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A strong-coupling expansion is applied to the anharmonic Holstein model and to the Holstein-Hubbard
model through fourth order in the hopping matrix element. Mean-field theory is then employed to determine
transition temperatures of the effective~pseudospin! Hamiltonian. We find that anharmonic effects are not
easily mimicked by an on-site Coulomb repulsion and that anharmonicity strongly favors superconductivity
relative to charge-density-wave order. Surprisingly, the phase diagram is strongly modified by relatively small
values of the anharmonicity.@S0163-1829~96!00737-0#

I. INTRODUCTION

The interaction of conduction electrons in a solid with
lattice vibrations is described by the so-called electron-
phonon problem. Migdal1 and Eliashberg2 pioneered the
study of such interacting fermion-boson systems in the limit
where the phonons are all harmonic and the phonon energy
scale is much smaller than the electronic energy scale. Ver-
tex corrections can be neglected in this case1 and a self-
consistent theory can be constructed that is exact in the limit
of weak coupling; the theory is an expansion in powers of
the coupling strength multiplied by the ratio of the phonon
energy scale to the electronic energy scale.

But phonons in real materials are never purely
harmonic—higher-order~anharmonic! contributions to the
phonon potential are always present. This phonon anharmo-
nicity is responsible for many different physical effects in
solids. For example, thermal expansion arises purely from
anharmonic effects—a harmonic crystal does not change its
volume upon heating. Such anharmonic effects have been
treated in an approximate fashion: In the quasiharmonic
approximation3 only the effect of thermal expansion is taken
into account by postulating that the phonon frequencies have
a dependence upon the volume of the crystal, as described by
the Grüneisen parameter; in the self-consistent harmonic
approximation4 the harmonic force constants are self-
consistently replaced by their thermal averages over all pos-
sible motions of the other atoms—it is used to describe sys-
tems with strong anharmonicity; finally, in the
pseudoharmonic approximation5 both thermal expansion ef-
fects and phonon-phonon interactions are taken into account
by employing the quasiharmonic approximation plus a per-
turbative expansion in the phonon-phonon interaction. Su-
perconducting transition temperatures have also been stud-
ied, with the result that anharmonicity does not enhance the
transition temperature in the weak- to moderate-coupling re-
gime where Eliashberg theory applies.6 But an exact treat-
ment of lattice anharmonicity is difficult from a theoretical
point of view because an anharmonic ‘‘perturbation’’ is

never a small perturbation; the phonon wave functions are
always dominated by the anharmonic terms in the potential
as the phonon coordinate becomes large. Even the qualitative
effects of lattice anharmonicity on superconductivity are not
well understood. All that is known rigorously about the an-
harmonic electron-phonon problem is that the ground state
must contain a spin singlet7 for even numbers of electrons on
a finite lattice.

Much progress can be made, however, in the limit of
strong coupling~the electron-phonon interaction is much
larger than the hopping integral of the electrons!, where the
electrons strongly bind together into preformed pairs~called
bipolarons! and the ground state of the system is highly de-
generate. Degenerate perturbation theory~in the kinetic en-
ergy of the electrons! about this bipolaronic ground state
produces an expansion in inverse powers of the coupling
strength. This theory has been exhaustively analyzed to sec-
ond order in the hopping8 and has recently been studied to
fourth order in the hopping.9 In this contribution, the fourth-
order calculations are extended to include both anharmonic
phonons and a direct electron-electron repulsion.

The simplest electron-phonon model that includes both
anharmonic effects and direct electron-electron repulsion is
the anharmonic Holstein-Hubbard model10,11 in which the
conduction electrons interact with themselves and with local
phonon modes:
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wherecis
† (cis) creates~destroys! an electron at sitei with

spin s, nis5cis
† cis is the electron number operator, andxi

(pi) is the phonon coordinate~momentum! at site i . The
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hopping of electrons between lattice sitesi and j is governed
by the hopping matrix elementt i j (t i j is a Hermitian matrix!.

The local phonon has a massM and a frequencyV asso-
ciated with it; the combinationk:5MV2 is a spring constant
that measures the stored energy per unit length squared in the
phonon coordinate. The anharmonic contribution to the pho-
non potential energy is chosen to be a quartic in the phonon
coordinate with a strengthaanh. The electron-phonon inter-
action strength is parametrized by an energy per unit length
and is denotedg. A useful combination of fundamental pa-
rameters is the bipolaron binding energy~in the harmonic
limit with UC50)

U:52
g2

MV2 52
g2

k
, ~2!

which determines the energy scale for the effective electron-
electron interaction mediated by the phonons. This attraction
competes with the direct Coulomb repulsion denoted by
UC . The chemical potential ism.

The hopping matrix elementst i j are used to define the
energy scale. The choicet1NN5:t* /2Ad for the nearest-
neighbor hopping matrix element, witht*51 andd the di-
mensionality of the lattice, is made so as to have a well-
defined limit whend→`. The mass is then set equal to 1
(M51), leavingU, UC , aanh, andV as free parameters.
The strong coupling expansion is a perturbative expansion in
the hopping terms of Eq.~1! and is valid when the bipolaron
binding energy is much larger than the electronic hopping
integral. Another important parameter in the strong coupling
limit is the polaron band-narrowing parameter denoted by
S:5uUu/V.

The original Holstein Hamiltonian corresponds to the case
aanh5UC50. Both the harmonic Holstein model and the
harmonic Holstein-Hubbard model have been solved exactly
in the limit of infinite dimensions via quantum Monte Carlo
simulation.12,13 These models display charge-density-wave
~CDW! order near half-filling and superconductivity~SC!
away from half-filling. As the phonon frequency is in-
creased, the SC is favored relative to the CDW order. How-
ever, in the strong coupling limit, CDW order is favored over
SC because of the band-narrowing effect of the bipolaron.
The quantum Monte Carlo simulations also found that the
effective phonon potential~determined after integrating out
the effects of the electrons! generically acquires a double-
well structure, signifying the formation of a bipolaron and
indicating that a strong coupling expansion should be accu-
rate even down to moderate values of the coupling strength.
This has proved to be true for the harmonic case9 and is
likely to also hold over a more restricted region for the an-
harmonic case.

An initial analysis of the anharmonic model in the strong-
coupling limit (t i j50) can be made by using the Born-
Oppenheimer approximation:14 The phonon frequency is as-
sumed to be smaller than any of the other energy scales, and
so the phonons can be approximated by static lattice distor-
tions corresponding to the minimum of the phonon potential
energy. Since the phonons couple linearly to the electronic
charge, the equilibrium phonon coordinate varies when there
are zero, one, or two electrons on a site. The originx050 is
chosen to correspond to the case with no electrons on a site.

Thenx1 andx2 denote the equilibrium coordinates with one
or two electrons on a lattice site. In the harmonic case the
relative distancesx12x0 andx22x1 are identical, which is a
requirement for particle-hole symmetry. When a lattice an-
harmonicity is turned on, the equilibrium phonon coordinates
with one and two electrons on a lattice site all move toward
the origin, but the relative distances are no longer symmetric;
rather, the distancex22x1 becomes significantly smaller
than x12x0, as can be seen by calculating the perturbative
shift in the equilibrium coordinates14 as a function of the
anharmonicityaanh:
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This asymmetric shift of the equilibrium phonon coordi-
nate as a function of lattice anharmonicity causes two main
effects: ~1! The model loses particle-hole symmetry which
allows a new type of superconductivity to emerge14 and ~2!
the effective electron-electron attraction is sharply reduced
as can be seen by a plot of the bipolaron binding energy in
Fig. 2~b!. Thus the lattice anharmonicity generates an effec-
tive retardedrepulsive interaction between the electrons and
breaks particle-hole symmetry, removing the nesting insta-
bility of the CDW at half filling and weak coupling. One
expects that the lattice anharmonicity thereby to favor SC
relative to CDW order, although it is also likely that anhar-
monic effects will reduce the transition temperatures~except
close to the filled band, where the new hole-
superconductivity mechanism can take over!. What is sur-
prising is that a rather small lattice anharmonicity can have a
large effect on the electron-phonon problem.

Since the main effects of lattice anharmonicities are
driven by the asymmetric distribution of the equilibrium
phonon coordinate when there is zero, one, or two electrons
on a lattice site, one expects that anharmonic effects will be
strongest in the small-phonon-frequency limit. This is be-
cause the phonon coordinates all approach zero in the high-
frequency limit ~because the phonon reacts instantaneously
to the change in the electrons! and these asymmetric effects
disappear. Since phonon frequencies tend to be small in real
materials, anharmonic effects can be important even if the
phonon potential energy appears to be well approximated by
a harmonic potential, i.e., ifaanh is small.

Hirsch’s new mechanism for superconductivity arises
from an examination of the anharmonic electron-phonon
model in the static limit.14 The tunneling matrix element for
a polaron from one lattice site to its nearest neighbor de-
pends exponentially on the differencex12x0 if there is no
electron on the neighboring site and exponentially on
x22x1 if there is an electron occupying the neighboring site.
The exponential dependence arises from the Franck-Condon
overlap factors. Since these two values can be significantly
different in an anharmonic model, one finds that the elec-
tronic motion will be dominated by a kinetic energy that
depends on the density of the electrons at a given site. This is
precisely the physical situation needed to generate supercon-
ductivity from kinetic energy effects—paired electrons have
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a lower effective mass than a single electron, which induces
the superconductivity transition at a low enough temperature.
This novel mechanism for generating superconductivity has
been analyzed via weak-coupling mean-field theory
analyses15 but has not yet been shown to exist in the exact
solution of any model system. This mechanism for supercon-
ductivity disappears, however, in the strong-coupling limit
where restriction is made to consider only empty sites and
bipolarons. The single-electron~polaronic! states are inte-
grated out because the bipolaron binding energy is much
larger than the electronic hopping integral. Electron-hole
symmetry is restored since these polaronic states only appear
in virtual processes.

The anharmonicity has a much different effect than a di-
rect electron-electron repulsion. The electron-electron repul-
sion uniformly reduces the bipolaron binding energy without
changing the equilibrium phonon coordinates when there are
zero, one, or two electrons at a lattice site. Thus,~1! the
bipolaron binding energy can become negative~signifying
that there is no electron-electron pairing! and~2! the system
explicitly retains its electron-hole symmetry. Furthermore,
since the repulsion is instantaneous, the retardation effects
are unchanged from the case without Coulomb repulsion;
i.e., the Franck-Condon overlaps remain the same. Thus we
expect CDW ordering to always survive at half filling~if
there is a net electron-electron attraction! and that both SC
and CDW order will disappear as the Coulomb repulsion
becomes too large, but it is not clear whether or not they
disappear together or at different values of the electron-
phonon coupling.

This contribution is a continuation of the work of one of
the authors9 on the strong-coupling expansion for the har-
monic Holstein model to include both anharmonic and Cou-
lomb repulsion effects. In Sec. II, the formalism for the per-
turbation theory and the generation of the effective
pseudospin Hamiltonian will be described. In Sec. III, a
mean-field-theory analysis of the pseudospin Hamiltonian
will be given, and appropriate phase diagrams calculated for
both the anharmonic case and the Coulomb repulsion case.
Conclusions and a discussion will follow in Sec. IV.

II. FORMALISM FOR THE PERTURBATIVE ANALYSIS

The strong-coupling expansions are carried out with a
method based on perturbation theory. The ground state is a
bipolaronic state consisting of either paired electrons or
empty sites. The distribution of these bipolarons is not deter-
mined to zeroth order in the electronic kinetic energy, and so
the ground state is highly degenerate. The effective Hamil-
tonian ~within this degenerate subspace! can be determined
by using operator methods. In the late 1950s, Anderson16

used such methods to show that the strong-interaction-
strength limit of the Hubbard model is described by a
Heisenberg antiferromagnet with an exchange integral
j54ut i j u2/uUu that vanishes as the interaction strength in-
creases. Kato17 described how to determine the effective
Hamiltonian for an arbitrary degenerate subspace using per-
turbation theory and operator methods. His analysis was ap-
plied to the Hubbard model in one dimension by Klein and
Seitz18 and in arbitrary dimensions by Takahashi19 ~see also
the recent work by van Dongen20!. Beni, Pincus, and

Kanamori21 and Hirsch and Fradkin22 applied the same
methods to the harmonic Holstein model determining the
effective Hamiltonian to second order in the hopping. This
analysis was extended to fourth order by Freericks.9

Kato’s method17 begins with a HamiltonianH5H01T,
with H0 the unperturbed Hamiltonian andT the perturbation.
In our case,H0 corresponds to the Hamiltonian in Eq.~1!
with t i j50, and the perturbationT is the electronic kinetic
energy. The ground-state energy isE0, Q0 denotes the sub-
space that contains all of the degenerate ground states, and
the projection operator ontoQ0 is P0:

H0P05P0H05E0P0 , P0
25P0 . ~4!

As the perturbation is turned on, the eigenstates will evolve
into a new subspaceQ with corresponding projection opera-
tor P. If it is assumed that the subspaceQ has a nonzero
overlap with the unperturbed subspaceQ0, then the standard
eigenvalue equation (H2E)uE&50 can be projected onto
the unperturbed subspaceQ0, P0(H2E)PP0uE&50, to
yield an effective equation for the perturbed eigenvalueE.
The HamiltonianP0HPP0 acts purely within the unper-
turbed subspaceQ0 and has an overlap operatorP0PP0 that
is not equal to the identity. Taking into account this non-
trivial overlap results in an effective Hamiltonian of the
form23,9 Heff5H01H21H41•••, since only even powers
of the perturbation enter for the generalized Holstein model.
The first two nontrivial terms of the effective Hamiltonian
satisfy

H2 :5P0T
12P0

E02H0
TP0 ~5!

and
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12P0

E02H0
T
12P0
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2TP0T

12P0

E02H0
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1P0T
12P0

E02H0
T

12P0

~E02H0!
2TP0G . ~6!

The expansion for the effective Hamiltonian can be ex-
pressed graphically by a set of diagrams. A solid line denotes
virtual processes where an electron hops from sitei to site
j with strengtht i j . All diagrams must be closed, since the
effective Hamiltonian acts solely within the degenerate sub-
spaceQ0, implying that each virtually broken electron pair
must be restored. There is only one possibility for the
second-order term, which corresponds to either hopping
from site i to site j and hopping back to sitei or which
corresponds to subsequent hops from sitei to site j . The
diagram that illustrates both of these processes is depicted in
Fig. 1~a!. There are four possible diagrams that contribute to
fourth order which are also depicted in Fig. 1. The first three
diagrams are linked diagrams which form nonvanishing con-
tributions to the effective Hamiltonian. The last diagram 1~e!
is an unlinked diagram which does not contribute to the ef-
fective Hamiltonian because the contributions from the posi-
tive and negative terms in Eq.~6! cancel. The unlinked dia-
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grams must cancel in order to have an energy per lattice site
that is finite in the thermodynamic limit. The nonvanishing
fourth-order terms fall into three categories: those that link
two distinct sites@Fig. 1~b!#, three distinct sites@Fig. 1~c!#, or
four distinct sites@Fig. 1~d!#.

The matrix elements for the effective Hamiltonian are de-
termined by introducing appropriate complete sets of states
between each of the operator factors in Eqs.~5! and ~6! for
each of the possible intermediate virtual states summarized
by the diagrams in Fig. 1. In the following section, thermo-
dynamic phase transitions are determined from the effective
Hamiltonian via a mean-field-theory analysis. An approxi-
mation is made here, that the transition temperatureTc is
much smaller than the excitation energy of the lowest state
above the ground state for the local anharmonic phonon with
zero or two electrons on that site. In the harmonic case
(aanh50), this excitation energy isV, and even in the an-
harmonic case, this excitation energy remains of the order of
magnitude ofV. If the transition temperature is much
smaller than the excitation energy, then restriction can be
made to the degenerate subspaceQ0 corresponding to the
ground state of the phonons and one need not consider the
effective Hamiltonian in the subspaces corresponding to ex-
cited phonon states. This is not a restrictive approximation,
because the small-frequency limit is already known to be
singular, since the degenerate subspaceQ0 becomes much
larger whenV50 than whenVÞ0. V/t* will be set equal
to 0.5 for the numerical work in Sec. III.

Determination of the effective Hamiltonian proceeds in a
similar fashion to the harmonic case.21,22,9The minimum of
the anharmonic potential lies atx0, x1, andx2 when there are
zero, one, or two electrons, respectively, at a given lattice
site ~in the harmonic case we havexn52ng/MV2). Let
u1m&, um&, andu2m& denote themth anharmonic oscillator
state centered about the origin with zero, one, and two elec-
trons, respectively, andEm

1 Em , andEm
2 denote the corre-

sponding eigenvalues under the unperturbed Hamiltonian
H0. The overlapŝ6mun& will need to be calculated numeri-
cally in the general case. For the harmonic oscillator, a
simple form is found:

^6mun&5
1

Am!n!
e2S/4^0u@a6AS/2#m@a†7AS/2#nu0&.

~7!

Herea† (a) is the harmonic-oscillator creation~annihilation!
operator. In the harmonic case, one can use Eq.~7! to deter-
mine the parameters of the effective Hamiltonian analyti-
cally.

We will concentrate, however, on the anharmonic case,
where the local phonon problem must be solved numerically.
The unperturbed HamiltonianH0 consists of a collection of
local phonon Hamiltonians, one for each lattice site, with a
fixed number of electronsn50,1,2 at each lattice sitei . The
local Hamiltonian is

H loc5
1

2M
p21

1

2
MV2x21aanhx

41gnx, ~8!

where we ignore terms that do not depend on the phonon
coordinate or momentum. For harmonic phonons, the unit of
length is ~Planck’s constant is set equal to 1!
x* :51/AMV. Reexpressing the Hamiltonian in terms of a
dimensionless distancey:5x/x* yields

H loc5
V

2
H̄~n,y!, H̄~n,y!:52

d2

dy2
1V̄~n,y!,

V̄~n,y!:5y21vy41wny, ~9!

with v:52aanh/M
2V2 and w:52g/AmV3. The Schro¨-

dinger equationH̄fm5e(m)fm is then solved numerically
with the Numerov algorithm.24 Schrödinger’s equation is
cast into a three term recursion relation which is iterated
from the far left and from the far right, and matched at the
middle. To start the iteration requires a good initial guess for
the eigenvalue. This is provided by the WKBJ guess
eWKBJ(m) found from

2m115
2

pE dyAeWKBJ~m!2V̄~y!. ~10!

We generally solve for the 30 lowest eigenvalues and eigen-
vectors in the sectors with zero, one, or two electrons.

The effective Hamiltonian is determined by evaluating all
possible contributions from each of the nonvanishing dia-
grams in Fig. 1. Consider first the second-order term in Fig.
1~a!. If both sitei and sitej are occupied by bipolarons, then
the hopping matrix cannot connect the two sites by the Pauli
principle. Similarly, if both sites are empty, there is no con-
nection by the hopping term. It is only if one site is occupied
by a bipolaron and the other site empty that the hopping
matrix can connect through a virtual state back to the degen-
erate subspace. Consider the case with a bipolaron↑↓ at site
i and an empty site 0 at sitej . The hopping perturbation
breaks the electron pair, with one electron hopping to sitej
and either hopping back to sitei or the other electron also
hops from sitei to site j . Both processes are illustrated sche-
matically below~with ↑ or ↓ corresponding to a single elec-
tron at a lattice site!:

↑↓0⇒↑↓⇒↑↓0, ~11!

↑↓0⇒↑↓⇒0↑↓, ~12!

where only one of the two possible intermediate states is
shown.

FIG. 1. Schematic diagrams used in the determination of the
effective Hamiltonian. The second-order diagram is plotted in~a!,
while the fourth-order diagrams appear in~b!–~e!. The fourth-order
diagrams link two~b!, three~c!, or four ~d! distinct lattice sites. The
contributions from the unlinked diagram~e! vanish.
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It is convenient to express the effective Hamiltonian in
terms of pseudospin operators.25 If the lattice is bipartite, so
that it can be separated intoA andB sublattices with nonzero
hopping matrix elements only between sublatticesA andB,
then one can define pseudospin operators via

Jj
1 :5~21! j cj↑

† cj↓
† , Jj

2 :5~Jj
1!†,

Jj
z :5 1

2 @nj↑1nj↓21#, ~13!

and the factor (21) j is 1 for theA sublattice and (21) for
theB sublattice. The pseudospin operators satisfy an SU~2!
algebra and form a spin-12 representation in the strong-
coupling limit. A doubly occupied site corresponds to an up
spin and an empty site corresponds to a down spin. The
matrix elements of the effective Hamiltonian~that connects
site i to site j ) satisfy

H2~ i , j !u↑↑&50,

H2~ i , j !u↑↓&52 1
2 j i

~2!~ i , j !u↑↓&1 1
2 j'

~2!~ i , j !u↓↑&,

H2~ i , j !u↓↑&52 1
2 j i

~2!~ i , j !u↓↑&1 1
2 j'

~2!~ i , j !u↑↓&,

H2~ i , j !u↓↓&50, ~14!

which is anXXZ Heisenberg antiferromagnet,

H25
1

2(i , j H j'~2!~ i , j !
1

2(a Ji
aJj

2a1 j i
~2!~ i , j !FJizJjz2 1

4G J ,
~15!

where the indexa runs over1 and2. Note that the sum-
mation is not restricted toi, j ~the overall factor of12 is
introduced to compensate for double counting!. Be careful
not to confuse the pseudospin Hamiltonian from the original
Hamiltonian that consists of bipolarons and empty sites.

The two parametersj i
(2) and j'

(2) are determined by intro-
ducing complete sets of states into Eq.~5! for each of the
virtual processes in Eqs.~11! and ~12! and employing the
definitions given in Eq.~14!. The results are

j i
~2!5 (
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`

4t i j
2 ^20um&^mu20&^10un&^nu10&
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11E0

22Em2En
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E0
11E0

22Em2En
. ~17!

The fourth-order terms are all evaluated in a similar fash-
ion. They can be separated into three different forms
H45H4(b)1H4(c)1H4(d) corresponding to the three dif-
ferent linked diagrams in Fig. 1. The effective Hamiltonian
for each of these three cases takes the form
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2 ( 8
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where the lattice-site-index dependence of the parameters
has been suppressed, and the prime on the summations
means that the sitesi , j ,k and i , j ,k,l are all distinct~the
overall factors of12 and

1
8 are introduced to compensate for

double counting!. Explicit expressions for each of the param-
eters in Eqs.~18!, ~19!, and~20! are given in the Appendix.

The effective pseudospin Hamiltonian is an anisotropic

frustrated antiferromagnetic Heisenberg model with addi-
tional quartic spin-spin interactions.

The effect of the Coulomb repulsion is almost trivial. The
Coulomb repulsion does not change any of the matrix ele-
ments; all it does is shift the energy of the bipolaron upward
by UC , Em

2→Em
21UC , and so the effect of Coulomb repul-

sion can be included without much extra effort. One might

9376 54J. K. FREERICKS AND G. D. MAHAN



try to approximate the effect of the anharmonicity by an
instantaneous Coulomb repulsion, chosen to match the re-
duction of the bipolaron binding energy when the anharmo-
nicity is included, i.e., define

UC~aanh!:5E0
2~aanh!1E0

1~aanh!22E0~aanh!1uUu,
~21!

as the difference in the binding energy of the anharmonic
bipolaron from the harmonic bipolaron. This reduction in
bipolaron binding energy is plotted in Figs. 2~a! and 2~b! as
a function of the harmonic bipolaron binding energy~for
fixed values ofaanh) and as a function ofaanh ~for fixed
values ofU), respectively. Notice how even a small value of
the anharmonicity produces a large reduction of the bipo-
laron binding energy and that the reduction increases as the
electron-phonon interaction strength increases~the phonon
frequency is fixed atV/t*50.5).

III. MEAN-FIELD-THEORY ANALYSIS

We consider the case of hopping between nearest neigh-
bors on a hypercubic lattice ind dimensions. The only non-
zero matrix elements are thent i j5t* /2Ad when i and j are
nearest neighbors. As described above,t* is chosen to be the
energy unit. This choice of scaling the hopping matrix ele-
ments inversely as the square root of the dimensionality is
made so that the theory has a nontrivial limit26 asd→`.

We employ a mean-field-theory analysis to the pseu-
dospin form of the effective Hamiltonian. Two types of
phase transitions occur:~1! staggered order along thez axis
@corresponding to CDW order at the ‘‘antiferromagnetic’’
(p,p, . . . ) point# and ~2! staggered order along thex axis
~corresponding to SC order with a zero-momentum pair-field
state!. The mean-field theory becomes exact in high dimen-
sions, and should provide an upper bound to the transition
temperatures in finite dimensions~because nonlocal quantum
fluctuations should reduce the transition temperature further!.

The mean-field theory is constructed by determining the
molecular field at each lattice site and equating the expecta-
tion value of the magnetization with that of a free spin in an
external magnetic field equal to the molecular field,hmol ,
yielding

^J&5
hmol

uhmolu
1

2
tanh

1

2
buhmolu, ~22!

as first described by Gorter.27 The difficult part of the calcu-
lation involves a correct determination of the molecular field.
One must be certain to properly count the contributions from
each of the diagrams in Fig. 1. Note that the total number of
distinct nearest-neighbor pairs corresponding to Figs. 1~a!
and 1~b! is Nd, with N the number of lattice sites, and each
pair appears twice in the unrestricted summations. There are
two classes of second-neighbor diagrams corresponding to
Fig. 1~c!: those wherej and k are not parallel@of the
(1,1,0,. . . ) form# and those wherej andk are parallel@of
the (2,0,0,. . . ) form#. In the first case, there are
Nd(d21) pairs, with each pair appearing 4 times in the
unrestricted summation. In the second case, there areNd
pairs, with each pair appearing twice in the unrestricted sum-
mation. Finally there are12Nd(d21) distinct squares corre-
sponding to Fig. 1~d! with each square appearing 8 times in
the unrestricted summation. Using these results, it is a
straightforward exercise to rewrite the Hamiltonian as a sum-
mation over distinct pairs~and squares! and then extract the
molecular fields for the corresponding ordered phases.

A hypercubic lattice is bipartite and so it divides into two
sublatticesA andB, where the nearest-neighbor hopping oc-
curs only from sublatticeA to sublatticeB or vice versa. The
paramagnetic high-temperature phase corresponds to a uni-
form magnetization of the pseudospins on each sublattice:

^JA&5^JB&5: 12mez5
1
2 ~re21!ez , ~23!

whereez is the unit vector along thez axis andre is the
electron concentration. The self-consistent equation for the
pseudospin magnetization becomes

m5tanh12bH 2~m2U !1mdF2 j i
~2!2 j i

~4!1~2d21!~ j i82 j i9!

1~d21!S d1
1

2
n D G1m3d~d21!@2a2d2 1

2n#J . ~24!

FIG. 2. Reduction of the bipolaron binding energy@which is the
definition ofUC(aanh)# plotted as functions of the electron-phonon
coupling~a! and the anharmonicity~b!. In ~a!, three different values
of the anharmonicity parameter are chosen:aanh50.001~solid line!,
0.01 ~dotted line!, and 0.1~dashed line!. Note how the reduction of
the bipolaron binding energy increases with bothaanhandU. In ~b!,
the reduction in bipolaron binding energy is plotted as a function of
aanh for three values ofuUu: uUu51 ~solid line!, uUu54 ~dotted
line!, and uUu516 ~dashed line!. Note that even relatively small
values ofaanh produce a sharp reduction in the bipolaron binding
energy.

54 9377STRONG-COUPLING EXPANSIONS FOR THE . . .



The dependence of the chemical potentialm upon the elec-
tron concentrationre can easily be determined by inverting
Eq. ~24!.

The transition temperature to the commensurate charge-
density-wave phase occurs at a temperature where the pseu-
dospin magnetization satisfies

^JA&5 1
2 ~m1m8!ez , ^JB&5 1

2 ~m2m8!ez , ~25!

in the limit m8→0. We only consider the transition to a
commensurate CDW, because transitions to incommensurate
phases can only occur if the frustration induced by the
fourth-order terms in the effective Hamiltonian becomes
large enough. Since the validity of the truncated strong-
coupling expansion fails when the fourth-order terms are
comparable in size to the second-order terms, we ignore the
complication of incommensurate order here.

The transition temperature is then easily found to be

Tc5
1
2re~22re!$d j i

~2!2d2@6 j i812 j i92d1 3
2n

1~2a2d2 1
2n!~12re!

2#1d@ j i
~4!13 j i81 j i92d1 3

2n

1~2a2d2 1
2n!~12re!

2#%. ~26!

Note that this expression differs slightly~in the coefficient of
thed term! from that given previously,9 and corrects a typo-
graphical error in that work. Explicit formulas for the param-
eters appearing in Eq.~26! appear in the Appendix.

Likewise, the superconducting transition temperature is
determined by finding the temperature where the pseudospin
magnetization satisfies

^JA
z &5^JB

z &5 1
2m, ^JA

x &52^JB
x &5 1

2m8, ~27!

in the limit m8→0. The transition temperature is

Tc5
re21

ln@re /~22re!#
$d j'

~2!1d2@4 j'8 22 j'9 12b2g12e2m

1~2b2g22e1m!~12re!
2#1d@ j'

~4!22 j'8 1 j'9 22b

1g22e1m1~22b1g12e2m!~12re!
2#%. ~28!

Explicit formulas for the parameters appearing in Eq.~28!
appear in the Appendix.

The above expressions for the transition temperatures to
CDW or SC order are evaluated below in the infinite dimen-
sional limit. In this case, there is no contribution from the
fourth-order terms that are multiplied by a linear power in
d, because they scale liket* 4/d→0 in the large-dimensional
limit.

At half-filling ( re51), the CDW phase is expected to be
the ground state if either the anharmonicity or the Coulomb
repulsion is not too large. Figure 3 plots the CDW transition
temperature at half filling for different values of the anhar-
monicity @Fig. 3~a!# and the Coulomb repulsion@Fig. 3~b!#.
Both the second-order approximations~which monotonically
diverge as the interaction strength approaches zero! and the

fourth-order approximations~which properly show a peak in
Tc as a function of the coupling! are plotted. In Fig. 3~a!,
four different values of the anharmonicity are shown:
aanh50.0 ~the harmonic case! ~solid line!, aanh50.001~dot-
ted line!, aanh50.005~dashed line!, andaanh50.015~dash-
dotted line!. It is apparent that even though the second-order
approximation shows large enhancements to the transition
temperature as the anharmonicity is increased, the fourth-
order approximation indicates that the maximal CDW tran-
sition temperature actually decreases as the anharmonicity
increases. Furthermore, the value of coupling strength where
the maximum occurs increases as a function of anharmonic-
ity. This is to be expected since the anharmonicity acts in
some respects like a retarded Coulomb repulsion. What is
surprising is that relatively small values of anharmonicity
have such large effects on the transition temperature.

In Fig. 3~b!, the CDW transition temperature at half filling
is plotted for four different values ofUC(aanh). The same
values ofaanh are used as in Fig. 3~a!. Note that once again
the maximalTc decreases asaanh increases~implying that
UC increases!. Furthermore, the peak does not move as rap-
idly to larger values of the coupling strength, indicating that
the retardation effects are rather strong even at the relatively
large phonon frequency ofV/t*50.5.

Note that these strong coupling phase diagrams may be
more accurate than those of the harmonic model, because it

FIG. 3. Charge-density-wave transition temperature at half fill-
ing for the anharmonic Holstein model~a! or the Holstein-Hubbard
model ~b!. Both second-order and fourth-order approximations are
plotted ~the fourth-order approximations have a peak inTc). Note
that the maximalTc for the fourth-order calculation decreases as
either the anharmonicity or Coulomb repulsion is turned on. In~a!,
the anharmonicity varies fromaanh50.0 ~solid line!, aanh50.001
~dotted line!, aanh50.005 ~dashed line!, and aanh50.015 ~dash-
dotted line!. In ~b!, the Coulomb repulsion is chosen to match the
reduction in the bipolaron binding energy for each value of the
anharmonicity plotted in~a!, i.e., UC5UC(aanh) with aanh5 0.0,
0.001, 0.005, and 0.015. Note that the effect of anharmonicity is not
easily mimicked by Coulomb repulsion except for the smallest val-
ues ofaanh.
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is known that in the case of either an anharmonic interaction
or a Coulomb repulsion that the CDW instability only occurs
when the coupling strengthU is large enough in magnitude.
Hence the trueTc does vanish at a finite value ofU, as it
does in the fourth-order approximation.

Our analysis at half filling has ignored the possibility of
SC order. In fact, the system will go superconducting at half
filling in the regime where the CDW transition temperature
has been suppressed to zero, but since this regime corre-
sponds to a region where the fourth-order approximations are
breaking down, we have not complicated Fig. 3 by including
the superconducting solutions at smalluUu. Rather, we ex-
amine what happens as the system is doped away from half-
filling. In Fig. 4, the phase diagram is plotted for the cou-
pling strengthU521.5625t* which lies at the peak of the
CDW transition temperature curve whenaanh50. This case
represents a lower limit of applicability of the strong-
coupling expansion. In Fig. 4~a!, the anharmonicity varies
from aanh50, 0.003, 0.005, and 0.01. The solid lines denote
CDW solutions, and the dotted lines are SC. Note that the
CDW-SC phase boundary lies at exponentially small densi-

ties in the harmonic case. As the anharmonicity is turned on,
the CDW transition temperature is suppressed, and the SC
transition temperature is enhanced; so the CDW-SC phase
boundary moves in towards half filling. Whenaanh50.005,
the CDW phase has disappeared. The enhancement of the SC
transition temperature continues asaanh increases, until it is
significantly larger than the maximal CDW transition tem-
perature of the harmonic Holstein model. Hence, the strong
coupling approximation, through fourth order, predicts a
large enhancement in the SC transition temperature relative
to the harmonic case. It is not clear whether this result is an
artifact of the approximation or is a real effect. Note further
that the electron density where the maximal superconducting
Tc occurs is near the band edges. This is similar in spirit to
Hirsch’s mechanism, but, as far as we can tell, is unrelated,
because in the strong coupling limit the effect occurs both at
the top and the bottom of the band, since the approximation
explicitly retains electron-hole symmetry.

In Fig. 4~b!, the same phase diagrams are plotted, this
time usingUC(aanh) with the same values ofaanh as in Fig.
4~a!. Clearly one can see that the effect of the Coulomb
repulsion is quite different from the anharmonicity. The
phase diagram does not change much, and the large enhance-
ment ofTc in the SC channel does not occur.

In order to check to see whether these results are generic
or occur simply because one is close to the limiting region
where the approximations are expected to hold, we have also
calculated the phase diagrams for a stronger value of the
interaction strengthU524.0t* . In Fig. 5~a!, four different
values ofaanh ~0.0, 0.01, 0.03, and 0.05! are plotted. Here
the results are similar to those found in Fig. 4, except the
anharmonicity initially causes the CDWTc to rise, because
of the reduction in the bipolaron binding energy. The SC
transition temperature still has a large maximum at low den-
sities and is significantly enhanced relative to the harmonic
case. Furthermore, the CDW-SC phase boundary continues
to move toward half-filling until it disappears at
aanh'0.03. In Fig. 5~b!, we plot the same phase diagrams,
this time usingUC(aanh). Once again, the phase diagram
displays very different behavior, with the CDW-SC phase
transition remaining at exponentially small densities.

Finally, we study how the critical electron density, where
the CDW-SC phase boundary lies, evolves as functions of
U andaanh. In the anharmonic Holstein model, we see in
Fig. 6~a! that the phase boundary moves very rapidly as the
anharmonicity is turned on. This indicates how the anharmo-
nicity strongly favors SC solutions relative to CDW order. In
Fig. 6~b!, we show the analogous plots of the critical electron
density for the harmonic Holstein-Hubbard model, withUC
chosen from Eq.~21!, and the same values ofaanh. Clearly
the anharmonic behavior is not easily mimicked by an in-
stantaneous Coulomb repulsion, and the retardation effects
cannot be neglected.

IV. CONCLUSIONS

The strong-coupling expansion for the anharmonic
Holstein-Hubbard model has been presented through fourth
order in the hopping. This result extends the analysis of the
harmonic case.9 We find some interesting results from this
analysis. First, the anharmonicity reduces the bipolaron bind-

FIG. 4. Phase diagram of the anharmonic Holstein model~a!
and the Holstein-Hubbard model~b! for uUu51.5625 corresponding
to the peak in the charge-density-wave transition temperature at half
filling for the harmonic Holstein model. The solid lines denote
charge-density-wave transition temperatures and the dotted lines
denote superconducting transition temperatures. In~a!, the anhar-
monicity strength assumes four valuesaanh50.0, 0.003, 0.005, and
0.01. Note that the anharmonicity strongly enhances superconduct-
ing solutions relative to charge-density-wave solutions, and ifaanh

is large enough, there is no CDW order. Note furthermore, that the
maximal superconductingTc is larger than the maximal CDWTc in
the harmonic case and occurs at a rather low value of the electron
filling. In ~b!, the Coulomb repulsion is fixed to beUC(aanh) with
aanh the same as in~a!. Note that the effect of the Coulomb repul-
sion on the transition temperatures is relatively minor, and the
strong enhancement of the superconductingTc does not occur.
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ing energy and, second, it reduces the equilibrium phonon-
coordinate spacing between one electron at a site and either
zero or two electrons at a site. The first effect is expected to
cause an enhancement to transition temperatures in the
strong-coupling regime, and the second should enhance the
Franck-Condon overlap factors for superconducting order,
favoring the SC phase relative to the CDW. Similarly, a
Coulomb repulsion will reduce the bipolaron binding energy,
but does not alter the Franck-Condon overlaps. We find that
in the CDW phase, the maximal transition temperature actu-
ally decreases when either anharmonicity or Coulomb repul-
sion is turned on. For the superconducting phase, the en-
hancement of the Franck-Condon overlap factors~equivalent
to a widening of the polaron band! causes a large enhance-
ment of the SC transition temperature at low electron den-
sity, even for moderate values of the anharmonicity. In no
case do we find that the effect of the anharmonicity is easily
mimicked by an effective Coulomb repulsion.

Since the strong-coupling expansion is expected to fail in
both the low-electron-concentration regime and when the ef-
fective bipolaron binding energy is no longer much larger
than the hopping integral, it is possible that this large en-
hancement of the superconducting transition temperature is
just an artifact of the current approximation. It is important
to compare these approximations to exact quantum Monte
Carlo simulations of the transition temperatures of the anhar-

monic Holstein model. Work in this direction is currently in
progress.
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APPENDIX: PARAMETERS OF THE FOURTH-ORDER
EFFECTIVE PSEUDOSPIN HAMILTONIAN

In this appendix explicit expressions are given for the
parameters that appear in the fourth-order effective pseu-
dospin Hamiltonian, summarized in Eqs.~18!, ~19!, and~20!.
The notation used is that given in the text.

First the parameters in Eq.~18! ~an overall factor oft i j
4 is

suppressed!:

FIG. 5. Phase diagram of the anharmonic Holstein model~a!
and the Holstein-Hubbard model~b! for uUu54.0. The solid lines
denote charge-density-wave transition temperatures and the dotted
lines denote superconducting transition temperatures. In~a!, the an-
harmonicity strength assumes four valuesaanh50.0, 0.01, 0.03, and
0.05. Note that the large enhancement in the superconductingTc is
seen here too~although it occurs at a larger value of the anharmo-
nicity!. In ~b!, the Coulomb repulsion is fixed to beUC(aanh) with
aanh the same as in~a!. Once again, the effect of Coulomb repulsion
is drastically different from that of the anharmonicity.

FIG. 6. Plot of the charge-density-wave–superconductor phase
boundary as functions of electron concentration andU. In ~a!, the
phase diagram is plotted for the anharmonic Holstein model with
aanh50.0 ~solid line!, 0.001~dotted line!, 0.005~dashed line!, and
0.015~dash-dotted line!. In Fig. 6~b!, the phase diagram is plotted
for the Holstein-Hubbard model withUC5UC(aanh) andaanh cho-
sen to have the same values as in~a!. These figures show that the
anharmonicity strongly favors superconductivity relative to CDW
order, much more so than turning on a Coulomb repulsion.
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Finally the parameters in Eq.~20! ~an overall factor oft i j t jktkltki is suppressed!:

a54 (
l ,l 8,n,n850

`
^10un&^nu10&^20un8&^n8u20&^10u l &^ l u10&^10u l 8&^ l 8u10&

@E0
11E0

22En2En8#@E0
11E0

22El2En8#@E0
11E0

22El 82En8#
, ~A7!

b522 (
l ,l 8,n,n850

` H ^10un&^nu20&^20un8&^n8u10&^10u l &^ l u10&^10u l 8&^ l 8u10&

@E0
11E0

22En2En8#@E0
11E0

22El2En#@E0
11E0

22El 82En#

1
^10un&^nu10&^20un8&^n8u10&^10u l &^ l u10&^10u l 8&^ l 8u20&

E0
11E0

22En2En8
F 1

@E0
11E0

22El 82En#@E0
11E0

22El2El 8#

1
1

@E0
11E0

22El2En8#@E0
11E0

22El2El 8#
1

1

@E0
11E0

22El2En8#@E0
11E0

22El 82En8#
G J , ~A8!

g54 (
l ,l 8,n,n850

` H ^10un&^nu10&^20un8&^n8u10&^10u l &^ l u20&^10u l 8&^ l 8u10&

@E0
11E0

22En2En8#@E0
11E0

22El2En8#@E0
11E0

22El2El 8#

1
^10un&^nu10&^20un8&^n8u10&^10u l &^ l u10&^10u l 8&^ l 8u20&

@E0
11E0

22En2En8#@E0
11E0

22El2En#
F 1

E0
11E0

22El 82En
1

1

E0
11E0

22El2El 8
G J ,

~A9!

d524 (
l ,l 8,n,n850

` H ^10un&^nu10&^20un8&^n8u20&^10u l &^ l u10&^20u l 8&^ l 8u20&

@E0
11E0

22En2En8#@E0
11E0

22El2En8#@E0
11E0

22El2El 8#

1
^10un&^nu10&^20un8&^n8u20&^20u l &^ l u20&^10u l 8&^ l 8u10&

@E0
11E0

22En2En8#@E0
11E0

22El2En#@E0
11E0

22El2El 8#
J , ~A10!

9382 54J. K. FREERICKS AND G. D. MAHAN



e52 (
l ,l 8,n,n850

` H 2^10un&^nu20&^20un8&^n8u10&^10u l &^ l u10&^20u l 8&^ l 8u20&

@E0
11E0

22En2En8#@2E0
112E0

22En2En82El2El 8#
F 1

E0
11E0

22El 82En8

1
1

E0
11E0

22El2En
G1

^10un&^nu10&^20un8&^n8u20&^10u l &^ l u20&^20u l 8&^ l 8u10&

@E0
11E0

22En2En8#@E0
11E0

22El2En8#
F 1

E0
11E0

22El 82En8

1
1

E0
11E0

22El2El 8
G1

^10un&^nu10&^20un8&^n8u20&^20u l &^ l u10&^10u l 8&^ l 8u20&

@E0
11E0

22En2En8#@E0
11E0

22El2En#
F 1

E0
11E0

22El 82En

1
1

E0
11E0

22El2El 8
G J , ~A11!

m522 (
l ,l 8,n,n850

` H 2^10un&^nu20&^20un8&^n8u20&^10u l &^ l u10&^20u l 8&^ l 8u10&

@E0
11E0

22En2En8#@2E0
112E0

22En2En82El2El 8#
F 1

E0
11E0

22El 82En8

1
1

E0
11E0

22El2En
G1

^10un&^nu20&^20un8&^n8u10&^20u l &^ l u10&^10u l 8&^ l 8u10&

@E0
11E0

22En2En8#@E0
11E0

22El2En#@E0
11E0

22El 82En#

1
^10un&^nu10&^20un8&^n8u10&^10u l &^ l u20&^20u l 8&^ l 8u20&

@E0
11E0

22En2En8#@E0
11E0

22El2En8#@E0
11E0

22El 82En8#
J , ~A12!

n528 (
l ,l 8,n,n850

` H ^10un&^nu10&^20un8&^n8u20&^10u l &^ l u10&^20u l 8&^ l 8u20&

@E0
11E0

22En2En8#@2E0
112E0

22En2En82El2El 8#
F 1

E0
11E0

22El 82En

1
1

E0
11E0

22El2En8
G J , ~A13!

r528 (
l ,l 8,n,n850

` H ^10un&^nu20&^20un8&^n8u10&^10u l &^ l u20&^20u l 8&^ l 8u10&

@E0
11E0

22En2En8#@2E0
112E0

22En2En82El2El 8#
F 1

E0
11E0

22El2El 8

1
1

E0
11E0

22En2En8
G1

^10un&^nu20&^20un8&^n8u10&^20u l &^ l u10&^10u l 8&^ l 8u20&

@E0
11E0

22En2En8#@E0
11E0

22El2En8#
F 1

E0
11E0

22El2El 8

1
1

E0
11E0

22El 82En8
G1

^10un&^nu20&^20un8&^n8u10&^10u l &^ l u20&^20u l 8&^ l 8u10&

@E0
11E0

22En2En8#@E0
11E0

22El2En#
F 1

E0
11E0

22El 82En

1
1

E0
11E0

22El2El 8
G J . ~A14!

1A. B. Migdal, Zh. Eksp. Teor. Fiz.34, 1438 ~1958! @Sov. Phys.
JETP7, 999 ~1958!#.

2G. M. Eliashberg, Zh. Eksp. Teor. Fiz.38, 966~1960! @Sov. Phys.
JETP11, 696 ~1960!#.

3G. Liebfried and W. Ludwig, inSolid State Physics, edited by F.
Seitz and D. Turnbull~Academic, New York, 1961!, Vol. 12, p.
75.

4H. Horner, inDynamical Properties of Solids, edited by G. K.
Horton and A. A. Maradudin~North-Holland, Amsterdam,
1974!, Vol. 1, p. 451.

5J. A. Reissland,The Physics of Phonons~Wiley, New York,
1973!.

6J. C. K. Hui and P. B. Allen, J. Phys. F4, L42 ~1974!; A. E.
Kavakozov and E. G. Maksimov, Zh. Eksp. Teor. Fiz.74, 681
~1978! @Sov. Phys. JETP47, 358~1978!#; G. D. Mahan and J. O.

Sofo, Phys. Rev. B47, 8050~1993!.
7J. K. Freericks and E. H. Lieb, Phys. Rev. B51, 2812~1995!.
8S. Robaszkiewicz, R. Micnas, and K. A. Chao, Phys. Rev. B23,
1447 ~1981!; A. S. Alexandrov, J. Ranninger, and S. Ro-
baszkiewicz,ibid. 33, 4526~1986!; R. Micnas, J. Ranninger, and
S. Robaszkiewicz, Rev. Mod. Phys.62, 113 ~1990!.

9J. K. Freericks, Phys. Rev. B48, 3881~1993!.
10T. Holstein, Ann. Phys.~N.Y.! 8, 325 ~1959!.
11J. Hubbard, Proc. R. Soc. London Ser. A276, 238 ~1963!; 277,

237 ~1964!; 281, 401 ~1964!; 285, 542 ~1965!; 296, 82 ~1967!.
12J. K. Freericks, M. Jarrell, and D. J. Scalapino, Phys. Rev. B48,

6302 ~1993!; J. K. Freericks, M. Jarrell, and D. J. Scalapino,
Europhys. Lett.25, 37 ~1994!; J. K. Freericks and M. Jarrell, in
Computer Simulation Studies in Condensed Matter Physics VII,
edited by D. P. Landau, K. K. Mon, and H.-B. Schu¨ttler

54 9383STRONG-COUPLING EXPANSIONS FOR THE . . .



~Springer-Verlag, Berlin, 1995!.
13J. K. Freericks and M. Jarrell, Phys. Rev. Lett.75, 2570~1995!.
14J. E. Hirsch, Phys. Rev. B47, 5351~1993!; F. Marsiglio and J. E.

Hirsch, ibid. 49, 1366~1994!.
15J. E. Hirsch and F. Marsiglio, Phys. Rev. B39, 11 515~1989!.
16P. W. Anderson, Phys. Rev.115, 2 ~1959!.
17T. Kato, Prog. Theor. Phys.4, 514 ~1949!.
18D. J. Klein and W. A. Seitz, Phys. Rev. B8, 2236~1973!.
19M. Takahashi, J. Phys. C10, 1289~1977!.
20P. G. J. van Dongen, Phys. Rev. B49, 7904~1994!.
21G. Beni, P. Pincus, and J. Kanamori, Phys. Rev. B10, 1896

~1974!.

22J. E. Hirsch and E. Fradkin, Phys. Rev. Lett.49, 402 ~1982!;
Phys. Rev. B27, 4302~1983!.
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