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Gap ratio in anharmonic charge-density-wave systems
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Many experimental systems exist that possess charge-density-wave order in their ground state. While this
order should be able to be described with models similar to those used for superconductivity, nearly all systems
have a ratio of the charge-density-wave order parameter to the transition temperature that is too high for
conventional theories. Recent work explained how this can happen in harmonic systems, but when the lattice
distortion gets large, anharmonic effects should play an increasingly important role. Here we show that the
explanation for the large gap ratios survives for anharmonic systems as well.
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The appearance of stripe ordering in materials related
the high-temperature superconducting oxides1 and of charge
and orbital ordering in the colossal magnetoresista
materials,2 has provided a renewed interest in the phys
that drives charge-density-wave order. This phenomenon
been seen in a wide variety of materials ranging from qu
one-dimensional systems~where Peierls distortion physics
important! such as the organic conductors,3 to the di- and
trichalcogenides4 such as 2H-TaSe2 or NbSe3, so-called A15
materials5 such as V3Si, blue bronzes6 such as KMoO3, cu-
bic oxides7 such as Ba12xKxBiO3, and Verwey transition
materials8 such as Fe3O4.

There has been much theoretical work on this problem
well. The dynamical mean field theory was employed
solve for the charge-density-wave phase in the ordered s9

and the puzzle of the large gap ratio was resolved for h
monic systems.10 The resolution involves properly accoun
ing for phonon renormalizations, for nonvanishing effe
from vertex corrections, and from effects due to noncons
electronic density of states~since conventional Migdal-
Elisahberg approaches cannot produce gap ratios 2D/Tc

larger than about eight!. The anharmonic problem was als
examined with dynamical mean-field theory11 and it was
found that the transition temperature satisfied a scaling
with the wave-function renormalization parameter for a w
range of parameter space.

Here we concentrate on the issue of whether or not
gap ratio can remain large when anharmonic effects
present. The scaling law for the transition temperature sh
that anharmonicity does not have a dramatic effect onTc ,
but as the system is cooled down toT50, the lattice distor-
tion becomes larger and larger, generating the full cha
density-wave gap. Naively, we would expect anharmonic
to reduce the lattice distortion~relative to a harmonic sys
tem! because the higher powers in the phonon potentia
not allow the phonon coordinate to move as far away fr
the origin. Hence, one expects that anharmonicity will g
nerically reduce the gap ratio, sinceTc will be unaffected,
but D will be reduced relative to the results of a harmon
system with the same value of the wave-function renorm
ization parameter. We need to verify whether this effect
curs and determine how large it can be to see whether
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can still explain the large gap ratios of charge-density-wa
systems in the presence of anharmonic potentials.

We will be investigating the static anharmonic Holste
model, whose Hamiltonian is12,11

H52 (
i , j ,s

t i j cis
† cj s1(

i
~gx̄i2m̄ !~ni↑1ni↓!1

1

2
k̄(

i
x̄i

2

1aan(
i

x̄i
4 . ~1!

Standard notations are used here:cis
† (cis) creates~destroys!

an electron at lattice sitei with spin s, nis5cis
† cis is the

electron number operator,m̄ is the chemical potential, andx̄i
is the phonon coordinate at lattice sitei. We examine the
static ~or classical! phonon case here, so there is no kine
energy of the phonon. The hopping of the electrons is
stricted to nearest neighbors on a hybercubic lattice ind di-
mensions. We take the limitd→` and scalet i j 5t* /(2Ad)
in order to have nontrivial results.13 The rescaled hopping
integral t* determines our energy scale (t* 51). The bare
density of states becomes a Gaussian exp(2e2)/Ap, with e
the band energy. The local phonon is taken as a class
variable, so it only has a spring constantk associated with it.
The anharmonic potential is chosen to be of the simp
form, a quartic term with a strengthaan . The deformation
potential~or electron-phonon interaction strength! is denoted
by g and measures an energy per unit length.

It is useful to shift the phonon coordinate, in order to s
explicitly the particle-hole symmetry present in the harmo
model. We shift x̄i→xi1x8 with g^n&1k̄x813aanx8350
~with ^n& the average total electron filling!, to transform the
Hamiltonian into

H52 (
i , j ,s

t i j cis
† cj s1(

i
~gxi2m!~ni↑1ni↓2^n&!

1
1

2
k(

i
xi

21ban(
i

xi
31aan(

i
xi

4 , ~2!

with k5k̄112aanx82, ban54aanx8, andm5m̄2gx8. It is
the presence of the cubic term, whenaanÞ0 that removes
©2001 The American Physical Society09-1
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the particle-hole symmetry14 from the problem whenm50
and ^n&51, since the Hamiltonian is no longer unchang
under the transformationnis→12nis and xi→2xi . Note
that the system still will possess charge-density-wave o
at half filling and weak coupling~for all smallg.0! because
the band structure is still nested at half filling, even thou
the Hamiltonian is not particle-hole symmetric.

Our calculations are performed using standard techniq
of dynamical mean-field theory:9,10 we iterate a series o
equations to self consistency that involve~i! determining the
local Green’s function from the self energy~by integrating
over the noninteracting density of states!, ~ii ! extracting the
effective medium~by removing the self energy from the lo
cal Green’s function!, ~iii ! calculating the probability distri-
bution of the phonon coordinate~by solving the atomic path
integral in a time-dependent field!, ~iv! extracting the elec-
tronic self energy~after determining the local Green’s func
tion from an integral over the phonon coordinate distrib
tion!. This procedure is standard~even for the case of the
ordered phase!, and we do not describe any further deta
here. Our calculations are performed at half filling^n&51. In
the harmonic case, we havem50, but the anharmonic prob
lem must have the chemical potential adjusted as a func
of temperature to yield the right filling.

When the system is in an ordered charge-density-w
state, there are two probability distributions for the phon
coordinate—one for theA sublatticewA(x) and one for theB
sublattice wB(x). The order parameter for the charg
density-wave phase is defined to be

D~T!5gE dx@wA~x!2wB~x!#x, ~3!

which measures the average difference in the phonon c
dinate between theA and B sublattices multiplied by the
deformation potential.

In Fig. 1, we show a plot of this charge-density-wa
order parameter as a function of temperature. The plots
clude three cases, all at the maximum value ofTc for a given
value of g and arbitraryaan . The parameters chosen areg
52, aan50.16, which hasTc50.1277;g51.5, aan50.03,
which hasTc50.1326; andg51.19, aan50, which hasTc
50.1340. The curves are normalized by the maximal g
value calculated atT'Tc/8, which is very close to theT
50 value, and byTc . Note that rather than approaching on
there is a small decrease inD(T)/Dmax at the lowest tem-
peratures. This is an accuracy issue with our calculati
~which are performed with a fixed number of 5000 Matsu
ara frequencies for the energy cutoff!. We estimate that ou
error in theT50 gap is no larger than about 1%. The
curves have the correct generic behavior that we expec
mean-field systems: the order parameter increases
ATc2T away from the transition temperature and then r
idly saturates. We see no significant difference in the sh
of these curves for different values of the anharmonic
Inset into this figure is a plot of̂xA& upper curves and̂xB&
lower curves. Note how the anharmonic systems are b
shifted upwards and have narrower spreads in the ave
phonon coordinate, but that the curves are symmetric
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tween theA andB sublattices, so the particle-hole asymm
try only affects the midline of the phonon coordinate, not
distortion in the ordered phase.

In summary, we can accurately estimate the value of
T50 gap by performing calculations atT5Tc/10 and the
shape of the order parameter~as a function ofT) is not too
strongly dependent on the strength of the anharmonicity
addition, we find that the main effect of the anharmonic
teraction is to change the average of the phonon coordi
values on each sublattice (^xA&1^xB&)/2 and shrink the
magnitude of the distortion. This does not mean that the
is reduced by as much, though, because systems that s
the same approximate value ofTc will have different values
of both g and aan . The reduction in the distortion of the
phonon coordinate can be compensated by a correspond
larger value ofg.

We now present results for the charge-density-wave
as a function of the anharmonicity. The most reasonable w
to present these results is to plot the gap versus a measu
the anharmonic potential energy in equilibrium. We can d
termine what the equilibrium phonon coordinatex̄5x* is for
the atomic problem@determined by Eq.~1! with t i j 50 and
^n&51# and then plot results versusaanx* 4. These results
are summarized in Fig. 2. Note that this measure of the
harmonic potential energy is double valued wheng is large,
since it approaches 0 in both the small and largeaan limits.
The general shapes of these curves are quite similar, bu
scales change with the coupling strength and the stron
coupled cases show more curvature~and eventually a double
valuedness!.

We can examine the static Holstein model in both
strong-coupling15 and a weak-coupling16 limit. In the strong-
coupling limit, the transition temperature approaches zero
1/(2g@x02x2#), while the zero temperature gap becom

FIG. 1. Charge-density-wave order parameter as a function
temperature for three cases of anharmonicity~all chosen to be at the
maximal Tc) ~i! g52, aan50.16, Tc50.1277 ~solid line!; ~ii ! g
51.5, aan50.03, Tc50.1326 ~dashed line!; and ~iii ! g51.19,
aan50, Tc50.1340~dotted line!. The figure is renormalized to plo
D(T)/Dmax andT/Tc . Inset is a plot of the average phonon coo
dinate on theA andB sublattices. Note that all the curves are sym
metric, but their average value moves away from zero for the
harmonic cases.
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BRIEF REPORTS PHYSICAL REVIEW B 64 073109
large as g(x02x2)/2, and hence, the ratio can diverg
@2D/(kBTc)52g2(x02x2)2#. Here,xi satisfies

g~ i 21!1kxi13banxi
214aanxi

350. ~4!

This ratio becomes infinite as the coupling strength
creases, hence, there is no limit to the magnitude of the
ratio. Note that this result is also true for the superconduc
order, when one includes the effect of a nonconstant den
of states, since the strong-coupledTc will approach zero
there as well. This result comes entirely from the fact that
phonon-coordinate distortion grows linearly withg in strong
coupling, but the transition temperature decreases asg2

due to the strong-coupling physics.
We can also investigate the possibility of universal beh

ior in strong coupling. Since the system consists of em
sites and preformed pairs, the self energy has a low-en
pole and takes the formS(v)5a/(v1 id)1O(v0) for
small uvu with a.0. Plugging this form into the self
consistent equations for the Green’s function yieldsa5
21/21g2ux0uux2u ~which is larger than zero forg large
enough!. Defining the wave-function renormalization param
eter by a scaling along the imaginary axis11

Z512H 3

2

ImS~ iv0!

v0
2

1

2

ImS~ iv1!

v1
J , ~5!

with iv j5 ipT(2 j 11), yields

Z512
13

18

1

p2T2
1

13

9

g2ux0uux2u

p2T2
. ~6!

SinceZ is a function ofx0 andx2 and 2D/(kBTc) is a func-
tion of x02x2, we don’t expect universal behavior at e
tremely strong coupling for the anharmonic case. But, in
harmonic case we haveux0u5ux2u, so we expect deviation
from universality only whenux0u/ux2u deviates far from unity.

FIG. 2. Charge-density-wave gap calculated atTc/10 plotted
versus the anharmonic ‘‘energy’’aanx* 4 determined from the aver
age value of the phonon coordinate for the atomic problem. N
how the different curves (g50.725, 0.95, 1.19, 1.5, and 2.0! have
the same general shape, which become double valued for the s
gest coupling cases shown here.
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The weak-coupling limit is much more complicate
There are many approaches that can be taken,16,17 but none
produce good agreement with the transition temperature o
a wide range of coupling strengths~but the zero-temperatur
gap is approximated well!. Here we will concentrate on jus
two different strategies~for the harmonic case only!: ~i! the
renormalized phonon method16 where a certain class of ver
tex correction terms can be neglected from the analysis,
one needs to work with renormalized phonons~renormalized
by the electron-hole bubble diagrams! and ~ii ! a similar
approximation17 that employs the identical set of diagram
but does not renormalize the phonons.

In Fig. 3, we show the results for the gap ratio in t
harmonic case, five different anharmonic cases, and the
approximation schemes described above. In order to ch
for universal behavior, we plot the results as a function of
wave-function renormalization parameter11 Z @which is
evaluated as in Eq.~5!#. One can see some striking behavi
in this plot. First, we find that the gap ratio can become
large as one would like as the coupling strength gets big
and bigger. Furthermore, the gap ratio rises very rapi
above the weak-coupling limit of 3.52, so evenZ factors of
1.25~which would correspond to very weak electron-phon
coupling! would have a gap ratio larger than six. We find th
the calculated results lie in between the two different we
coupling schemes indicating that phonon renormalization
important, but the summation of the bubble diagrams ren
malizes the phonons too strongly in the general case.18 Fi-
nally, we notice that except for the case of very strong c
pling (g52), the gap ratio is modified by at most about 20
from the harmonic case. This finding is most surprising,
can be explained in relatively simple terms. As the anh
monic potential increases, the effective coupling strength
comes weaker, because the anharmonic potential prev
the phonon coordinate from deviating far from the origin.
the limit of very weak effective coupling, the transition

te

on-

FIG. 3. Ratio of twice the charge-density-wave gap~calculated
at Tc/10) to the charge-density-wave transition temperatureTc plot-
ted versus the wave-function renormalization parameter. The
monic limit is connected by a thin solid line~with g ranging from
0.625 to 2!, while the renormalized~dotted! and unrenormalized
~dashed! weak-coupling approximations are also included. No
how the anharmonic systems generically lie close to the harm
results for a wide range of parameters.
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BRIEF REPORTS PHYSICAL REVIEW B 64 073109
dominated by a nesting instability that can be describ
within a BCS-like format. Hence, all results must agree
the strong anharmonic limit~if one properly identifies the ne
strength of the attractive interaction!. Furthermore, when the
system has small anharmonicity, the anharmonic effects
be treated perturbatively, and the system remains close to
harmonic limit there as well. Since the curves are pinned
be close to the harmonic limit for small anharmonicity a
for large anharmonicity, we find that they generically do n
stray far from the harmonic curve in the intermediate regim
As the coupling strength increases, so this intermediate
gime becomes larger, the deviations can also become sig
cant, as we see for theg52.0 case. But we find it surprisin
that there is such a wide range of parameter space wher
results for the anharmonic system remain so close to
harmonic system.

Contrary to the simple arguments about anharmonic
we find that generically anharmonic phonons are descri
well by an equivalent harmonic limit, even in the order
id

ev
.

dv
,

oli

Jr
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phase, where one would expect the effects of the anhar
nicity to be felt more strongly. Hence, we find that the ana
sis given for the large gap ratio in the harmonic electro
phonon problem remains essentially unchanged
anharmonicity is introduced except in the limit of extreme
strong electron-phonon coupling~which may be so unphysi
cally large that is is not attained in any real material!. The
reason why this holds is essentially a continuity argume
for small and large anharmonicity, the system must be cl
to the harmonic results—hence, it remains close for interm
diate values as well. We do not expect these results to
changed much for small phonon frequencies, because
know thatTc follows a universal form for low frequency, an
we expect the gap value will not change much if the phon
frequency is small.
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