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Momentum distribution and ordering in mixtures of ultracold light- and heavy-fermion atoms
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The momentum distribution is one of the most important quantities which provides information about
interactions in many-body systems. At the same time it is a quantity that can easily be accessed in experiments
on ultracold atoms. In this paper, we consider mixtures of light- and heavy-fermionic atoms in an optical lattice
described effectively by the Falicov-Kimball model. Using a Monte Carlo method, we study how different
ordered density-wave phases can be detected by measurement of the momentum distribution of the light atoms.
We also demonstrate that ordered phases can be seen in Bragg scattering experiments. Our results indicate that
the main factor that determines the momentum distribution of the light atoms is the trap confinement. On the
other hand, the pattern formed by the heavy atoms seen in the Bragg scattering experiments is very sensitive to
the temperature and possibly can be used in low-temperature thermometry.
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I. INTRODUCTION

Ultracold-atom physics has been producing a number
of interesting new testbeds for strongly correlated quantum
particle motion in lattices. For single-species experiments,
interesting physics like the transition from a superfluid to
a Mott-insulator with bosonic atoms [1] and the fermionic
Mott transition [2] have both been studied. One realm that
has not yet been examined in detail is the order-disorder
transition from a spatially uniform phase (in the bulk) to a
spatially ordered phase that breaks translational symmetry, like
the Néel transition in a three-dimensional antiferromagnet.
Current technology does not allow the system to be cooled
to a low enough temperature to see this magnetic transition,
although the experimental effort under way is intense. Here
we focus on another type of order-disorder transition, where a
mixture of different species of atoms orders in a density wave
pattern. Since the simplest experimental probes for such order
will come from time-of-flight images or from Bragg scattering
peaks, we describe what kind of information can be determined
from those experiments.

A time-of-flight image essentially measures the momentum
distribution of the atoms. It is well known that the equilibrium
momentum distribution of free noninteracting fermions is
described by the Fermi-Dirac distribution function. When
interactions are turned on, the momentum distribution is
changed due to these interactions (some states below the
Fermi energy are removed and some states above the Fermi
energy are added; a step in the distribution function at the
Fermi energy persists at zero temperature if the system is a
Fermi liquid). Similarly, if a noninteracting gas is confined
in a harmonic trap, the distribution can also be calculated

explicitly [3] and resembles that in the bulk, with a smoothing
of the Fermi-Dirac function due to the inhomogeneity. In the
limit of a large number of fermions, it is often convenient to use
the semiclassical Thomas-Fermi approximation [4] or other
semiclassical approaches [5] to find the noninteracting electron
distribution. The situation becomes much more complicated if
the interaction between fermions cannot be neglected. Then,
numerical methods usually need to be applied, especially when
the system is in a trap.

Bragg scattering, on the other hand, measures the static
structure factor of the system, and the peaks yield information
about the different ordering wave vectors of density-wave
phases in the system. Bragg scattering is a more complicated
experimental probe than a time-of-flight measurement, but
can be undertaken without too much difficulty as long as
the incident and scattered beams can be imaged through the
available ports in the vacuum chamber that traps the atoms (in
other words, one might not be able to image Bragg peaks at
all momenta due to experimental constraints).

We examine the problem of a mixture of different mass
fermionic atoms on an optical lattice at low temperature. Since
most stable heavy isotopes of alkali metals are bosonic, we
envision mixtures of Li6 with K40 [6], or light Li6 or K40

mixed with heavy fermionic-isotopes of Sr or Yb (it turns
out that if the heavy particle is a boson with strong enough
intraspecies repulsion, and one is at a low enough temperature,
then the statistics of the heavy particle does not enter into
our model, as it appears effectively like a hard-core object,
hence mixtures of fermionic Li or K with bosonic Cs are
also likely to behave like the solutions described here). We
have already performed numerical calculations on this system
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and shown that one can see interesting phenomena similar
to viscous fingering as one tunes the trap curvature for the
light species and moves from a phase separated state with the
heavy atoms on the outside to one with the heavy atoms on
the inside [7]. Interesting ordered density-wave patterns are
theorized to appear at low temperature in these mixtures.
Experiments have already begun on these types of mixtures,
motivated primarily by the interest in forming rovibrational
ground-state molecules that have large dipole moments when
placed in a large external electric field [8] (although here,
the interaction between the atoms is predominantly attractive
rather than repulsive). Such dipolar molecule systems may
form ordered density-wave phases due to the long-range
dipole interaction [9]. Similarly, density-wave phases, phase
separation, or its opposite, preformed molecules [10], may
form prior to binding the atomic species into molecules if the
mixtures are placed on an optical lattice and are cold enough.

The question we wish to pose and answer is: how do we
detect the presence of such order with current experimentally
available techniques? In situations where in situ imaging with
single-site precision is available [11], one would simply look
for the ordered phases directly, just as they appear in the Monte
Carlo snapshots of a particular configuration of the atoms.
Here we focus, instead, on the more common time-of-flight
and Bragg scattering experiments, which also can tell us about
different kinds of ordering. It is more likely that density wave
phases or phase separation in atomic mixtures will be studied
with these techniques first.

In Sec. II, we introduce the model and the techniques used to
solve for the equilibrium properties of the mixtures of fermions
in a harmonic trap. In Sec. III, we present our numerical results.
Conclusions follow in Sec. IV.

II. THE MODEL AND METHOD

A mixture of light- and heavy-fermionic atoms in a har-
monic trap (each in one and only one hyperfine atomic state and
hence acting like a spinless fermion), under the assumption that
the quantum-mechanical effects of the hopping of the heavy
atoms can be neglected, is described by the Falicov-Kimball
Hamiltonian [12,13] which we take to be on a two-dimensional
square lattice

H = − J
∑

〈i,j〉
(c†i cj + c

†
j ci) +

∑

i

(Vi − µ)c†i ci

+
∑

i

(
V h

i − µh
)
wi + U

∑

i

c
†
i ciwi, (1)

where c
†
i is an operator that creates a light-fermionic atom

at site i, J is the hopping between nearest-neighbor pairs
(denoted by 〈i,j 〉), and U is the on-site interspecies interaction
potential. The symbol Vi is the light particle trap potential, and
µ is its chemical potential. V h

i is the trap for the heavy atoms
and µh is its respective chemical potential. The symbol wi = 0
or 1 is the number operator of the heavy particles, which can
be treated as a classical variable since the heavy particles do
not hop. The same Hamiltonian can also describe Fermi-Bose
mixtures, provided the bosonic atoms are the heavy (localized)
ones and a strong repulsion between them prevents them from
occupying one site by two bosons (hard-core bosons). This

model can easily be extended to describe a system with soft-
core bosons. In such a case wi = 0,1,2, . . ., and an additional
term describing the boson-boson on-site interaction

HB−B = 1

2
UB−B

∑

i

wi(wi − 1) (2)

has to be added to the Hamiltonian in Eq. (1) [14,15]. The trap
potentials for the light (Vi) and heavy (V h

i ) atoms are given by

Vi = J

R2

(
x2

i + y2
i

)
, V h

i = J

(Rh)2

(
x2

i + y2
i

)
, (3)

where (xi,yi) is the position of site i and we will let a denote
the lattice constant. The steepness of the potential confining
the light atoms varies from R = 30a to R = 12.9a, whereas
it is fixed for the heavy atoms with Rh = 30a. The chemical
potentials µ and µh have been introduced in order to control
the number of the light and heavy atoms, respectively.

The model is solved by means of a variation of the Monte
Carlo (MC) method. The method is based on the classical
METROPOLIS algorithm modified in such a way that systems
with both quantum and classical degrees of freedom can be
simulated [16]. In each MC step, a new configuration of the
heavy atoms is generated. Then, the Hamiltonian in Eq. (1)
is numerically diagonalized to yield all the eigenenergies and
eigenstates of the light atoms for the trial configuration of
the heavy atoms. The new configuration of the heavy atoms
is accepted according to the same rules as in the METROPOLIS

algorithm, but with the free energy used for comparing energies
instead of the internal energy. The results are then averaged
over all the configurations generated during the entire MC run.
Real-space configurations of the atoms for different model
parameters (interaction or shape of the trapping potential) at
different temperatures have been studied in Ref. [7]. In the
present paper, we use a similar method to investigate the
momentum distribution and Bragg scattering spectra. Since
diagonalization of the Hamiltonian in Eq. (1) for a given
configuration of the heavy atoms gives all the eigenstates of
the light atoms, it allows one to also calculate the momentum
distribution of the light atoms. Under the assumption that the
optical lattice potential is deep enough that we can restrict to a
single-band model, then the field operator of these atoms �(r)
(expanded in terms of the Bloch wave functions for the lowest
band) is given by

�(r) =
∑

k

ck�k(r), (4)

where ck = 1/N
∑

i ci exp(−ik · Ri) and �k(r) is the Bloch
wave function. Expanding the Bloch wave function in terms
of the Wannier wave functions of the lowest band w(r − Ri)
which are localized about lattice site Ri yields �k(r) =
1/

√
N

∑
i w(r − Ri) exp(ik · Ri). The summation runs over

the first Brillouin zone. Then, the free-space momentum
distribution can be calculated as [17]

n(k) = |w(k)|2〈c†kck〉, (5)
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where w(k) is the Fourier transform of the Wannier function.
Hence the momentum distribution can be approximated by

n(k) = |w(k)|2
N

∑

i,j

〈c†i cj 〉eik·(Ri−Rj ) (6)

in the single-band limit, with N the number of lattice sites.
Here, the quantum mechanical expectation value 〈. . .〉 is
calculated for a given configuration of the heavy atoms and
therefore n(k) has to be averaged over the configurations. In
the results we present here, we will not include the factor from
the square of the Fourier transform of the Wannier function,
which depends on the details of the shape of the optical lattice
potential.

We ignore dynamic interactions between heavy and light
atoms due to scattering in the course of the expansion in the
time-of-flight experiments. This is a reasonable approximation
since the density of the clouds is small once the trap and the
optical lattice potentials are dropped. Since those potentials are
dropped over a finite period of time, there can be some effects
as the potentials are lowered, but these tend to be smaller in
these systems because the repulsive interspecies interaction
keeps the light and heavy particles away from each other in
their initial distributions on the lattice prior to the time-of-flight
experiment.

Since in our approximation the heavy atoms are localized,
we are interested in the momentum distribution of only the
light ones. The heavy atoms, however, may display some kind
of density-wave ordering, which has been demonstrated in
Ref. [7]. In particular, for some regimes of parameters they
form a checkerboard pattern where the heavy atoms occupy
every other lattice site (i.e., only the black squares). In another
regime, superpositions of vertical and horizontal stripes or
phase separation, with the heavy and light atoms occupying
different regions of space have been observed. Of course,
for any nonvanishing interaction between both species of
atoms the distribution of the light atoms is up to some degree
correlated with the distribution of the heavy ones. As a result,
also the light atoms are ordered, but unless the interaction
is strong enough, the magnitude of the density-wave order
is much smaller. This follows from the fact that the light
atoms, in contrast to the heavy ones, gain kinetic energy while
delocalized.

In the thermodynamic limit of a homogeneous system,
the concept of phase separation and of a density-wave order
is well defined. Phase separation occurs when two species
do not intermix, and the free energy is instead lowered
by an incoherent mixture of two different thermodynamic
states via a Maxwell construction. A density-wave order
corresponds to a spontaneous breaking of the spatial translation
symmetry to allow for a periodic modulation of the particle
density on the lattice. Neither of these definitions can be
used in the inhomogeneous lattice with a trap that we use
to model ultracold atomic systems. Instead these transitions
are more crossovers, where the two particles avoid each other
and spatially separate for phase separation and where one
sees the occurrence of new Bragg peaks when we average
over different configurations of the atoms (corresponding to
different experimental shots), and the (averaged) Bragg peaks
grow in size as the temperature is reduced.

Using these definitions, the density-wave ordering of the
heavy atoms can be analyzed by use of the scattering of
light (Bragg scattering, see, e.g., Ref. [18]). This kind of
experiment is an equivalent to neutron or x-ray diffraction
for the solid state. However, due to the difference of lattice
constants between solid state crystals and optical lattices, the
required wavelength corresponds to that of visible light. The
observation of well-defined Bragg peaks has been used to
confirm a crystalline structure formed by atoms in an optical
lattice [18]. Since this method allows one to determine the
distance between atoms forming the crystalline structure, it
can be applied in order to detect the checkerboard pattern as
well. In the case of a strong repulsive interaction between the
light and heavy atoms, checkerboard squares of different color
are occupied by different kinds of atoms and the problem is
similar to the detection of antiferromagnetic (AF) order. It has
recently been proposed to use Bragg diffraction of light to
detect such an order [19] in a Hubbard system. In the case of
AF order, the spin–dependent scattering is achieved by using
the probe light frequency near atomic resonance, where the
interaction between light and atoms is neither purely diffractive
nor purely absorptive. In a similar way, the probe light can be
tuned to be scattered in differently by the light and heavy
atoms. As a result, we can expect a (π,π ) peak in the case of a
two-dimensional checkerboard pattern with the light scattered
by the heavy atoms. Moreover, the intensity of this peak can
give information about the fraction of the system occupied by
ordered atoms. This method can also be used to detect other
types of correlations. If the “labyrinthine” patterns obtained
in Monte Carlo simulations [7] are superpositions or mixtures
of horizontal and vertical stripes, the Bragg scattering in this
case should reveal (0,π ) and (π,0) peaks.

The Bragg spectra integrated over the frequency gives the
static structure factor S(k), a key quantity that can be expressed
as

S(k) = 1

N

∑

i

wie
ik·Ri . (7)

In a practical realization we get a new configuration {wi} in
each MC step and in each step S(k) is calculated. Then, S(k)
is averaged over the entire MC run.

III. RESULTS

Simulations have been carried out on a 50 × 50 square
lattice with 625 heavy and 625 light atoms. In contrast to solid
state simulations, there is no translational symmetry in the real
system and therefore we use hard-wall boundary conditions at
the edges. For steep harmonic trap potentials (and at low T )
most of the atoms are in the center of the system, however,
if the potentials are shallow the results may be affected by
the finite size of the cluster. Figure 1 illustrates the real-space
distributions of the light and heavy atoms for different shapes
of the trap for the light atoms [see Eq. (3) for the trap potential
parametrization]. The trapping potential for the heavy atoms
is kept at Rh = 30a for all simulations.

From Fig. 1 one can see that if the light atoms’ trap potential
is sufficiently steep and the repulsion between the two species
of atoms is relatively strong (U = 5J ), the heavy atoms are
pushed out from the center of the trap. This is an intuitive result.
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FIG. 1. (Color online) Density profiles of the light (solid red line) and heavy (dashed blue line) atoms for U = 5J at a temperature
kBT = 0.01J . The curvature of the trap for the heavy atoms is given by Rh = 30a, whereas for the light atoms it varies from R = 12.9a to
R = 30a. The insets show snapshots of real-space distributions of the heavy (left box) and light (right box) atoms.

However, when the trap potential for the light atoms becomes
shallower they start to spread and occupy the periphery of the
cluster even before the trap curvatures are set to be equal. For
identical potentials, the heavy atoms are concentrated in the
central part of the trap, surrounded by the light atoms. In such
a configuration the light atoms can gain kinetic energy at the
expense of the potential energy in the harmonic trap.

A. Momentum distribution of the light atoms

Figure 2 shows the momentum distribution of the light
atoms for the same parameters as in Fig. 1. Since the strong
repulsion leads to phase separation, at least in the limiting

cases, the light atoms are able to move freely within the region
not occupied by the heavy atoms. Nevertheless, one can notice
that there is no sign of the Fermi surface in the momentum
distribution, which results from the inhomogeneity of the
system (because the system is phase separated, the light atoms
are essential noninteracting atoms in a confined geometry and
hence would be expected to show a Fermi surface if they
are homogeneous enough). The upper row of panels presents
a comparison of the cross sections of the actual distribution
with that of a noninteracting fermionic gas in a harmonic trap.
The difference results from the interaction between the light
and heavy atoms. Generally, for all the shapes of the trap
potential, the maximal value of the momentum distribution
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FIG. 2. (Color online) Momentum distribution of the light atoms for the cases shown in Fig. 1. The upper row shows a comparison of
cross sections along the x axis for U = 5J (solid red line) and the noninteracting case (dashed black line). The inset in the first plot shows the
momentum distribution of the light atoms confined in a circular well with infinite walls (see text).
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xx

y y

FIG. 3. (Color online) Comparison of the real-space distribution
of light atoms with (left graph, U = 5J ) and without (right graph)
interaction with heavy atoms (R = 12.9a).

function at k = 0 of the light atoms is reduced with respect
to the noninteracting case. For a relatively steep trap potential
for the light atoms, the interaction leads to additional features
in the momentum distribution [see the red (solid) curve in the
upper left panel of Fig. 2]. These additional inflection points
result from a further confinement of the light atoms in an area
surrounded by the heavy atoms, as can be seen in Fig. 3.

In order to confirm the origin of these features, we
calculated the momentum distribution of the light atoms in
an infinite round well with a diameter equal to the inner
diameter of the ring formed by the heavy atoms. In the resulting
distribution, presented in the inset in Fig. 2, the additional peak
in the center of the distribution is even more pronounced.

Independent of the strength of the interaction, the inhomo-
geneity destroys any signs of the Fermi edge in the momentum
distribution. When the trap becomes shallower, behavior that
looks like a Fermi edge appears, but this is an artifact due to
the box boundary conditions at the edge of the lattice.

Even though there is no explicit signal in the momentum
distribution function which shows the presence of different
kinds of density wave ordering, the momentum distribution
function does have a strong dependence on the appearance of
phase separation, as can be seen in the different distribution
functions in Fig. 2. For example, it is known that in a
homogeneous lattice, the momentum distribution function
must decrease below the noninteracting value for small
momentum and increase above the noninteracting value for
large momentum [20] when the system phase separates at low
temperature. This behavior is clearly seen in all of the data,
and most likely is arising from different forms of quantum
confinement effects associated with the phase separation.
Unfortunately, it is not easy to disentangle this phase separation
effect from the effect of the trap, which has a similar effect on
the momentum distribution function, except in the case where
the heavy particles surround the light ones and confine them
with a sharp boundary. In that case, the phase separation effect
also causes a “dimple” in the momentum distribution function
near k = 0.

If the interspecies repulsion is too weak to lead to phase
separation, a checkerboard configuration may be formed.
Figure 4 shows examples of real-space configurations of the
light atoms for U = J . It turns out that in this case the
momentum distribution is hardly affected by the interaction.
Figure 5 presents a comparison of the momentum distribution
at temperatures above and below the temperature, at which
a checkerboard pattern is formed. When the temperature is
lowered, the momentum distribution is enhanced for small k,
though the difference is much smaller than what we saw in
the case of phase separation. Moreover, formation of regions

(a)
0.0

0.8

(b)
0.0

0.5

FIG. 4. (Color online) Real-space density distribution of the
light atoms for U = J and kBT = 0.0001J . The upper panel (a)
corresponds to the trapping potential with R = 12.9a and the lower
(b) to R = 17a.

with density-wave order does not affect the distribution in any
systematic way.

B. Heavy-atom configurations

Since the heavy atoms are localized in the proposed
approach, one cannot analyze their momentum distribution.
Instead, we determine structure factors defined by Eq. (7). In
particular, we are interested in how different density-wave-
ordered patterns are reflected in the structure factor. It is
well known from solid-state physics that different orderings
produce characteristic Bragg spectra. However, in the case
of cold atoms the spectra are additionally affected by the
confining potential that keeps the atoms inside the trap.
Neglecting the interspecies interaction that may lead to phase
separation or ordering, at low temperature, the heavy atoms
occupy the bottom of the trap forming a circular region.
Fourier transformation of such a configuration consists of a
finite-width peak at position k = (0,0). Plotted in a region
(0,2π ) × (0,2π ), the peak splits into four quarters which
are visible in each corner [at k = (0,0), (0,2π ), (2π,0) and
(2π,2π )]. The peak itself simply results from a finite number
of heavy atoms, since according to Eq. (7), S(0) is equal to
the average concentration of the heavy atoms. The gathering
of atoms in the center of the trap broadens it, as can be seen
in Fig. 6. When temperature or interaction moves the atoms to
more peripheral areas, the peak width shrinks, finally taking
on a δ-function-like form for a random distribution of atoms. It
changes the spectral weight around k = (0,0) (and equivalent
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FIG. 5. (Color online) Momentum distribu-
tion of the light atoms for the cases shown
in Fig. 4. The upper row shows a comparison
of cross sections along the x axis for kBT =
0.0001J (dashed black line) and kBT = 0.005J

(solid red line). The insets blows up the momen-
tum distribution for atoms with energies close to
the Fermi energy. The momentum distributions
shown in the lower row were determined at
kBT = 10−4J .

points), affecting the magnitude of the peaks representing
ordered phases. This will be discussed in more detail below.
Since we are mainly interested in patterns formed by the heavy
atoms, we will neglect the k = (0,0) peak and focus on the
remainder of the spectrum. Nevertheless, even in the presence
of ordering, this peak is still the most pronounced feature of
the spectrum.

Most of the results have been obtained at finite temperatures
by means of the Monte Carlo method. These results can also be
compared with zero-temperature local density approximation
(LDA) results, which we now describe.

y

x

kx

yk

FIG. 6. (Color online) Left panel: ground state real-space con-
figuration of the heavy atoms in a harmonic trap. Right panel:
corresponding structure factor.

1. Zero temperature results: LDA

We construct the LDA at T = 0 from the homogeneous,
grand-canonical phase diagram, where the ground-state phases
are given as a function of the chemical potentials of heavy and
light atoms [21]. The procedure is as follows. For each lattice
site, we determine the local chemical potentials by subtracting
the trap potential at that lattice site from a trial global chemical
potential. The global chemical potential is then adjusted to
produce the correct total number of heavy and light atoms
in the trap. Next, using the local chemical potentials, we
map out the homogeneous phase diagram for each site within
the trap. Two sets of model parameters that give nontrivial
configurations have been analyzed: R = 12.9a, U = J and
R = 18.5a, U = 5J . In the former case, a checkerboard-type
configuration is formed in the center of the trap, where the
heavy atoms occupy, let us say, the black squares, and the
light atoms are primarily on the white ones. The central part
is surrounded by rings of different phases. In the latter case,
the center of the trap is occupied by light atoms, while the
heavy ones form a relatively thick ring composed mainly
of various stripe phases. The spatial distributions have been
obtained taking into account all possible periodic phases with
unit cells consisting of no more than four lattice sites (in
all inequivalent shapes). The candidate phases are presented
in Fig. 7. The zero-temperature LDA configurations are
presented in the lower panels in Figs. 8 A and 9 A, where
different letters correspond to different phases marked with
the same identifying letters as in Fig. 7. The Bragg spectra
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(a)

(f) (g) (h) (i)

(b) (c) (d) (e)

FIG. 7. (Color online) All the configurations of the heavy atoms that have been taken into account in the LDA calculations. The letters
correspond to different regions presented in Figs. 8 A and 9 A.

presented in the upper panels in Figs. 8 A and 9 A are calculated
in the following way: first, the positions of the δ-function-type
peaks are determined from the Fourier transforms of the
configurations depicted in Fig. 7; then the relative spectral
weight proportional to the fraction of the trap occupied by the
corresponding phase is assigned to the given peaks. Finally,
the peaks are slightly broadened to make the presentation more
clear. This is necessary because the LDA does not know about
the finite size of the system and hence always displays perfect
δ-function peaks.

It can be seen in Fig. 8 A, that for R = 12.9a and U = J

a checkerboard phase occupies the central part of the trap. It
leads to a highly pronounced peak at k = (π,π ). Other phases
give smaller peaks at (π,π/2), (π,0), (2π/3,2π/3) (and points
obtained by symmetry operations).

For R = 18.5a and U = 5J there are no heavy atoms in
the center of the trap: they are distributed in a ring of some
width with two different phases that have axial stripes on its
innermost part. Since the stripes are invariant with respect to
translations along the axis (neglecting the finite size of the
system), all peaks are located at kx = 0 or ky = 0, namely at

(a) (b) (c) (d)

FIG. 8. (Color online) Upper row: Fourier transforms of the spatial distributions of the heavy atoms. Lower row: corresponding spatial
distributions for U = J . A shows a transformation of a configuration obtained within the LDA. In the figure presenting the corresponding
real-space configuration (only a quarter of the trap) regions occupied by different phases are filled with different colors and marked by letters.
Each letter stands for one configuration and the configurations are shown in Fig. 7. B, C, and D correspond to MC results at finite temperature,
kBT = 0.005J, 0.01J, and 0.05J , respectively.
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FIG. 9. (Color online) The same as in Fig. 8, but for U = 5J . B, C, and D correspond to temperature kBT = 0.01J, 0.05J, and 0.15J ,
respectively.

k = (0,π ), (π,0), (0, ± 2π/3) and (±2π/3,0). The outer part
of the ring is densely filled with heavy atoms and its Fourier
transform contributes to the peak at k = (0,0).

2. Finite temperatures: Monte Carlo

In order to investigate how temperature affects the patterns
formed by the heavy atoms, Monte Carlo simulations have
been carried out. For a sufficiently long MC run, a number
of independent heavy atom configurations are generated. The
length of a single MC run depends on the temperature and
the model parameters (interaction, shape of the harmonic
trap), but usually it is on the order of 106 MC steps from
which about 103–104 independent configurations have been
selected. For each configuration the Fourier transform has
been calculated. Figures 8 B,C,D and 9 B,C,D present results
averaged over all configurations generated for a given set of
model parameters. We need to comment about the averaging
procedure. In an experiment, the Bragg spectra of a single
configuration can be observed. However, in many cases
the configuration (and the corresponding spectra) changes
significantly between successive “snapshots.” In order to make
our results independent of any particular distribution of the
atoms, we decided to present results that can characterize the
system at a given temperature and model parameters. Fourier
transforms of very similar configurations often have similar
shape, but may have different sign, depending on the details,
e.g., on the phases of the order parameter for a checkerboard
phase. Therefore, in Figs. 8 B,C,D and 9 B,C,D, we present
averaged absolute values of the spectra, given by

S̄(k) = 1

MN

M∑

m=1

∣∣∣∣∣

N∑

i=1

wi,meik·Ri

∣∣∣∣∣ , (8)

where N and M are the number lattice sites and the number
of MC “snapshots,” respectively, and wi,m is equal to 0 or
1, depending on whether site i is occupied or empty in
the mth “snapshot.” Additionally, the resulting Bragg spectra
are self-averaged using rotational and reflection symmetries
of the lattice and the trap. This means that the presented
spectra are calculated as averages of S(kx,ky), S(kx, − ky),
S(−kx,ky), S(−kx, − ky), S(ky,kx), S(ky, − kx), S(−ky,kx),
and S(−ky, − kx). Since we are not interested in the k = (0,0)
peak (and equivalent peaks in the remaining corners), the
false-color scales in Figs. 8 and 9 are chosen in such a way that
(independent of the temperature) only the peaks resulting from

S C
  S

E

0

1

2

3

4

kBT/J
0.00 0.02 0.04 0.06 0.08

FIG. 10. (Color online) Temperature dependence of the Bragg
spectra in the center of the trap. More precisely, this figure shows∑′

k S̄(k) − S̄(0,π ) where the sum is calculated over the square
marked by white dotted line in Fig. 8
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FIG. 11. (Color online) Temperature dependence of the Bragg
spectra at the edge of the trap: this figure shows

∑′
k S̄(k) − S̄(π,π )

where the sum is calculated over the rectangle marked by red dotted
line in Fig. 9.

ordering are correctly represented. But of course, the scale is
kept the same in panels B, C, and D.

In the case presented in Fig. 8 A (LDA, U = J,R = 12.9a),
most of the heavy atoms form a checkerboard configuration
leading to a strong peak at k = (π,π ). In the peripheral areas,
the concentration of heavy atoms increases and they form more
dense patterns, which in turn, lead to less pronounced peaks.
One can notice that the central peak in Fig. 8 B is fourfold split.
This results from an imperfection of the checkerboard ordering
of the heavy atoms. This can be explained from an analysis of
the LDA: the effective chemical potential varies continuously
when the distance from the center of the trap increases.
Hence one expects that the density of atoms (both light
and heavy) should also vary in a continuous way. However,
in some regions, the checkerboard ordering minimizes the
energy, hence in that ordered region the density (at least of
the heavy atoms) is constant. A competition between these
two tendencies leads to flaws in the center of the trap. Due to
topological reasons, such a crack has to run across the entire
ordered area. Then the question is why the fourfold split is
not visible in the LDA results? This is connected with the
maximum size of the unit cell taken into account in the LDA
calculations. The four-site unit cell is too small to describe a
large checkerboard area with a single line defect, but by using
a larger unit cell, one should see such a configuration.

As can be expected, the ordering is reduced when the
temperature increases and so are the corresponding features
in the Bragg spectra. Figures 8C and 8D illustrate how
the multipeak structure is smoothed out by destroying the
real-space ordering. In order to describe this process in a
more quantitative way, we calculated how the spectral weight
of the central peak(s) decreases with increasing temperature.
Figure 10 shows the spectral weight in a region (0.75π �
kx � 1.25π ) × (0.75π � ky � 1.25π ) (marked by the white
square in Fig. 8A) as a function of temperature. The plot is
shifted in such a way that the weight at k = (π,0) is equal to
zero. The shift is necessary since with increasing temperature
less and less weight is attributed to the peak at k = (π,0),
which increases the reference level more than should result
from the reduction of the central peak [this effect is especially

visible in Fig. 9, where the color around (π,π ) becomes very
bright at high temperature]. In the case of U = 5J (Fig. 9), the
peaks corresponding to horizontal and vertical stripes located
at the edges of the Brillouin zone are similarly reduced with
increasing temperature. This situation is illustrated in Fig. 11.

IV. SUMMARY

In this paper, we have examined two simple experimental
probes that can reveal information about ordered density wave
phases in mixtures of light- and heavy-fermionic atoms (or
equivalently light fermionic and heavy “hard core” bosonic
atoms) on an optical lattice. Namely, we examined the
momentum distribution function, which comes from a time-
of-flight expansion experiment and the Bragg scattering signal
that would come from scattered optical light that scatters off
of the density wave pattern.

The momentum distribution function does not provide
significant information about various ordered density wave
phases, but it does provide some intuition about phase
separated states. In particular, as the distribution flattens and
broadens, one has an indication of phase separation setting in.
Furthermore, if the heavy atoms surround the light atoms and
confine them with essentially a hard wall boundary condition,
then the momentum distribution function develops a sharp
dimple at low momentum which does provide a characteristic
shape signaling that form of phase separation.

Bragg scattering is much more effective at showing the pres-
ence of ordered density wave phases, as new Bragg reflection
“spots” appear at appropriate ordering vectors for the different
types of order present in the sample. The weight underneath
these peaks is proportional to the strength of the ordering,
and to the volume of regions which are ordered, and hence
they can be used for accurate low-temperature thermometry of
these systems. As T is lowered, the weight in the peaks grows
and can be calibrated via numerical calculations to produce an
appropriate temperature of the system.

One caveat of this work, however, is that one must cool the
mixture down to a low enough temperature that the ordering
appears in the system. Typically, this requires a temperature
at least as low as about 1/40th of the bandwidth, and often
substantially lower. This is an aggressively low temperature
with current cooling technology, but hopefully can be reached
as it becomes easier to manipulate entropy distributions within
trapped atomic systems. Finally, we also should note that direct
in situ imaging via apparatus like the quantum gas microscope
would provide even more convincing pictures of the ordered
phases, and the fluctuations about that order, than the above
proposed methods, but we are not aware of any plans to
examine these kinds of mixtures with such machines in the
near term.
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[10] J. K. Freericks, M. M. Maśka, Anzi Hu, Thomas M. Hanna,
C. J. Williams, P. S. Julienne, and R. Lemanski, Phys. Rev. A
81, 011605(R) (2010); 82, 039901(E) (2010).

[11] W. S. Bakr, J. I. Gillen, A. Peng, S. Foelling, and M. Greiner,
Nature (London) 462, 74 (2009).

[12] L. M. Falicov and J. C. Kimball, Phys. Rev. Lett. 22, 997
(1969).

[13] C. Ates and K. Ziegler, Phys. Rev. A 71, 063610 (2005).
[14] K. Byczuk and D. Vollhardt, Phys. Rev. B 77, 235106 (2008);

Ann. Phys. (Berlin) 18, 622 (2009).
[15] M. Iskin and J. K. Freericks, Phys. Rev. A 80, 053623

(2009).
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