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A strong-coupling expansion is applied to the anharmonic Holstein model and to the Holstein-Hubbard
model through fourth order in the hopping matrix element. Mean-field theory is then employed to determine
transition temperatures of the effectiyeseudospih Hamiltonian. We find that anharmonic effects are not
easily mimicked by an on-site Coulomb repulsion and that anharmonicity strongly favors superconductivity
relative to charge-density-wave order. Surprisingly, the phase diagram is strongly modified by relatively small
values of the anharmonicityS0163-18286)00737-0

[. INTRODUCTION never a small perturbation; the phonon wave functions are
always dominated by the anharmonic terms in the potential
The interaction of conduction electrons in a solid with as the phonon coordinate becomes large. Even the qualitative
lattice vibrations is described by the so-called electroneffects of lattice anharmonicity on superconductivity are not
phonon problem. Migdal and Eliashberg pioneered the well understood. All that is known rigorously about the an-
study of such interacting fermion-boson systems in the limitharmonic electron-phonon problem is that the ground state
where the phonons are all harmonic and the phonon energyust contain a spin singletor even numbers of electrons on
scale is much smaller than the electronic energy scale. Ve finite lattice.
tex corrections can be neglected in this ¢ased a self- Much progress can be made, however, in the limit of
consistent theory can be constructed that is exact in the limitrong coupling(the electron-phonon interaction is much
of weak coupling; the theory is an expansion in powers oflarger than the hopping integral of the electrprshere the
the coupling strength multiplied by the ratio of the phononelectrons strongly bind together into preformed péoaled
energy scale to the electronic energy scale. bipolarong and the ground state of the system is highly de-
But phonons in real materials are never purelygenerate. Degenerate perturbation the@mythe kinetic en-
harmonic—higher-ordefanharmonig contributions to the ergy of the electronsabout this bipolaronic ground state
phonon potential are always present. This phonon anharmgroduces an expansion in inverse powers of the coupling
nicity is responsible for many different physical effects in strength. This theory has been exhaustively analyzed to sec-
solids. For example, thermal expansion arises purely fronend order in the hoppirfgand has recently been studied to
anharmonic effects—a harmonic crystal does not change itourth order in the hoppingn this contribution, the fourth-
volume upon heating. Such anharmonic effects have beewrder calculations are extended to include both anharmonic
treated in an approximate fashion: In the quasiharmonig@honons and a direct electron-electron repulsion.
approximationi only the effect of thermal expansion is taken  The simplest electron-phonon model that includes both
into account by postulating that the phonon frequencies havanharmonic effects and direct electron-electron repulsion is
a dependence upon the volume of the crystal, as described tiye anharmonic Holstein-Hubbard motfeft in which the
the Grineisen parameter; in the self-consistent harmoniconduction electrons interact with themselves and with local
approximatioi the harmonic force constants are self- phonon modes:
consistently replaced by their thermal averages over all pos-
sible motions of the other atoms—it is used to describe sys-
tems with strong anharmonicity; finally, in the
pseudoharmonic approximatihoth thermal expansion ef-
fects and phonon-phonon interactions are taken into account
by employing the quasiharmonic approximation plus a per-
turbative expansion in the phonon-phonon interaction. Su-
perconducting transition temperatures have also been stud- ta nz 4 1)
ied, with the result that anharmonicity does not enhance the anhes i 2
transition temperature in the weak- to moderate-coupling re-
gime where Eliashberg theory applfe8ut an exact treat- Wherec/, (c;,) creates(destroy$ an electron at sité with
ment of lattice anharmonicity is difficult from a theoretical spin o, ni(,:c;rgci,, is the electron number operator, ard
point of view because an anharmonic “perturbation” is (p;) is the phonon coordinatétmomentum at sitei. The
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hopping of electrons between lattice siteend]j is governed Thenx; andx, denote the equilibrium coordinates with one
by the hopping matrix elemeny (t;; is a Hermitian matrix ~ or two electrons on a lattice site. In the harmonic case the
The local phonon has a makt and a frequency) asso- relative distanceg;— Xy andx,—X; are identical, which is a
ciated with it; the combinatiowr: = MQ? is a spring constant requirement for particle-hole symmetry. When a lattice an-
that measures the stored energy per unit length squared in thermonicity is turned on, the equilibrium phonon coordinates
phonon coordinate. The anharmonic contribution to the phowith one and two electrons on a lattice site all move toward
non potential energy is chosen to be a quartic in the phonothe origin, but the relative distances are no longer symmetric;
coordinate with a strength,,,. The electron-phonon inter- rather, the distance,—x; becomes significantly smaller
action strength is parametrized by an energy per unit lengtthan x; —xg, as can be seen by calculating the perturbative
and is denoted). A useful combination of fundamental pa- shift in the equilibrium coordinaté$ as a function of the
rameters is the bipolaron binding ener@g the harmonic anharmonicitya .,
limit with Uc=0)
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which determines the energy scale for the effective electron- 2=~ a2 + “M*Q8 ()

electron interaction mediated by the phonons. This attraction
competes with the direct Coulomb repulsion denoted by This asymmetric shift of the equilibrium phonon coordi-
Uc. The chemical potential ig. nate as a function of lattice anharmonicity causes two main
The hopping matrix elements; are used to define the effects: (1) The model loses particle-hole symmetry which
energy scale. The choicgyy=:t*/2\/d for the nearest- allows a new type of superconductivity to emefand (2)
neighbor hopping matrix element, with =1 andd the di- the effective electron-electron attraction is sharply reduced
mensionality of the lattice, is made so as to have a wellas can be seen by a plot of the bipolaron binding energy in
defined limit whend—cc. The mass is then set equal to 1 Fig. 2(b). Thus the lattice anharmonicity generates an effec-
(M=1), leavingU, Uc, a,n and() as free parameters. tive retardedrepulsive interaction between the electrons and
The strong coupling expansion is a perturbative expansion ibreaks particle-hole symmetry, removing the nesting insta-
the hopping terms of Ed1) and is valid when the bipolaron bility of the CDW at half filing and weak coupling. One
binding energy is much larger than the electronic hoppingexpects that the lattice anharmonicity thereby to favor SC
integral. Another important parameter in the strong couplingelative to CDW order, although it is also likely that anhar-
limit is the polaron band-narrowing parameter denoted bymonic effects will reduce the transition temperatufescept
S:=|U|/Q. close to the filed band, where the new hole-
The original Holstein Hamiltonian corresponds to the casesuperconductivity mechanism can take Qvéthat is sur-
ai=Uc=0. Both the harmonic Holstein model and the prising is that a rather small lattice anharmonicity can have a
harmonic Holstein-Hubbard model have been solved exactiarge effect on the electron-phonon problem.
in the limit of infinite dimensions via quantum Monte Carlo  Since the main effects of lattice anharmonicities are
simulation!?*® These models display charge-density-wavedriven by the asymmetric distribution of the equilibrium
(CDW) order near half-filling and superconductivifsC)  phonon coordinate when there is zero, one, or two electrons
away from half-filling. As the phonon frequency is in- on a lattice site, one expects that anharmonic effects will be
creased, the SC is favored relative to the CDW order. Howstrongest in the small-phonon-frequency limit. This is be-
ever, in the strong coupling limit, CDW order is favored over cause the phonon coordinates all approach zero in the high-
SC because of the band-narrowing effect of the bipolaronfrequency limit(because the phonon reacts instantaneously
The quantum Monte Carlo simulations also found that thgo the change in the electrgnand these asymmetric effects
effective phonon potentialdetermined after integrating out disappear. Since phonon frequencies tend to be small in real
the effects of the electrongienerically acquires a double- materials, anharmonic effects can be important even if the
well structure, signifying the formation of a bipolaron and phonon potential energy appears to be well approximated by
indicating that a strong coupling expansion should be accua harmonic potential, i.e., #,,is small.
rate even down to moderate values of the coupling strength. Hirsch’s new mechanism for superconductivity arises
This has proved to be true for the harmonic daaed is from an examination of the anharmonic electron-phonon
likely to also hold over a more restricted region for the an-model in the static limit* The tunneling matrix element for
harmonic case. a polaron from one lattice site to its nearest neighbor de-
An initial analysis of the anharmonic model in the strong-pends exponentially on the differengg—X, if there is no
coupling limit (t;=0) can be made by using the Born- electron on the neighboring site and exponentially on
Oppenheimer approximatid:The phonon frequency is as- x,—X; if there is an electron occupying the neighboring site.
sumed to be smaller than any of the other energy scales, arithe exponential dependence arises from the Franck-Condon
so the phonons can be approximated by static lattice distoeverlap factors. Since these two values can be significantly
tions corresponding to the minimum of the phonon potentiadifferent in an anharmonic model, one finds that the elec-
energy. Since the phonons couple linearly to the electronitronic motion will be dominated by a kinetic energy that
charge, the equilibrium phonon coordinate varies when therdepends on the density of the electrons at a given site. This is
are zero, one, or two electrons on a site. The ongin0 is  precisely the physical situation needed to generate supercon-
chosen to correspond to the case with no electrons on a sitductivity from kinetic energy effects—paired electrons have
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a lower effective mass than a single electron, which induce&anamorf* and Hirsch and Fradkii applied the same
the superconductivity transition at a low enough temperaturenethods to the harmonic Holstein model determining the
This novel mechanism for generating superconductivity hagffective Hamiltonian to second order in the hopping. This
been analyzed via weak-coupling mean-field theoryanalysis was extended to fourth order by Freeritks.
analyse® but has not yet been shown to exist in the exact Kato's method” begins with a HamiltoniatH=H,+T,
solution of any model system. This mechanism for superconwith H, the unperturbed Hamiltonian afdthe perturbation.
ductivity disappears, however, in the strong-coupling limitin our caseH, corresponds to the Hamiltonian in E(L)
where restriction is made to consider only empty sites andvith t;j=0, and the perturbatiom is the electronic kinetic
bipolarons. The single-electrofpolaronig states are inte- energy. The ground-state energyls, Q, denotes the sub-
grated out because the bipolaron binding energy is mucbpace that contains all of the degenerate ground states, and
larger than the electronic hopping integral. Electron-holethe projection operator ontQ, is Py:
symmetry is restored since these polaronic states only appear
in virtual processes. HoPo=PoHo=EoPy, P3=P,. (4)

The anharmonicity has a much different effect than a di-

rect electron-electron repulsion. The electron-electron repuif—o‘S the perturt;)atlon IS WL”ed on, thed¢|genst_ate_s will evolve
sion uniformly reduces the bipolaron binding energy without!Nt0 @& new subspad® with corresponding projection opera-

changing the equilibrium phonon coordinates when there arP" P- If it is assumed that the subspaQehas a nonzero
zero, one, or two electrons at a lattice site. Th(s, the  °Vverlap with the unperturbed subspagg, then the standard
bipolaron binding energy can become negatisignifying eigenvalue equationH—E)|E)=0 can be projected onto
that there is no electron-electron pairirand (2) the system (he unperturbed subspac®o, Po(H - E)PP0|E_>:0' to
explicitly retains its electron-hole symmetry. Furthermore Yi€ld an effective equation for the perturbed eigenvatie
since the repulsion is instantaneous, the retardation effects"® HamiltonianPoHP P, acts purely within the unper-
are unchanged from the case without Coulomb repulsionurbed subspac@, and has an overlap operategP P, that
i.e., the Franck-Condon overlaps remain the same. Thus wé Not equal to the identity. Taking into account this non-
expect CDW ordering to always survive at half fillir(if tnwazl3 gverlap results in an effec_t|ve Hamiltonian of the
there is a net electron-electron attracli@nd that both SC  form™~ Heg=Ho+H,+Hy+ - - -, since only even powers
and CDW order will disappear as the Coulomb repulsionOf the. perturbation enter for the generallzeq HoIsteln mpdel.
becomes too large, but it is not clear whether or not theyThE_’ first two nontrivial terms of the effective Hamiltonian
disappear together or at different values of the electronSatisfy
phonon coupling.

This contribution is a continuation of the work of one of Hy:=P,oT 0 TP, (5)
the author on the strong-coupling expansion for the har- Eo—Ho
monic Holstein model to include both anharmonic and Cou- nd
lomb repulsion effects. In Sec. I, the formalism for the per-

turbation theory and the generation of the effective 1-P, _1-P, _1-P,
pseudospin Hamiltonian will be described. In Sec. lll, a H4:=P0TE H T E-R. TE-H TP,
mean-field-theory analysis of the pseudospin Hamiltonian o o =0 o =0 TR0

will be given, and appropriate phase diagrams calculated for 1 1-P —
both the anharmonic case and the Coulomb repulsion case.
Conclusions and a discussion will follow in Sec. IV.

— 2| PeT O TR0
2| % (Eo—Ho? "° Eo—Hg

TPg

ipriPop 17P0 Ly
O Eg—Ho (Eq—Hg? 9

(6)
II. FORMALISM FOR THE PERTURBATIVE ANALYSIS

The strong-coupling expansions are carried out with a The expansion for the effective Hamiltonian can be ex-
method based on perturbation theory. The ground state is pressed graphically by a set of diagrams. A solid line denotes
bipolaronic state consisting of either paired electrons owirtual processes where an electron hops from isite site
empty sites. The distribution of these bipolarons is not deterj with strengtht;; . All diagrams must be closed, since the
mined to zeroth order in the electronic kinetic energy, and s@ffective Hamiltonian acts solely within the degenerate sub-
the ground state is highly degenerate. The effective HamilspaceQq, implying that each virtually broken electron pair
tonian (within this degenerate subspaaan be determined must be restored. There is only one possibility for the
by using operator methods. In the late 1950s, Andéfson second-order term, which corresponds to either hopping
used such methods to show that the strong-interactiorfrom sitei to site j and hopping back to sité or which
strength limit of the Hubbard model is described by acorresponds to subsequent hops from sit® site j. The
Heisenberg antiferromagnet with an exchange integrafliagram that illustrates both of these processes is depicted in
j=4]t;|?/|U] that vanishes as the interaction strength in-Fig. 1(a). There are four possible diagrams that contribute to
creases. Kafd described how to determine the effective fourth order which are also depicted in Fig. 1. The first three
Hamiltonian for an arbitrary degenerate subspace using pethagrams are linked diagrams which form nonvanishing con-
turbation theory and operator methods. His analysis was agributions to the effective Hamiltonian. The last diagrafe)1
plied to the Hubbard model in one dimension by Klein andis an unlinked diagram which does not contribute to the ef-
SeitZ® and in arbitrary dimensions by TakahdShsee also  fective Hamiltonian because the contributions from the posi-
the recent work by van Dong&h. Beni, Pincus, and tive and negative terms in E¢6) cancel. The unlinked dia-
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() (b) Herea' (a) is the harmonic-oscillator creatigannihilation

; ; ; ; operator. In the harmonic case, one can use(Bgo deter-

e ©J mine the parameters of the effective Hamiltonian analyti-
©) ) cally.

T TS >k We will concentrate, however, on the anharmonic case,

where the local phonon problem must be solved numerically.

i j The unperturbed HamiltoniaH, consists of a collection of
local phonon Hamiltonians, one for each lattice site, with a
l k fixed number of electrons=0,1,2 at each lattice siie The
(e) local Hamiltonian is

1 1
— 2, = 2,2 4
FIG. 1. Schematic diagrams used in the determination of the H'OC_ZM pe+ 2 MO+ aanx™+gnx ®

effective Hamiltonian. The second-order diagram is plottedajn

while the fourth-order diagrams appear(b)—(e). The fourth-order ~Where we ignore terms that do not depend on the phonon
diagrams link twa(b), three(c), or four (d) distinct lattice sites. The coordinate or momentum. For harmonic phonons, the unit of
contributions from the unlinked diagrafe) vanish. length is (Planck’s constant is set equal to) 1
x*:=1//MQ. Reexpressing the Hamiltonian in terms of a

grams must cancel in order to have an energy per lattice S't&lmensionless distange = x/x* yields

that is finite in the thermodynamic limit. The nonvanishing

fourth-order terms fall into three categories: those that link [ L 2 —
two distinct sitegFig. 1(b)], three distinct siteg=ig. 1(c)], or Hioe==H(n,y), H(ny):=——+V(n,y),
four distinct sitegFig. 1(d)]. 2 dy

The matrix elements for the effective Hamiltonian are de- _
termined by introducing appropriate complete sets of states V(n,y):=y?+vy*+wny, 9
between each of the operator factors in E&.and (6) for ) 9o .
each of the possible intermediate virtual states summarize@ith v:=2aan/M“Q° and w:=2g/ym(Q°. The Schre
by the diagrams in Fig. 1. In the following section, thermo-dinger equatiorH ¢,,=e(m) ¢, is then solved numerically
dynamic phase transitions are determined from the effectivavith the Numerov algorithm? Schralinger's equation is
Hamiltonian via a mean-field-theory analysis. An approxi-cast into a three term recursion relation which is iterated
mation is made here, that the transition temperafiyeés  from the far left and from the far right, and matched at the
much smaller than the excitation energy of the lowest stateiddle. To start the iteration requires a good initial guess for
above the ground state for the local anharmonic phonon witthe eigenvalue. This is provided by the WKBJ guess
zero or two electrons on that site. In the harmonic caseyg;(m) found from
(aani=0), this excitation energy i§), and even in the an- )
harmonic case, this excitation energy remains of the order of . \/—
magnitude of Q. If the transition temperature is much 2m+1= ;f dyVewxea(m) = V(y). (10
smaller than the excitation energy, then restriction can be . )
made to the degenerate subsp&Xg corresponding to the We gengrally solve for the 30 lowest eigenvalues and eigen-
ground state of the phonons and one need not consider ti&ctors in the sectors with zero, one, or two electrons.
effective Hamiltonian in the subspaces corresponding to ex- 1he effective Hamiltonian is determined by evaluating all
cited phonon states. This is not a restrictive approximationP0Ssible contributions from each of the nonvanishing dia-
because the small-frequency limit is already known to bedrams in Fig. 1. Consider first the second-order term in Fig.
singular, since the degenerate subsp@gebecomes much 1(a). If bqth sitei z_ind sitej are occupied by blpolarons, then _
larger when=0 than wher2#0. Q/t* will be set equal thg h_oppmg_ matrix cannot connect the two sites b_y the Pauli
to 0.5 for the numerical work in Sec. III. principle. Similarly, if both sites are empty, there is no con-

Determination of the effective Hamiltonian proceeds in an€ction by the hopping term. Itis only if one site is occupied
similar fashion to the harmonic ca®?2°The minimum of bY @ bipolaron and the other site empty that the hopping
the anharmonic potential lies &, X;, andx, when there are matrix can connect thr.ough a virtual s_tate bgck to the Qegen-
zero, one, or two electrons, respectively, at a given latticératé subspace. Consider the case with a bipolaoat site
site (in the harmonic case we have=—ng/MQ?). Let | and an empty site 0. at site The hopping per_turbatllo.n
|+m), |m), and| —m) denote thenth anharmonic oscillator breaks the elect_ron pair, Wlth_one electron hopping to jsite
state centered about the origin with zero, one, and two elec@nd €ither hopping back to siteor the other electron also
trons, respectively, anfi’, E,,, andE, denote the corre- hops from sité to sitej. Both processes are illustrated sche-
sponding eigenvalues under the unperturbed Hamiltoniaf@tically below(with 1 or | corresponding to a single elec-
Ho. The overlapg = m|n) will need to be calculated numeri- oN at a lattice site
cally in the general case. For the harmonic oscillator, a

simple form is found: 110=1]=110, (11
1 110=11=011, (12)
+m|n)= ——e ¥40|[a* VS/2]"a’+ VS/2]"|0).
< I ym!n! (oIt Ma’= 1"0) where only one of the two possible intermediate states is

(7 shown.
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It is convenient to express the effective Hamiltonian in 1 ) 1
terms of pseudospin operatdrsif the lattice is bipartite, so Ho= () 2 IR AP0 37— —}

that it can be separated infoandB sublattices with nonzero (15)
hopping matrix elements only between sublattiéeand B,
then one can define pseudospin operators via where the indea runs over+ and —. Note that the sum-
mation is not restricted td<<j (the overall factor of is
Fi=(=Diclicl, =07, introduced to compensate for double countinge careful
not to confuse the pseudospin Hamiltonian from the original
Jf:i=3[nj;+n;—1], (13)  Hamiltonian that consists of bipolarons and empty sites.

The two parametery® and;{? are determined by intro-
ducing complete sets of states into Ef) for each of the
virtual processes in Eq$11l) and (12) and employing the
definitions given in Eq(14). The results are

and the factor £ 1)l is 1 for theA sublattice and ¢ 1) for
the B sublattice. The pseudospin operators satisfy af2gU
algebra and form a spih-representation in the strong-
coupling limit. A doubly occupied site corresponds to an up

spin and an empty site corresponds to a down spin. The o
matrix elements of the effective Hamiltonidthat connects ﬁ > 4t2 (= 0[m)(m| —0){+0[n)(n[ +0) (16
sitei to sitej) satisfy m.n=0 Eqg +Eo —Em—En
2(i,D)[17)=0, 0|my{(m|+0){+0|n¥{n|—0
o 2 g O OO -0)

Ho(i, )T 1) == 37 GDITD+32a)I11), Eo +Ep ~En~Ey

The fourth-order terms are all evaluated in a similar fash-

. _ 1 )i s 1:(2)
Ha(L LTy == 22D+ 2P0 DIT L, ion. They can be separated into three different forms
(.)11)=0 (14) H,=H,(b)+H,(c)+H,(d) corresponding to the three dif-
2l ' ferent linked diagrams in Fig. 1. The effective Hamiltonian
which is anXXZ Heisenberg antiferromagnet, for each of these three cases takes the form
H b)—E TG EZ I 3 18
ab)=35 2" 110D 52 I D =g | (18)

1] 1 L 1
Hi)=5 5 [JL—E [389] 4+ 9337%) - {ZJJFJijZ—EﬂLE; L]+ 99— —H (19)

a

_1 ! o zqz zqz z ai—a aj—a aj—a a
H4(o|)—§i§I >t7ts 2[J VNI RN LN ]+—2 [JR0;8+320,7 3+ 320,72+ 320,
v z y ’LL a a a ZqZ1a a Zya a
—(5—5)[J P I+ E[J 3 A+ A+ 2(8— 6)2 ARG
+JPIIRI A LI+ 2(y— ) E [J2IRI20 24 3237320, 1+ [ — Ba+ 46+ 20310207
p

32 E [J23,2003) P+ 323,72303, P 323,230, 1 ¢, (20)

a

N|

where the lattice-site-index dependence of the parametefsustrated antiferromagnetic Heisenberg model with addi-

has been suppressed, and the prime on the summatiotienal quartic spin-spin interactions.

means that the sitej,k andi,j,k,| are all distinct(the The effect of the Coulomb repulsion is almost trivial. The

overall factors of; and 5 are introduced to compensate for Coulomb repulsion does not change any of the matrix ele-

double counting Explicit expressions for each of the param- ments; all it does is shift the energy of the bipolaron upward

eters in Eqs(18), (19), and(20) are given in the Appendix. by U¢, E,,—E_,+Uc, and so the effect of Coulomb repul-
The effective pseudospin Hamiltonian is an anisotropicsion can be included without much extra effort. One might
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We employ a mean-field-theory analysis to the pseu-
dospin form of the effective Hamiltonian. Two types of
phase transitions occufl) staggered order along ttzeaxis
[corresponding to CDW order at the “antiferromagnetic”
(7,7, ...) point] and (2) staggered order along theaxis
(corresponding to SC order with a zero-momentum pair-field
statg. The mean-field theory becomes exact in high dimen-
0O s YR sions, and sh_oulgl _proyide an upper bound to the transition

' B ’ temperatures in finite dimensiofisecause nonlocal quantum
|Ul/(E+{UD) fluctuations should reduce the transition temperature further

The mean-field theory is constructed by determining the
molecular field at each lattice site and equating the expecta-

Ug(ogn) /1

. tion value of the magnetization with that of a free spin in an
% external magnetic field equal to the molecular fiefg,,,
& yielding
3
DU
0 1 L 1 1 _ hmol 1 1
0 001 002 003 004 005 (9= [ zta”hi/ﬂhmod, (22

Coefficient of quartic term a

as first described by Gortéf.The difficult part of the calcu-
FIG. 2. Reduction of the bipolaron binding enefgyhich is the |ation involves a correct determination of the molecular field.

definition of Uc(aann) ] plotted as functions of the electron-phonon one must be certain to properly count the contributions from
coupling(a) and the anharmonicith). In (a), three different values  gach of the diagrams in Fig. 1. Note that the total number of
of the anharmonicity parameter are chosegy=0.001(solid lin®),  gjstinct nearest-neighbor pairs corresponding to Figa) 1
0.01(dotted ling, and 0.1(dashed ling Note how the reduction of and 1b) is Nd, with N the number of lattice sites, and each
the bipolaron binding energy increases with bag,andu. In (b), air appears Mice in the unrestricted summatior’ls There are
the reduction in bipolaron binding energy is plotted as a function 01'0 . : ' .

two classes of second-neighbor diagrams corresponding to

agnh for three values ofU|: |U|=1 (solid line), |U|=4 (dotted . ) .
line), and|U|=16 (dashed ling Note that even relatively small Fig. 1(c): those wherej and k afe not parallel[of the
(1,1,0,...) form] and those wher¢ andk are parallelof

values ofa,,, produce a sharp reduction in the bipolaron binding :
energy. the (2,0,0,..) form]. In the first case, there are

Nd(d—1) pairs, with each pair appearing 4 times in the
try to approximate the effect of the anharmonicity by anunrestricted summation. In the second case, thereNare
instantaneous Coulomb repulsion, chosen to match the rd?irs, with each pair appearing twice in the unrestricted sum-
duction of the bipolaron binding energy when the anharmoMmation. Finally there argNd(d—1) distinct squares corre-
nicity is included, i.e., define sponding to Fig. (d) with each square appearing 8 times in

the unrestricted summation. Using these results, it is a

straightforward exercise to rewrite the Hamiltonian as a sum-

Uc(aan): =Eg (@and + Eg (aann) — 2Eo( @anp) + U], mation over distinct pairgéand squargsand then extract the
(21) molecular fields for the corresponding ordered phases.

as the difference in the bindina enerav of the anharmonic A hypercubic lattice is bipartite and so it divides into two
. }aing dy ot .. SublatticesA andB, where the nearest-neighbor hopping oc-
bipolaron from the harmonic bipolaron. This reduction in

bipolaron binding energy is plotted in Figsa2and 2b) as curs only fro_m s_ublatticé\ to sublatticeB or vice versa. The _

a function of the harmonic bipolaron binding ener(fgr paramagnetic h|gh-temperature pha_se corresponds 1o a unr-

fixed values ofa,y) and as a function ofv,, (for fixed form magnetization of the pseudospins on each sublattice:
an anh

values ofU), respectively. Notice how even a small value of

the anharmonicity produces a large reduction of the bipo-

laron binding energy and that the reduction increases as the (Ja)=(Jg)=:3me,=3(p.—1)e,, (23
electron-phonon interaction strength increagge phonon

frequency is fixed af)/t* =0.5). where e, is the unit vector along the axis andp, is the

electron concentration. The self-consistent equation for the
Ill. MEAN-FIELD-THEORY ANALYSIS pseudospin magnetization becomes

We consider the case of hopping between nearest neigh-
bors on a hypercubic lattice ith dimensions. The only non-
zero matrix elements are the(p:t*lz\/a wheni andj are m=tanh%,8|2(,u,—u)+md
nearest neighbors. As described abd%eis chosen to be the
energy unit. This choice of scaling the hopping matrix ele-
ments inversely as the square root of the dimensionality is
made so that the theory has a nontrivial Ifiasd—o.

=P =if?+@d=1)([ =i

+(d—1) +mid(d—1)[2a—6—1v]{. (29

6+1
EV
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The dependence of the chemical potentialipon the elec-

tron concentratiorp, can easily be determined by inverting © - ; - O' \ - \\' \ (a)
Eq. (24). l, o015 | 0001 A~ YT
The transition temperature to the commensurate charge- 3 - ap=0.005/ < NKTANY
density-wave phase occurs at a temperature where the pseu- E 0ol g,=0015 : /’ /\\\‘\ T
dospin magnetization satisfies S oo AN

N N
—° 0 L TN S R N N
(Iny=z(mtme, (Jg=z(m-m’e, (25 0 0z 04 06 08
Interaction Strength |U|/(t*+[V])
in the limit m"—0. We only consider the transition to a
commensurate CDW, because transitions to incommensurate .
phases can only occur if the frustration induced by the e 02 ' ' vy (b
fourth-order terms in the effective Hamiltonian becomes looas | 3%06%1) RN i
large enough. Since the validity of the truncated strong- 3 — — U 0.005) [/ \i‘\
coupling expansion fails when the fourth-order terms are = 01 .~ u(0.015) : /’/ \\\ 7
comparable in size to the second-order terms, we ignore the © sos b Sy \\ |
complication of incommensurate order here. £ ]
The transition temperature is then easily found to be = 0 —— 0'4' ! 'O's YR

1 (2)_q2rgi ; 3 Interaction Strength [U|/(t*+|U])
T.= Epe(Z_Pe){dJﬁ )—d [6”“—2”’(—5—}- Sv

FIG. 3. Charge-density-wave transition temperature at half fill-

+(2a—6—3v)(1—po)?]+d[j ﬁ4)+ 3jj+ijf—o+ 3y ing for the anharmonic Holstein modgl) or the Holstein-Hubbard
model (b). Both second-order and fourth-order approximations are
+(2a—6—3v)(1—pe)?]}. (26) plotted (the fourth-order approximations have a peakTi). Note

that the maximalT, for the fourth-order calculation decreases as
Note that this expression differs slightly the coefficient of  either the anharmonicity or Coulomb repulsion is turned oraln
the & term) from that given previously,and corrects a typo- the anharmonicity varies fromv,,,=0.0 (solid line), aan=0.001
graphical error in that work. Explicit formulas for the param- (dotted 1ing, a,,=0.005 (dashed ling and agy=0.015 (dash-
eters appearing in E§26) appear in the Appendix. dotted ling. In (b), the Coulomb repulsion is chosen to match the
Likewise, the superconducting transition temperature igeduction in the bipolaron binding energy for each value of the

determined by finding the temperature where the pseudospftharmonicity plotted ir{@), i.e., Uc=Uc(aam) With az= 0.0,
magnetization satisfies 0.001, 0.005, and 0.015. Note that the effect of anharmonicity is not

easily mimicked by Coulomb repulsion except for the smallest val-
ues of a -

Z\ __ z\ _1 X\ X\ __1 ’
Ow=Ce=2m (Jg)=2m’, @ fourth-order approximationgvhich properly show a peak in
in the limit m’ —0. The transition temperature is T, as a function of the couplingare plotted. In Fig. &),
four different values of the anharmonicity are shown:
1 a = 0.0 (the harmonic cagdsolid ling), a,,=0.001(dot-
_ Pe™ {2 L q2rpir _oin _ _ ted line, a,,,~0.005(dashed ling and a,,,=0.015(dash-
Te |n[Pe/(2—Pe)]{dh TATAL 2L 2pmyr2emp dotted ling. It is apparent that even though the second-order
approximation shows large enhancements to the transition
+(2B—y—2e+u)(1—po)?]+d[j{¥—2j! +j"—2B  temperature as the anharmonicity is increased, the fourth-
order approximation indicates that the maximal CDW tran-
+y—2e+u+(—2B+y+2e—pu)(1—pe)?]}. (28)  sition temperature actually decreases as the anharmonicity
increases. Furthermore, the value of coupling strength where
Explicit formulas for the parameters appearing in E28)  the maximum occurs increases as a function of anharmonic-
appear in the Appendix. ity. This is to be expected since the anharmonicity acts in
The above expressions for the transition temperatures tsome respects like a retarded Coulomb repulsion. What is
CDW or SC order are evaluated below in the infinite dimen-surprising is that relatively small values of anharmonicity
sional limit. In this case, there is no contribution from the have such large effects on the transition temperature.
fourth-order terms that are multiplied by a linear power in  In Fig. 3(b), the CDW transition temperature at half filling
d, because they scale lik&%/d— 0 in the large-dimensional is plotted for four different values of) c(a,ny). The same
limit. values ofa,,, are used as in Fig.(8). Note that once again
At half-filling (p.=1), the CDW phase is expected to be the maximalT, decreases a&,,, increaseqimplying that
the ground state if either the anharmonicity or the CoulomhtU . increases Furthermore, the peak does not move as rap-
repulsion is not too large. Figure 3 plots the CDW transitionidly to larger values of the coupling strength, indicating that
temperature at half filling for different values of the anhar-the retardation effects are rather strong even at the relatively
monicity [Fig. 3(@)] and the Coulomb repulsioffFig. 3b)].  large phonon frequency @/t* =0.5.
Both the second-order approximatiofwghich monotonically Note that these strong coupling phase diagrams may be
diverge as the interaction strength approaches)zand the  more accurate than those of the harmonic model, because it
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ties in the harmonic case. As the anharmonicity is turned on,

05 ' ' ' " (a) the CDW transition temperature is suppressed, and the SC
04 .-~ 001 COW —— A transition temperature is enhanced; so the CDW-SC phase
o o3l SCoree i boundary moves in towards half filling. When,=0.005,
~ : i the CDW phase has disappeared. The enhancement of the SC
— o2 0.005 = -. . transition temperature continues ag,, increases, until it is
o e significantly larger than the maximal CDW transition tem-
perature of the harmonic Holstein model. Hence, the strong
0 02 o2 05 ola ” coupling approximaFion, through fgyrth order, predicts a
‘ ' ’ ' large enhancement in the SC transition temperature relative
Electron concentration p, to the harmonic case. It is not clear whether this result is an
artifact of the approximation or is a real effect. Note further
03 that the electron density where the maximal superconducting
' ' ' " (b) T, occurs is near the band edges. This is similar in spirit to
0.25 - cow —— 7] Hirsch’'s mechanism, but, as far as we can tell, is unrelated,
., o2 SCroee - because in the strong coupling limit the effect occurs both at
(0 0.15 the top and the bottom of the band, since the approximation
o1 explicitly retains electron-hole symmetry.
In Fig. 4b), the same phase diagrams are plotted, this
0.05 time usingU c(a,y) With the same values af,,,as in Fig.
00 0'2 0'4 ole 0'8 " 4(a). Clearly one can see that the effect of the Coulomb
’ ’ ) ‘ repulsion is quite different from the anharmonicity. The
Electron concentration p, phase diagram does not change much, and the large enhance-
ment of T, in the SC channel does not occur.
FIG. 4. Phase diagram of the anharmonic Holstein madgel In order to check to see whether these results are generic

and the Holstein-Hubbard modg) for |U|=1.5625 corresponding or occur simply because one is close to the limiting region
to the peak in the charge-density-wave transition temperature at halfhere the approximations are expected to hold, we have also
filling for the harmonic Holstein model. The solid lines denote calculated the phase diagrams for a stronger value of the
charge-density-wave transition temperatures and the dotted lingpteraction strength) = —4.0t*. In Fig. 5a), four different
denote superconducting transition temperaturegainthe anhar-  yg|yes ofaz, (0.0, 0.01, 0.03, and 0.0%re plotted. Here
monicity strength assumes four valueg,=0.0, 0.003, 0.005, and  the results are similar to those found in Fig. 4, except the
0.01. Note that the anharmonicity strongly enhances superconduc&nharmonicity initially causes the CDW, to rise, because

ing solutions relative to charge-density-wave solutions, arnel,f, of the reduction in the bipolaron binding energy. The SC
Is Ial_rge enough, there .is no CDW order. Note fu[rthermore, t_hat th‘:l’ransition temperature still has a large maximum at low den-
maximal superconducting is larger than the maximal CDW in sities and is significantly enhanced relative to the harmonic

the harmonic case and occurs at a rather low value of the electron .
filling. In (b), the Coulomb repulsion is fixed to Héc(ayy) with case. Furthermore, the CDW-SC phase boundary continues

aannthe same as iga). Note that the effect of the Coulomb repul- to Tove towa_lrd half-filing  untl it dlsappe_ars at
sion on the transition temperatures is relatively minor, and theaanh~0'03' In Fig. §b), we plot the same phase diagrams,

strong enhancement of the superconducliggloes not occur. this time usingUc(aay). Once again, the phase diagram
displays very different behavior, with the CDW-SC phase
is known that in the case of either an anharmonic interactioffansition remaining at exponentially small densities.
or a Coulomb repulsion that the CDW instability only occurs ~ Finally, we study how the critical electron density, where
when the coupling strengtt is large enough in magnitude. the CDW-SC phase boundary lies, evolves as functions of
Hence the trueT, does vanish at a finite value ¢f, as it U andagn. In the anharmonic Holstein model, we see in
does in the fourth-order approximation_ Flg 6(3) that the phase boundary moves very rapldly as the
Our ana|ysis at half f||||ng has ignored the poss|b|||ty of anharmoniCity is turned on. This indicates how the anharmo-
SC order. In fact, the system will go superconducting at halfiicity strongly favors SC solutions relative to CDW order. In
filling in the regime where the CDW transition temperatureFig. 6(b), we show the analogous plots of the critical electron
has been suppressed to zero, but since this regime corrgensity for the harmonic Holstein-Hubbard model, witly
sponds to a region where the fourth-order approximations aréhosen from Eq(21), and the same values ef,,,. Clearly
breaking down, we have not complicated Fig. 3 by includingthe anharmonic behavior is not easily mimicked by an in-
the superconducting solutions at smidll|. Rather, we ex- stantaneous Coulomb repulsion, and the retardation effects
amine what happens as the system is doped away from hafannot be neglected.
filling. In Fig. 4, the phase diagram is plotted for the cou-
pling strengthU = —1.562%* which lies at the peak of the
CDW transition temperature curve when,,=0. This case
represents a lower limit of applicability of the strong- The strong-coupling expansion for the anharmonic
coupling expansion. In Fig.(d), the anharmonicity varies Holstein-Hubbard model has been presented through fourth
from a4=0, 0.003, 0.005, and 0.01. The solid lines denoteorder in the hopping. This result extends the analysis of the
CDW solutions, and the dotted lines are SC. Note that thdarmonic casé.We find some interesting results from this
CDW-SC phase boundary lies at exponentially small densianalysis. First, the anharmonicity reduces the bipolaron bind-

IV. CONCLUSIONS
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FIG. 5. Phase diagram of the anharmonic Holstein mdele! Interaction strength |U]/(t"+|U])

and the Holstein-Hubbard modé) for |U|=4.0. The solid lines

denote charge-density-wave transition temperatures and the dotted FIG. 6. Plot of the charge-density-wave—superconductor phase

lines denote superconducting transition temperature@)the an-  boundary as functions of electron concentration Bnhdn (a), the

harmonicity strength assumes four valugg=0.0, 0.01, 0.03, and phase diagram is plotted for the anharmonic Holstein model with

0.05. Note that the large enhancement in the superconduEtii®y  «,,=0.0 (solid line), 0.001 (dotted ling, 0.005(dashed ling and

seen here togalthough it occurs at a larger value of the anharmo-0.015 (dash-dotted line In Fig. 6b), the phase diagram is plotted

nicity). In (b), the Coulomb repulsion is fixed to bé:-(ay) with for the Holstein-Hubbard model with c=U (a4, and a,q, cho-

a,nnthe same as ife). Once again, the effect of Coulomb repulsion sen to have the same values agah These figures show that the

is drastically different from that of the anharmonicity. anharmonicity strongly favors superconductivity relative to CDW
order, much more so than turning on a Coulomb repulsion.

ing energy and, second, it reduces the equilibrium phonon- . . o .
coordinate spacing between one electron at a site and eithgjonic Holstein model. Work in this direction is currently in
zero or two electrons at a site. The first effect is expected grogress.
cause an enhancement to transition temperatures in the
strong-coupling regime, and the second should enhance the
Franck-Condon overlap factors for superconducting order, e would like to acknowledge useful conversations with
favoring the SC phase relative to the CDW. Similarly, aJ. Hirsch and M. Jarrell. J.K.F. acknowledges The Petroleum
Coulomb repulsion will reduce the bipolaron binding energy,Research Fund, administered by the American Chemical So-
but does not alter the Franck-Condon overlaps. We find thatiety, for partial support of this researdhCS-PRF No.
in the CDW phase, the maximal transition temperature actu29623-GB6 and an Oak Ridge Associated University Junior
ally decreases when either anharmonicity or Coulomb repulFaculty Enhancement Award for partial support of this re-
sion is turned on. For the superconducting phase, the esearch. G.D.M. acknowledges support by the University of
hancement of the Franck-Condon overlap facteriivalent  Tennessee, and by Oak Ridge National Laboratory, managed
to a widening of the polaron bapdauses a large enhance- by Lockheed Martin Energy Research Corporation for the
ment of the SC transition temperature at low electron dent.S. Department of Energy under Contract No. DE-AC05-
sity, even for moderate values of the anharmonicity. In N(Q6OR22464.
case do we find that the effect of the anharmonicity is easily
mimicked by an effective Coulomb repulsion. APPENDIX: PARAMETERS OF THE FOURTH-ORDER

Since the strong-coupling expansion is expected to fail in EEFECTIVE PSEUDOSPIN HAMILTONIAN
both the low-electron-concentration regime and when the ef-
fective bipolaron binding energy is no longer much larger In this appendix explicit expressions are given for the
than the hopping integral, it is possible that this large enparameters that appear in the fourth-order effective pseu-
hancement of the superconducting transition temperature @ospin Hamiltonian, summarized in Eq$8), (19), and(20).
just an artifact of the current approximation. It is important The notation used is that given in the text.
to compare these approximations to exact quantum Monte First the parameters in EGL8) (an overall factor oti"} is
Carlo simulations of the transition temperatures of the anharsuppressed
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