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Abstract
Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge,
and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss
the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe
photoemission. If the probe is applied while the pump is still on, one must ensure that the
calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of
the photoemission signal to be positive and the relationship of this constraint to gauge
invariance. We end by discussing some technical details related to the perturbative derivation of
the photoemission spectra, which involve processes where the pump pulse photoemits electrons
due to nonequilibrium effects.

Keywords: pump/probe time-resolved photoemission, gauge invariance, nonequilibrium
many-body physics

1. Introduction

Recently, the framework for a general theory of time-resolved
photoemission was developed [1], where a system is pumped
using a high power laser (but typically one whose photons do
not have enough energy to photoemit electrons) into an
excited (non-equilibrium) state, and then probed using
another (relatively low intensity) laser pulse whose photons
do have enough energy to photoemit, after a controlled and
variable time delay. In most cases, the pump laser is turned
off before the probe laser is turned on, and the previous theory
detailed precisely what (non-equilibrium) correlation function
of the system is measured in such an experiment [1]. The
result was determined to leading (second) order in the probe

Hamiltonian ( )probe , and some approximations that can be
used to simplify its calculation were also discussed.

Here, we extend that previous work to the cases where
the pump pulse continues to be on when the probe pulse
becomes operative. In such cases, although the framework
developed in [1] continues to be valid, several expressions
given there cannot be used because they are not general
enough to ensure manifest gauge invariance and to take into
account all of the required time dependence; hence they can
lead to erroneous results, and it becomes necessary to
employ instead the expressions presented here. This issue
motivates us to discuss more thoroughly the nature of gauge
invariance in pump/probe photoemission, where we relate it
to the condition that the measured response function must
be non-negative. To be concrete, we examine this situation
for noninteracting band electrons, where explicit formulas
can be developed, and the relationship between gauge
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invariance and constraints on the measured signal become
clear.

Furthermore, the discussions in [1], neglected some
additional contributions to the detected photocurrent tJ ( )d〈 〉
that are formally also of second order in the probe Hamilto-
nian [( ) ]probe

2  , simply stating that the term kept makes the
most dominant contribution. Here we show explicitly why
those other contributions are indeed small, when compared to
the term that is traditionally kept.

2. Gauge invariance issues

The procedure to determine the photocurrent is completely
straightforward. We start by introducing the field via a Peierls
substitution and evolve the system with an evolution operator
U t t( , )1 2 that includes the time-dependent effects of the field
(with the Hamiltonian that includes the effects of the time-
dependent pump field denoted by t( )pump in the Schroe-
dinger representation). Then we turn on a weak probe
Hamiltonian t( )probe which is responsible for the photo-
emission. The photocurrent operator representing the detector,
which is designed to detect photoelectrons with momentum k
peaked around ke and localized at the detector position Rd

outside the sample, is

m
c cJ

k
, (1)d

e

e
k R k R;
†

;e d e d


=

where ck R;
†

e d
creates an electron in a wave-packet state with a

momentum space wave function that is both strongly peaked
around the momentum value ke and also peaked around the
spatial location Rd of the detector.

As mentioned above, even in contexts where the pump
pulse continues to be present when the probe pulse is on, the
initial part of the discussion in [1] leading up to the expression
in its equation (2) for the measured photocurrent, namely,
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continues to be valid; here,  is the equilibrium Hamiltonian
with no field,  is its corresponding partition function, and
the evolution operator U evolves with respect to the
Hamiltonian with the pump field t( )pump . The probe
Hamiltonian (in the Heisenberg representation with respect to

t( )pump ) U t t U t( , ) ( ) ( , )†
1 probe 1 1−∞ −∞ , now has an addi-

tional time dependence due to the time dependence of the
vector potential of the pump pulse. Hence equation (3) of [1]
for the component of the probe Hamiltonian responsible for
the absorption of a photon of momentum q and the ejection
of an electron from kν ∥ to k qν′ +∥ ∥, (where k k q, +∥ ∥ ∥
label the electron wave vector components parallel to the
surface, and ,ν ν′ the other indices or quantum numbers
specifying the one electron band states of the sample in the

presence of a plane surface), needs to be appropriately
modified, and rewritten as

( )
t

s t M t
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k
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( )e , ; ;
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in the Schroedinger representation. With the matrix-element
associated with the above process being replaced by its time
dependent version, M M tk k( , ; ) ( , ; ; )q q 1ν ν ν ν′ → ′∥ ∥ , given
by the modified expression
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−

∥

∥

∥

which depends on the vector potential of the pump field and
hence inherits its additional time dependence. The symbol

c qqω = ∣ ∣ is the photon frequency of the photons in the probe
pulse.

Plugging the expression for this matrix element
(equation (4)) into the formula for the probe Hamiltonian in
equation (3), and then into the photocurrent expectation value
in equation (2), and extracting the contribution of the pho-
tocurrent that has momentum ke at position Rd , then yields
the total number of photoelectrons emitted from the sample
and detected at the detector for all times between time t and
time t0, which we call P t( )k . The correct expression becomes
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In most experimental contexts the photoejected electrons have
a high enough energy that their propagation is uncorrelated
with the other (lower energy) electronic excitations of the
system. Under these conditions, the three particle current
correlation function in equation (5) given by the six operator
average can be factorized as:
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Now, if the pump pulse is on when the probe pulse ejects the
photoelectron, there is a further approximation involved in
going from the LHS to the RHS of equation (6), in that the
effect of the pump–pulse on the propagation of the
photoemitted electron (contained in the two averages with
respect to ) has also been neglected; this then ignores
effects like the ponderomotive force acting on the photo-
emitted electrons. Given this approximation, equation (7) of
[1] for P t( )k has now to be modified as follows:

( ) ( )

P t t t s t s t

M t M t

G t t

k k

( ) i
1

d d ( ) ( )e

, ; ; , ; ;

( , ), (7)

t

t

t

t
t t

e e e e
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2 1 2 1
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, 1 2e e

1 2
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1 2

1 2
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−

∥ ∥

<
∥ ∥

we note that in contexts where the pump pulse is turned off
before the probe pulse is turned on, as was the case in all the
detailed calculations reported and discussed in [1], the matrix
elements M no longer have any time dependence, and all of
the new expressions described above reduce to the ones given
previously. However, if the pump pulse is present when the
probe pulse is on, then the above expressions are relevant, and
it is to be expected that the effect of the vector potential of the
pump field on the matrix elements M as well as on the
propagation of the photoemitted electron in equation (6) has
to be correctly taken into account to ensure the independence
of P t( )k on gauge transformations of the vector potential of
the pump field.

It is customary in calculations of PES of layered systems,
especially in those that use model Hamiltonians restricted to a
single band and focus on many body effects rather than on
band structure effects, not to calculate the matrix elements,
but instead to replace them by constants, make the approx-
imation in equation (6), and furthermore ignore the indices 1ν
and 2ν to focus on the effects of a single band only. If this
approximation is used for calculating P t( )k as given by the
modified equation (7), then the nonequilibrium lesser Green’s
function in equation (7), restricted to a single band, and given
by

G t t c t c t( , ) i ( ) ( ) (8)k k k1 2
†

2 1e e e
≡<

∥ ∥ ∥ 

and calculated in the presence of the pump field, and hence
P t( )k itself, will be gauge dependent and incorrect. However,
if one calculates the total photoemission response, using the
approximation of a constant matrix element, then the
photoemission response is local and gauge-invariant, and
one can use the formulas already discussed in [1]. It is the
angle-resolved photoemission that needs to be corrected.

One way to fix this problem is to follow the prescription
by Bertoncini and Jauho [2] who discovered a constructive
transformation that creates a gauge-invariant Green’s function
(see also [3]). This procedure replaces the lesser Green’s
function by its gauge invariant modification in the formula for
P t( )k :

G t t G t t G t t( , ) ˜ ( , ) ( , ), (9)k k k1 2 1 2 ¯ 1 2e e e
→ ≡< < <
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+ ′
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−

where for simplicity, we have assumed that the spatial
dependence of the vector potential of the pump field can be
neglected (an approximation which is reasonable for optical
or infrared pump fields), and to the extent that the Green’s
function depends only on momenta parallel to the sample
surface, only the parallel component of Apump matters.
Another way of stating this is that the momentum is shifted
by the average vector potential for the time interval in the
Green’s function. This approach has been used in calculations
of time-resolved ARPES for electron–phonon interacting
systems [4, 5].

The task of either generalizing this fix, or deriving the
appropriate gauge independent prescription from first-princi-
ples, in the contexts where one takes into account the effects
of the surface, the effects of three dimensional band structures
with mutliple bands crossing the Fermi level, and the effect of
the pump pulse on the propagation of the photoelectrons
shortly after being photoemitted, etc, poses a major theoretical
challenge that we do not solve here, and leave for
future work.

3. Gauge invariance and positivity of the
angle-resolved photocurrent

The general formula for the time-resolved and angle-resolved
photoemission spectra involves the square of matrix elements,
and hence should be manifestly non-negative. This is physi-
cally important because the photoemission spectrum cannot
be negative, as it is a probability. If we use the standard
approximation of replacing the matrix elements in
equation (7) by constants and focusing on a single band for
the photoemission, then the expression for the angle-resolved
photoemission probability becomes

P t t t s t s t

G t t

˜ ( )
i

d d ( ) ( )e

˜ ( , ). (11)

t

t

t

t
t t

k

k

2 1 2 1 2
i ( )

1 2

0 0

1 2


∫ ∫∝ −

×

ω −

<

Note that because G t t G t t˜ ( , ) ˜ ( , )k k1 2
*

2 1= −< <
, one immedi-

ately establishes that the probability is real by simply
interchanging the dummy integration variables t t1 2↔ , which

shows P P˜ ˜k k
*= . If we examine the photocurrent probability in

a gauge, where we replace G̃< by G<, then it is easy to prove
that the signal is non-negative. Recalling that

G t t c t c ti ( , ) ( ) ( ) , (12)k k k1 2
†

2 1− =<


where the angle brackets denote the trace over states weighted
by the initial equilibrium density matrix and the operators are
in the Heisenberg representation with respect to the
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Hamiltonian with the pump t( )pump . Then one simply writes

P t t s t c t n( )
1 e

d ( )e ( ) , (13)
n

E

t

t
t

k k2 1 1
i

1

2
n

0

1


∫∑=

β
ω

−


which is manifestly non-negative because the norm of a vector
is non-negative as is the exponential. Note that we use the
notation for energy eigenstates n E nn∣ 〉 = ∣ 〉 for the initial
system when it is in equilibrium and we denote k T1 ( )Bβ = .

However, an important question to resolve is whether the
use of the gauge-invariant Green’s function in equation (11)
leads to a non-negative tr-ARPES signal. Written out in
detail, the gauge-invariant time-resolved angle-resolved pho-
toemission spectra is determined by

P t t t s t s t
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where the time-dependent momentum shift satisfies
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 ∫= +
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Because the shift of the momentum is not a function of t1 only
for the ck operator and of t2 only for the ck

† operator, the
argument used above to show non-negativity of the function
in a gauge no longer goes through. In the general interacting
case, it is difficult to manipulate these expressions further
because they can have complicated time dependence. Instead,
we focus on a concrete example which can be solved exactly:
the noninteracting problem.

4. Positivity of the angle-resolved photocurrent
for a noninteracting single band

The lesser Green’s function in the vector-potential-only gauge
for a noninteracting particle satisfies [6]

G t t f( , ) i ( )e (16)
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with f x x( ) 1 (1 exp ( ))β= + the Fermi–Dirac distribution
function. Using this result for the lesser Green’s function in
the photoemission probability calculated in the gauge yields
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As before, one can immediately show that this expression
is non-negative, by writing it as
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The gauge-invariant prescription for the photoemission,
however, leads to a complicated expression given by
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and one can see that the times get entangled in complicated
ways that a simple factorization to show it is non-negative
looks to be impossible to carry out. This issue comes from the
fact that the average vector potential, averaged over the
relative time interval, is subtracted from the vector potential
shift in the exponent, and the integral that gives rise to the
average value is difficult to deal with. But we can examine
more closely some simpler cases to see if we can make
progress, or at least understand the complications more
clearly.

So, let us look at a constant dc pump, given by
A t t tE( ) ( )θ= − , and examine probe functions that are peaked
for large positive times. In this case, we can replace A(t) by

Et− , since its argument is always at large positive times due
to the s(t) factors. Then we find

)[ ]
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If we work on a d-dimensional hypercubic lattice, then
t k a2 cos ( )i

d
ik 1ϵ = − ∑ = , so if the field is put in the diagonal

direction, and we define t k a¯ 2 sin ( )i
d
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E Ecos ( ) ¯ sin ( )k E k kϵ ϵ α ϵ α= +α+ . The exponential factor in

equation (20) becomes
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In order to prove non-negativity the same way as we did
before, this exponential factor needs to factorize into one
function of t1 and one function of t2, with the second function
being the complex conjugate of the first function. The term
with the sin in the exponent, does not appear to factorize this
way. In addition, the Fermi–Dirac distribution has an
argument that is a complicated combination of t1 and t2 as
well. What one can immediately notice is that the term with
the Fermi–Dirac distribution is a function of tave only, while
the exponential term is a function of trel only. The product
s t s t( ) ( )1 2 will generically depend on both average and
relative times, but it is an even function with respect to trel.
So, if we reorganize the integral into one over the average and
relative times, then it has the form of the integrand that
depends on average time being non-negative, while the
integrand that depends on relative time is an even non-
negative function in trel multiplied by the real part of the
exponential of i multiplied by an odd function. It is possible
that a generalization of Bochner’s theorem from spectral
analysis [7] would show that such an object is non-negative
for every tave which would then prove non-negativity, but it is
not obvious to us how this would work. In numerical
calculations, we have always found that the gauge-invariant
tr-ARPES signal is non-negative for single-band models,
which makes us believe a proof should be possible. The
exposition here clearly shows that if this is the case, then the
proof is nontrivial. However, if one were to find situations
where the response was negative, then either the ansatz for the
gauge-invariant Green’s function is incorrect, or one needs to
include the momentum dependence of the matrix elements to
ensure non-negativity for the gauge-invariant response. We
have some evidence that this might occur in multiband
models, making the gauge-invariance question even more
pressing.

5. Subdominant contributions to the measured
photocurrent

As mentioned earlier, the perturbative analysis for probe
presented in [1] kept and analyzed only the dominant con-
tribution to the detected photocurrent to second order in

probe , and not the entire contribution. Indeed, there are two
other contributions to the photocurrent tJ ( )d〈 〉 in equation (2)
that are formally of order ( )probe

2 which are given by
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Correspondingly, there are two additional terms in the
expression for P t( )k , and the complete expression is given
by the following, with all t-dependent operators in the

Heisenberg picture with respect to t( )pump :
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The first term is what we had earlier, and the other two terms
come from the two terms in equation (23) above. The creation
and annihilation operators for the detected (photo) electrons
carry the time label t in all of the above terms. Hence it is
clear that the physical processes corresponding to the extra
terms require the detected electron to come right out of the
(time evolved) initial state, before the photon is absorbed,
which can happen only when that state has an electron excited
to a high enough band (TRL) state that it will come out of the
sample. When the pumped system is describable as
thermalized with an effective electron temperature Te, the
Boltzmann probability for this is proportional to

k Texp [ ( )]p B eϵ− where p kϵ ϵ μ= −ν′ ′∥ is the (excitation)
energy of the detected electron measured from the chemical
potential (essentially the Fermi level) of the system. This is
clearly small as long as pϵ is much larger than k T( )B e which is
typically the case, and can happen even if the kinetic energy
of the detected electrons is not very large, e.g. if pϵ is only
slightly larger than the work-function, but the latter is much
larger than k T( )B e . Even when the pumped system is not in a
thermal distribution, electrons can only be excited to such
higher bands either via a tunneling process, involving a
Landau–Zener-like transition which depends on the speed at
which the gaps in the band structure are traversed (as they are
driven by the pump field) compared to the sizes of the gaps,
or via multiphoton absorption processes requiring multiple
dipole transitions; in both cases one expects the population
that is excited and the contributions from the neglected terms,
to be small.

Within the approximations we have made in this analy-
sis, such as those discussed following equation (6), which
should be quite accurate for the high-energy electrons, and
assuming that the pumped system can be approximated as
being in quasiequilibrium at an effective electronic tempera-
ture Te, one can explicitly evaluate the additional contribu-
tions, and verify that they are indeed small. The above
Boltzmann factor manifests itself in this case via Fermi–Dirac
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distribution functions of pϵ . There is also a second (Wick)
contraction of the average in equation (4) of [1] (equivalently,
equation (5) above) which was also not considered pre-
viously, as it involves Fermi–Dirac functions of pϵ , and can
similarly be neglected in the context of normal pump–probe
photoemission experiments. But needless to say, there might
be special experimental circumstances where the extra terms,
while small, are measurable, and need to be taken into
account, especially when the pump becomes strong and can
excite the band electrons higher than expected just from
energy conservation stemming from the pump’s frequency
distribution. Hence we have presented them in detail here.

6. Conclusions

In this work, we have discussed a number of issues related to
details in the theory of time-resolved and angle-resolved
pump/probe photoemission spectroscopy. In particular, we
have discussed how one must change the formal results when
the pump pulse is present during the same time that the probe
pulse is being applied. In this case, one must convert the
results for momentum-dependent quantities in a gauge into
gauge-invariant quantities, which are the physically measur-
able results. Such an approach has already been taken into
account in recent work on tr-ARPES in electron–phonon
coupled systems [4, 5] and in transient-induced topology
changes in graphene. The solution is to replace the momen-
tum-dependent lesser Green’s function in the presence of the
pump pulse by the so-called gauge-invariant one, which is an
ad hoc procedure, that is, nevertheless widely used. We dis-
cussed the issues behind formulating a fully gauge-invariant
theory from the start, but that analysis requires some sig-
nificant formal development to complete, which is beyond the
scope of this work.

Next, we focused on the issue of whether the tr-ARPES
signal was non-negative, which it is required to be since it is
interpreted as a probability. The tr-ARPES signal in the
vector-potential-only gauge can be easily shown to be non-
negative since it arises directly from the square of a matrix
element. Making the transformation to the gauge-invariant
Green’s function, complicates the analysis significantly
because the integrals over time get entangled together, and
one cannot see the manifestly non-negative character of the
response. We investigated this issue more thoroughly by
examining the results for a noninteracting single-band model,
where one can get an analytic formula for the nonequilibrium
Green’s function. Even in that case, when one picks a simple
constant dc field for the pump, it does not appear obvious
at all how to verify the nonegativity. It is likely that the

non-negativity is related to a generalized form of Bochner’s
theorem from spectral analysis which deals with positive-
definite Fourier transforms

Finally, we discussed a set of terms that are second-order
in the probe Hamiltonian, but were neglected in the previous
analysis of tr-ARPES due to their being generically smaller
than the terms that we did include. Those extra terms essen-
tially correspond to the situation where the pump field is
responsible for the photoemission, which can occur when it is
a large enough amplitude field and has been applied for a long
enough time to drive the electrons far from equilibrium. But,
we expect that even in those cases, the signal will be domi-
nated by the term that we did keep, and these extra terms will
provide only a small correction. It would be interesting to find
experimental circumstances where those types of terms can
contribute substantially to the response.
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