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Approximate scaling relation for the anharmonic electron-phonon problem
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An approximate scaling relation is found for the transition temperature to a charge-density-wave instability
in the anharmonic electron-phonon problem, which maps a wide range of interaction strengths, anharmonici-
ties, and phonon frequencies onto a common functional form. The relation employs the wave-function renor-
malization parameter and is valid even for systems that are not Fermi liquids.

The interaction of electrons with anharmonic lattice vibra- o 1
tions is a long-standing problem that is not yet fully under- H=— > t;;¢l,cj,+ 20 (g% —p)(nij+n;))+ M > p?
stood. What is surprising about this problem is that nearly all e ' '
real materials are anharmori@s can be seen by the fact that 1
they expand or contract upon heatingut qugsiharmonic + 5@ ;i2+aan2i Xﬁf 1
models(which replace the anharmonic phonons by harmonic
phonons with temperature-dependent phonon frequenciesiere,c! (c;,) creates(destroy$ an electron at sité with
work remarkably well at describing properties of most t ¢;,, is the electron number operat(pT,is the

spino, nj,=c;,
materialst Superconductivity is described most accurately,CEem.Cal' otelnt'al & (p,) is the phonon coordinateno
where the theory of electrons interacting with harmonic icalp ial, ang (p) is pnon rdin }

phonons, introduced by Migdaknd Eliashberd,can rou- mentum at sitei. The hopping of electrons is restricted to

tinely reproduce experimental tunneling conductances to be{]earesjt—nag-hbor Igtt!ce sﬂegnQJ on ad--d|menS|clnaI hy-
ter than one part in a thousand. The explanation for thi?erCUb'f latticet; IS isotropic with magnitude = 't /2\/6’.
result is actually quite simple—the thermal effects that arisV€rét” =1 to define the energy scale. The bare density of
due to a nonuniform spacing of the anharmonic energy leveltates then becomes a Gaussian exgl/\w, with e the
are unimportant when the temperature is much less than tHnd energy. The local phonon has a miand a spring
effective phonon frequendylefined by the difference in en- constantk associated with it. The anharmonic contribution
ergy between the ground and the first-excited state of th&o the phonon potential energy is chosen to be a quartic in
anharmonic phonod Furthermore, quantum Monte Carlo the phonon coordinate with a strength,. The deformation
(QMC) studies; have shown that anharmonicity does notpotential (electron-phonon interaction strengtis parame-
appear to produce any exotic behavior, such as enhanctrized by an energy per unit length (Coulomb repulsion
ments of transition temperatures, or novel superconductingffects can be included in the QMC simulatidrisut are
behavior® Instead, the results indicate that an effect of an-neglected here for simplicity.
harmonicity is to generically break particle-hole symmetry. A shift of the phonon coordinate is useful for calculations,
The discovery we present here is that the anharmonic sysnd for illustrating the particle-hole symmetry of the model.
tems can be mapped onto harmonic ones, with results fronye shift;izjxi—{—x’, with g+;x’+3a’an)(’3:07 to trans-
widely different parameter regimes collapsing onto the sameéorm the Hamiltonian into
scaling curve. We believe that this result sheds light onto the
guestion of why harmonic models work so well for describ-
ing properties of real materials. H=— > tijcl,cjp+ > (g% —pm)(ny;+n;—1)

Our strategy is to solve anharmonic models in the limit of e '
large spatial dimensidnwhere the lattice many-body prob- 1 , 1 5 .
lem can be mapped onto a self-consistently embedded impu- + ™M E pi+ §K2 Xi +Banz Xi3+ aanz_ Xi
rity problem that is solved via a QMC simulatfofor quan- ' ' ' '
tum phonons, or via an iterative transcendental equation for (2
classical phonon%?® - / -

The simplest electron-phonon model that includes anhamwith «:=x+ 12a,,X 2 Ban=4a, X', andu=u—gx'. It is
monic effects is the anharmonic Holstein mddeh which  the presence of the cubic term when,#0 that removes
the conduction electrons interact with local phonon modes:particle-hole symmetry from the problem when=0, since
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the particle-hole transformation ig— —x%; and n;,—1 025 . T T a)
—n;,. The system does continue to possess nesting at half °D>’ *0=0 exact
filling, though, which implies that it will have a nonzero = 02 | +0=05QMC J
transition temperature to a charge-density wa@®W) at 2 x0=0 QMC ; !
half filling for any nonzero interaction strength @ - — Weak
. i . . Lo &S 015 | ! .

We examine two different cases in this contribution: o — Strong / IR 3%
guantum phonons with a large enough phonon frequency that o / ,),f" \ |
vertex corrections are important)E \x/M=0.5, corre- 5 °01r // s T
sponding to approximately one eighth the effective band- \5/ ,#“‘ ‘ //
width) and classical phonons with zero-phonon frequency . 005} 1o s =
(M—o and Q=0). The former problem is solved using < /2«4, 7
QMC techniques that have been described elsewtfere. — 0 e . .
Transition temperatures are determined by calculating the 0 02 04 06 08 1
relevant susceptibilityin this case to a chessboard-phase Interaction strength |U]/(t"+|U])
CDW), and determining the temperature where it diverges
(when Trotter error is important, we extrapolalg using ™ ' ' ;Q=° g='20 (b)
A7=0.2 and 0.4, otherwise we use the larder). In the 3 015 L *n_o' _1‘5 ]
latter case, the problem is solved within the ordered phase, = ==l
employing a generalization of the Brandt-Mielsch formalism 2 ”f‘\ ,‘?"'i 400, g=1.19
to the static Holstein modé&i® and determiningl, as the Z (N ff /g‘g = 0=0, 9=0.85
highest temperature that sustains long-range order. L 01 %i s {/}o ® 0=0, g=0.725 4

We begin in Fig. 1a) by showing the transition tempera- ) E. o $  00=05,g=10
ture to the commensurate CDW at half filling for the har- 2 2 ¥a ,"f #0=0.5, g=0.775
monic case, and three different phonon frequendies,0, 2 0.05 n& § ‘,' ’# ¢’ 40=0.5, g=0.625 |
Q1 =0.5, and(Q) = which is identical to the attractive Hub- 27 * 4, 00=0.5, g=0.5
bard modeP'? The symbols are the exact, or QMC results * %E f‘f § o ©0=05, g=0.4
(the dotted lines are guides to the gywhile the other lines } L "‘6‘5

are second-order weak-coupling conserving 0 L L L L
imationt : 0 0.05 0.1 015 0.2

approximations’ (dashed and second-order strong-coupling Anh it *4 yux

calculation$ (solid). Notice how the maximal, is essen- nharmonicity o, x™/

tially independent of phonon frequency, and that the phase FIG. 1. Transition temperatures for the chessboard-phase

diagrams are not too sensitive to phonon frequency when charge-density-wave order at half fillingg) T for the harmonic

is smaller than the banawidth. However, note that the Claséase. The horizontal axis is the effective electron-electron coupling

Sic_al phonon Cas_eQZQ) and the quantum phonon Case are|y| = g2/ «. Three frequencies are included:=0, @ =0.5, andQ
quite different, sincer is always above) for the classical  _ The dashed line is a conserving second-order perturbative ap-
phonons, buff<() for the quantum phonon cases shown proximation (including vertex correctionsand the solid line is a
here. The similarity inT, is surprising, because the CDW second-order strong-coupling approximation). T, for the anhar-
vertex is strongly temperature dependent for the quanturfhonic case. The horizontal axis is a measure of the anharmonic
phonons, with its magnitude changing betweeBg?/x and  contribution to the energgas described in the textOpen symbols
— g%/« as the temperature and frequency are varied. are QMC simulations af)=0.5, while solid symbols are exact

The anharmonicity is turned on in Fig(k) for similar  solutions at)=0.
effective electron-electron coupling strengths &he 0 and
Q=0.5. The infinite-phonon frequency limit is unaffected by two-hundred data points collapse onto the same scaling
the anharmonicity, since the phonons respond instantecurve. But the scaling is only approximate, because the
neously to the electrons, and remain at the origin. We plotnfinite-phonon frequency limit lies well off the scaling
the strength of the anharmonicity &gn;w.’ wherex* is the  curve for Iow-to-moderqte phonon frequencies, so this result
equilibrium coordinate of the atomic system with one elec-Must break down a$) increasesinote, however, that the
tron per site, found from Eqd) with t;=0. In the case of Value Q/t"=0.5 is larger than the phonon frequency in
weak anharmonicity, this equilibrium coordinate lies near nearly all real materiajsThe other lines in Fig. 2 correspond
— g/« and the anharmonic energy grows linearly witp,, (O different weak-coupling approximations plotted now as a
but as the anharmonicity becomes large, thé&nlies near fungtlon 0fZ(0) rather tha_m ot). The wave-function renor-
(g/a,)Y? and the anharmonic energy decrease@;q’é3. mallzfamon parameteZ(O) is extracted from the calculanons.

o0 ans o N ) by a linear extrapolation along the Matsubara frequency axis.
This is why the curves in Fig.(b) are multivalued for some

. ; , We compute
values of the interaction strength. Notice that the results for P
different phonon frequencies are similar in qualitative behav- 3Im2(iwT) 1ImX(3iaT)
ior, but that the quantitative results can differ by large Z(0)=1-5 +5 : (3
S 2 T 2 37T

amounts as the anharmonicity increases.

We find that theT, satisfies an approximate scaling rela- and evaluate it at a temperatuiie just aboveT.. This
tion when we plot it instead as a function ofZ{0), the imaginary-axis extrapolation procedure is robust in produc-
wave-function renormalization parameter, in Fig. 2. Nearlying a scaling result even if the system is not a Fermi liquid,
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FIG. 2. Scaling curve for the anharmonic phonon problem. The
horizontal axis is the imaginary-axis-extrapolated wave-function FIG. 4. Interacting density of states for a generic weak-coupling
renormalization parameter, extrapolatedTat while the vertical ~anharmonic case({=0, g=2.5, anda,,=4.5) for the same six
axis is the CDWT,, at half filling. Included in the curve are weak- temperatures shown in Fig. 3. Notice how the density of states is
coupling results for the classical phonons witiotted vertex cor- ~ NOW asymmetric at higi” but becomes more symmetric &sde-
rections, a conserving second-order approximation forQhec creases.
case (dasheg, and the approximate form described in the text
(solid). As a consequence of this scaling, if we use the quasihar-
monic approximation to describe an anharmonic system with
the parameters adjusted to obtain correspondenc&( (),
fen we also accurately reproduce two-particle properties

fIms he chemical ol e H like T.. Since this result is robust against introducing anhar-
tre of Im2 () at the chemical potential is positive. Hence monicity, we believe this is the reason why the quasihar-

the system is never a Fermi liquid, excepfat0, where it qhic approximation works so well in real materials.
becomes noninteracting. Nevertheless, the extrapolation pro- \yo plot the interacting density of states and the self-
cedure given in Eq3) still falls on the scaling curve, and for energy in Figs. 3—5 for weak-coupling harmonic and anhar-
the weakly coupled classical-phonon case, it prodit{@)  ohic cases, and for a strong-coupling harmonic case. We
=1+4|U]|p(0)/3, rather than the expected result0)  range from a high temperature down to just abdye No-
=1+|U|p(0) from Migdal-Eliashberg theory. We find that ice how the weak-coupling cases are not Fermi liquids, and
a phenomenological functional form that fits the data relay,5,e quite different DOS and self-energies, but both map
; P — —-0.1 !

tively well is T.=0.18Z(0) exd—0.75(Z(0)~1}]  onto the samé&(0) andT, [our definition ofZ(0) from the

(the solid line in Fig. 2 imaginary axis is not equal to the derivative of the self-

where 1Z(0) would measure the quasiparticle weight. For
example, in the classical-phonon case, the lowest-order co
tribution to the self-energy i&(z) = —TUG(z). The curva-

0.6 energy on the real axis, which has the opposite sign for a
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FIG. 3. Interacting density of states for a generic weak-coupling Frequency
harmonic case{@ =0, g=0.625, anda,,=0.0) for six tempera-
tures running from top to bottom ai=0, T=0.04, 0.0625, 0.125, FIG. 5. Interacting density of states for a generic strong-

0.25, 0.5, 1.0, and 2.0. The real and imaginary parts of the selfeoupling anharmonic cas€)=0, g=2.5, anda,,=0.004) for six
energy are plotted in the insets. Notice how the slope of the real patemperatures running from top to bottofat «=0) T=0.075,

of ¥ has the wrong sign, and how the imaginary part has a loca0.125, 0.25, 0.5, 1.0, and 2.0. Notice how the density of states
minimum at the chemical potential, signifying that this system isdevelops a pseudogap at the chemical potential, which then be-
not a Fermi liquid. comes a true gap akis lowered.



RAPID COMMUNICATIONS

PRB 61 APPROXIMATE SCALING RELATION FOR THE . .. R841

Fermi liquid herg. The non-Fermi-liquid behavior stems  We have discovered an approximate scaling relation for
from the scattering of the electrons off of the “impuritylike” the electron-phonon problem that holds over a wide range of

static phonon coordinate, and is similar to disordered SySphonon frequencies, coupling strengths, and anharmonicities.

tems, with a temperature-dependent disorder distributiorl! "€lates the wave-function renormalization parameter, ex-

. . racted from the imaginary axis, to the transition tempera-
Furt'hermorfa, the paramagnehc phasg of th|§ model becom Gre. Our results show that anharmonic models that are tuned
nonln'terac'tm'g asT—>O since % yanlshes in the Weak-. to the same&(0) will show similarT;'s as harmonic models
coupling limit, which also explains why the anharmonic \yiih the samez(0). Wefeel this underlying scaling behavior
DOS becomes more symmetric &s-0. Scaling even holds helps explain the success of the quasiharmonic approxima-
(in a more approximate waywhen the system is a bipo- tion employed in describing nearly all real materials.

laronic insulator as shown in Fig. 5—the self-energy has a ) _ )
large imaginary part near the chemical potential, which We would like to acknowledge useful conversations with

grows asT is lowered, and a pseudogap develops in the]' Hirsch, G. Mahan, P. Miller, B. Sctiler, and J. Serene.
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