT, follows a universal form for low frequency, and

that there is such a wide range of parameter space where thg, expect the gap value will not change much if the phonon
results for the anharmonic system remain so close to thf’requency is small.

harmonic system.
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well by an equivalent harmonic limit, even in the orderedScience Foundation under Grant No. DMR-9973225.
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