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Approximate scaling relation for the anharmonic electron-phonon problem
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An approximate scaling relation is found for the transition temperature to a charge-density-wave instability
in the anharmonic electron-phonon problem, which maps a wide range of interaction strengths, anharmonici-
ties, and phonon frequencies onto a common functional form. The relation employs the wave-function renor-
malization parameter and is valid even for systems that are not Fermi liquids.
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The interaction of electrons with anharmonic lattice vib
tions is a long-standing problem that is not yet fully und
stood. What is surprising about this problem is that nearly
real materials are anharmonic~as can be seen by the fact th
they expand or contract upon heating!, but quasiharmonic
models~which replace the anharmonic phonons by harmo
phonons with temperature-dependent phonon frequenc!
work remarkably well at describing properties of mo
materials.1 Superconductivity is described most accurate
where the theory of electrons interacting with harmo
phonons, introduced by Migdal2 and Eliashberg,3 can rou-
tinely reproduce experimental tunneling conductances to
ter than one part in a thousand. The explanation for
result is actually quite simple—the thermal effects that ar
due to a nonuniform spacing of the anharmonic energy le
are unimportant when the temperature is much less than
effective phonon frequency~defined by the difference in en
ergy between the ground and the first-excited state of
anharmonic phonon!.4 Furthermore, quantum Monte Carl
~QMC! studies,5 have shown that anharmonicity does n
appear to produce any exotic behavior, such as enha
ments of transition temperatures, or novel superconduc
behavior.6 Instead, the results indicate that an effect of a
harmonicity is to generically break particle-hole symmet
The discovery we present here is that the anharmonic
tems can be mapped onto harmonic ones, with results f
widely different parameter regimes collapsing onto the sa
scaling curve. We believe that this result sheds light onto
question of why harmonic models work so well for descr
ing properties of real materials.

Our strategy is to solve anharmonic models in the limit
large spatial dimension7 where the lattice many-body prob
lem can be mapped onto a self-consistently embedded im
rity problem that is solved via a QMC simulation8 for quan-
tum phonons, or via an iterative transcendental equation
classical phonons.9,10

The simplest electron-phonon model that includes anh
monic effects is the anharmonic Holstein model11 in which
the conduction electrons interact with local phonon mode
PRB 610163-1829/2000/61~2!/838~4!/$15.00
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Here, cis
† (cis) creates~destroys! an electron at sitei with

spins, nis5cis
† cis is the electron number operator,m̄ is the

chemical potential, andx̄i (pi) is the phonon coordinate~mo-
mentum! at site i. The hopping of electrons is restricted
nearest-neighbor lattice sitesi and j on ad-dimensional hy-
percubic lattice.t i j is isotropic with magnitudet5:t* /2Ad,
wheret* 51 to define the energy scale. The bare density
states then becomes a Gaussian exp(2e2)/Ap, with e the
band energy. The local phonon has a massM and a spring
constantk̄ associated with it. The anharmonic contributio
to the phonon potential energy is chosen to be a quarti
the phonon coordinate with a strengthaan . The deformation
potential ~electron-phonon interaction strength! is parame-
trized by an energy per unit lengthg. ~Coulomb repulsion
effects can be included in the QMC simulations5 but are
neglected here for simplicity.!

A shift of the phonon coordinate is useful for calculation
and for illustrating the particle-hole symmetry of the mod
We shift x̄i5:xi1x8, with g1k̄x813aanx8350, to trans-
form the Hamiltonian into

H52 (
i , j ,s

t i j cis
† cj s1(

i
~gxi2m!~ni↑1ni↓21!

1
1

2M (
i

pi
21

1

2
k(

i
xi

21ban(
i

xi
31aan(

i
xi

4 ,

~2!

with kªk̄112aanx82, banª4aanx8, andmªm̄2gx8. It is
the presence of the cubic term whenaanÞ0 that removes
particle-hole symmetry from the problem whenm50, since
R838 ©2000 The American Physical Society
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the particle-hole transformation isxi→2xi and nis→1
2nis . The system does continue to possess nesting at
filling, though, which implies that it will have a nonzer
transition temperature to a charge-density wave~CDW! at
half filling for any nonzero interaction strengthg.

We examine two different cases in this contributio
quantum phonons with a large enough phonon frequency
vertex corrections are important (V5Ak/M50.5, corre-
sponding to approximately one eighth the effective ba
width! and classical phonons with zero-phonon frequen
(M→` and V50). The former problem is solved usin
QMC techniques that have been described elsewher5,8

Transition temperatures are determined by calculating
relevant susceptibility~in this case to a chessboard-pha
CDW!, and determining the temperature where it diverg
~when Trotter error is important, we extrapolateTc using
Dt50.2 and 0.4, otherwise we use the largerDt). In the
latter case, the problem is solved within the ordered ph
employing a generalization of the Brandt-Mielsch formalis
to the static Holstein model,9,10 and determiningTc as the
highest temperature that sustains long-range order.

We begin in Fig. 1~a! by showing the transition tempera
ture to the commensurate CDW at half filling for the ha
monic case, and three different phonon frequencies,V50,
V50.5, andV5` which is identical to the attractive Hub
bard model.5,12 The symbols are the exact, or QMC resu
~the dotted lines are guides to the eye!, while the other lines
are second-order weak-coupling conservi
approximations13 ~dashed! and second-order strong-couplin
calculations14 ~solid!. Notice how the maximalTc is essen-
tially independent of phonon frequency, and that the ph
diagrams are not too sensitive to phonon frequency wheV
is smaller than the bandwidth. However, note that the c
sical phonon case (V50) and the quantum phonon case a
quite different, sinceT is always aboveV for the classical
phonons, butT,V for the quantum phonon cases show
here. The similarity inTc is surprising, because the CDW
vertex is strongly temperature dependent for the quan
phonons, with its magnitude changing between22g2/k and
2g2/k as the temperature and frequency are varied.

The anharmonicity is turned on in Fig. 1~b! for similar
effective electron-electron coupling strengths andV50 and
V50.5. The infinite-phonon frequency limit is unaffected
the anharmonicity, since the phonons respond insta
neously to the electrons, and remain at the origin. We p
the strength of the anharmonicity asaanx̄* 4, wherex̄* is the
equilibrium coordinate of the atomic system with one ele
tron per site, found from Eq.~1! with t i j 50. In the case of
weak anharmonicity, this equilibrium coordinate lies ne
2g/k and the anharmonic energy grows linearly withaan ,
but as the anharmonicity becomes large, thenx̄* lies near
2(g/aan)

1/3, and the anharmonic energy decreases asaan
21/3.

This is why the curves in Fig. 1~b! are multivalued for some
values of the interaction strength. Notice that the results
different phonon frequencies are similar in qualitative beh
ior, but that the quantitative results can differ by lar
amounts as the anharmonicity increases.

We find that theTc satisfies an approximate scaling rel
tion when we plot it instead as a function of 1/Z(0), the
wave-function renormalization parameter, in Fig. 2. Nea
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two-hundred data points collapse onto the same sca
curve. But the scaling is only approximate, because
infinite-phonon frequency limit lies well off the scalin
curve for low-to-moderate phonon frequencies, so this re
must break down asV increases~note, however, that the
value V/t* 50.5 is larger than the phonon frequency
nearly all real materials!. The other lines in Fig. 2 correspon
to different weak-coupling approximations plotted now as
function ofZ(0) rather than ofU. The wave-function renor-
malization parameterZ(0) is extracted from the calculation
by a linear extrapolation along the Matsubara frequency a
We compute

Z~0!512
3

2

Im S~ ipT!

pT
1

1

2

Im S~3ipT!

3pT
, ~3!

and evaluate it at a temperatureT just aboveTc . This
imaginary-axis extrapolation procedure is robust in prod
ing a scaling result even if the system is not a Fermi liqu

FIG. 1. Transition temperatures for the chessboard-ph
charge-density-wave order at half filling.~a! Tc for the harmonic
case. The horizontal axis is the effective electron-electron coup
uUu5g2/k. Three frequencies are included:V50, V50.5, andV
5`. The dashed line is a conserving second-order perturbative
proximation ~including vertex corrections! and the solid line is a
second-order strong-coupling approximation.~b! Tc for the anhar-
monic case. The horizontal axis is a measure of the anharm
contribution to the energy~as described in the text!. Open symbols
are QMC simulations atV50.5, while solid symbols are exac
solutions atV50.
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where 1/Z(0) would measure the quasiparticle weight. F
example, in the classical-phonon case, the lowest-order
tribution to the self-energy isS(z)52TUG(z). The curva-
ture of ImS(v) at the chemical potential is positive. Henc
the system is never a Fermi liquid, except atT50, where it
becomes noninteracting. Nevertheless, the extrapolation
cedure given in Eq.~3! still falls on the scaling curve, and fo
the weakly coupled classical-phonon case, it producesZ(0)
5114uUur(0)/3, rather than the expected result ofZ(0)
511uUur(0) from Migdal-Eliashberg theory. We find tha
a phenomenological functional form that fits the data re
tively well is Tc50.182Z(0)20.12exp@20.75/$Z(0)21%#
~the solid line in Fig. 2!.

FIG. 3. Interacting density of states for a generic weak-coup
harmonic case (V50, g50.625, andaan50.0) for six tempera-
tures running from top to bottom atv50, T50.04, 0.0625, 0.125
0.25, 0.5, 1.0, and 2.0. The real and imaginary parts of the s
energy are plotted in the insets. Notice how the slope of the real
of S has the wrong sign, and how the imaginary part has a lo
minimum at the chemical potential, signifying that this system
not a Fermi liquid.

FIG. 2. Scaling curve for the anharmonic phonon problem. T
horizontal axis is the imaginary-axis-extrapolated wave-funct
renormalization parameter, extrapolated atTc , while the vertical
axis is the CDWTc at half filling. Included in the curve are weak
coupling results for the classical phonons with~dotted! vertex cor-
rections, a conserving second-order approximation for theV5`
case ~dashed!, and the approximate form described in the te
~solid!.
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As a consequence of this scaling, if we use the quasih
monic approximation to describe an anharmonic system w
the parameters adjusted to obtain correspondence inZ(0),
then we also accurately reproduce two-particle proper
like Tc . Since this result is robust against introducing anh
monicity, we believe this is the reason why the quasih
monic approximation works so well in real materials.

We plot the interacting density of states and the se
energy in Figs. 3–5 for weak-coupling harmonic and anh
monic cases, and for a strong-coupling harmonic case.
range from a high temperature down to just aboveTc . No-
tice how the weak-coupling cases are not Fermi liquids, a
have quite different DOS and self-energies, but both m
onto the sameZ(0) andTc @our definition ofZ(0) from the
imaginary axis is not equal to the derivative of the se
energy on the real axis, which has the opposite sign fo
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rt

al

FIG. 4. Interacting density of states for a generic weak-coupl
anharmonic case (V50, g52.5, andaan54.5) for the same six
temperatures shown in Fig. 3. Notice how the density of state
now asymmetric at highT but becomes more symmetric asT de-
creases.

FIG. 5. Interacting density of states for a generic stron
coupling anharmonic case (V50, g52.5, andaan50.004) for six
temperatures running from top to bottom~at v50) T50.075,
0.125, 0.25, 0.5, 1.0, and 2.0. Notice how the density of sta
develops a pseudogap at the chemical potential, which then
comes a true gap asT is lowered.
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Fermi liquid here#. The non-Fermi-liquid behavior stem
from the scattering of the electrons off of the ‘‘impuritylike
static phonon coordinate, and is similar to disordered s
tems, with a temperature-dependent disorder distribut
Furthermore, the paramagnetic phase of this model beco
noninteracting asT→0 since S vanishes in the weak
coupling limit, which also explains why the anharmon
DOS becomes more symmetric asT→0. Scaling even holds
~in a more approximate way! when the system is a bipo
laronic insulator as shown in Fig. 5—the self-energy ha
large imaginary part near the chemical potential, wh
grows asT is lowered, and a pseudogap develops in
interacting density of states. This is then followed by a g
developing at lowerT and the imaginary part of the sel
energy vanishing within the gap region except for a narr
spike at the frequency where the real part of the self-ene
changes sign. But theZ(0) parameter can still be defined o
the imaginary axis.
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We have discovered an approximate scaling relation
the electron-phonon problem that holds over a wide rang
phonon frequencies, coupling strengths, and anharmonici
It relates the wave-function renormalization parameter,
tracted from the imaginary axis, to the transition tempe
ture. Our results show that anharmonic models that are tu
to the sameZ(0) will show similarTc’s as harmonic models
with the sameZ(0). Wefeel this underlying scaling behavio
helps explain the success of the quasiharmonic approxi
tion employed in describing nearly all real materials.
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