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The momentum distribution is one of the most important quantities which provides information about
interactions in many-body systems. At the same time it is a quantity that can easily be accessed in experiments
on ultracold atoms. In this paper, we consider mixtures of light- and heavy-fermionic atoms in an optical lattice
described effectively by the Falicov-Kimball model. Using a Monte Carlo method, we study how different
ordered density-wave phases can be detected by measurement of the momentum distribution of the light atoms.
We also demonstrate that ordered phases can be seen in Bragg scattering experiments. Our results indicate that
the main factor that determines the momentum distribution of the light atoms is the trap con�nement. On the
other hand, the pattern formed by the heavy atoms seen in the Bragg scattering experiments is very sensitive to
the temperature and possibly can be used in low-temperature thermometry.
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I. INTRODUCTION

Ultracold-atom physics has been producing a number
of interesting new testbeds for strongly correlated quantum
particle motion in lattices. For single-species experiments,
interesting physics like the transition from a super�uid to
a Mott-insulator with bosonic atoms [1] and the fermionic
Mott transition [2] have both been studied. One realm that
has not yet been examined in detail is the order-disorder
transition from a spatially uniform phase (in the bulk) to a
spatially ordered phase that breaks translational symmetry, like
the Ńeel transition in a three-dimensional antiferromagnet.
Current technology does not allow the system to be cooled
to a low enough temperature to see this magnetic transition,
although the experimental effort under way is intense. Here
we focus on another type of order-disorder transition, where a
mixture of different species of atoms orders in a density wave
pattern. Since the simplest experimental probes for such order
will come from time-of-�ight images or from Bragg scattering
peaks, we describe what kind of information can be determined
from those experiments.

A time-of-�ight image essentially measures the momentum
distribution of the atoms. It is well known that the equilibrium
momentum distribution of free noninteracting fermions is
described by the Fermi-Dirac distribution function. When
interactions are turned on, the momentum distribution is
changed due to these interactions (some states below the
Fermi energy are removed and some states above the Fermi
energy are added; a step in the distribution function at the
Fermi energy persists at zero temperature if the system is a
Fermi liquid). Similarly, if a noninteracting gas is con�ned
in a harmonic trap, the distribution can also be calculated

explicitly [3] and resembles that in the bulk, with a smoothing
of the Fermi-Dirac function due to the inhomogeneity. In the
limit of a large number of fermions, it is often convenient to use
the semiclassical Thomas-Fermi approximation [4] or other
semiclassical approaches [5] to �nd the noninteracting electron
distribution. The situation becomes much more complicated if
the interaction between fermions cannot be neglected. Then,
numerical methods usually need to be applied, especially when
the system is in a trap.

Bragg scattering, on the other hand, measures the static
structure factor of the system, and the peaks yield information
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wherew(k) is the Fourier transform of the Wannier function.
Hence the momentum distribution can be approximated by

n(k) =
|w(k)|2
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in the single-band limit, withN the number of lattice sites.
Here, the quantum mechanical expectation value�. . .� is
calculated for a given con�guration of the heavy atoms and
thereforen(k) has to be averaged over the con�gurations. In
the results we present here, we will not include the factor from
the square of the Fourier transform of the Wannier function,
which depends on the details of the shape of the optical lattice
potential.

We ignore dynamic interactions between heavy and light
atoms due to scattering in the course of the expansion in the
time-of-�ight experiments. This is a reasonable approximation
since the density of the clouds is small once the trap and the
optical lattice potentials are dropped. Since those potentials are
dropped over a �nite period of time, there can be some effects
as the potentials are lowered, but these tend to be smaller in
these systems because the repulsive interspecies interaction
keeps the light and heavy particles away from each other in
their initial distributions on the lattice prior to the time-of-�ight
experiment.

Since in our approximation the heavy atoms are localized,
we are interested in the momentum distribution of only the
light ones. The heavy atoms, however, may display some kind
of density-wave ordering, which has been demonstrated in
Ref. [7]. In particular, for some regimes of parameters they
form a checkerboard pattern where the heavy atoms occupy
every other lattice site (i.e., only the black squares). In another
regime, superpositions of vertical and horizontal stripes or
phase separation, with the heavy and light atoms occupying
different regions of space have been observed. Of course,
for any nonvanishing interaction between both species of
atoms the distribution of the light atoms is up to some degree
correlated with the distribution of the heavy ones. As a result,
also the light atoms are ordered, but unless the interaction
is strong enough, the magnitude of the density-wave order
is much smaller. This follows from the fact that the light
atoms, in contrast to the heavy ones, gain kinetic energy while
delocalized.

In the thermodynamic limit of a homogeneous system,
the concept of phase separation and of a density-wave order
is well de�ned. Phase separation occurs when two species
do not intermix, and the free energy is instead lowered
by an incoherent mixture of two different thermodynamic
states via a Maxwell construction. A density-wave order
corresponds to a spontaneous breaking of the spatial translation
symmetry to allow for a periodic modulation of the particle
density on the lattice. Neither of these de�nitions can be
used in the inhomogeneous lattice with a trap that we use
to model ultracold atomic systems. Instead these transitions
are more crossovers, where the two particles avoid each other
and spatially separate for phase separation and where one
sees the occurrence of new Bragg peaks when we average
over different con�gurations of the atoms (corresponding to
different experimental shots), and the (averaged) Bragg peaks
grow in size as the temperature is reduced.

Using these de�nitions, the density-wave ordering of the
heavy atoms can be analyzed by use of the scattering of
light (Bragg scattering, see, e.g., Ref. [18]). This kind of
experiment is an equivalent to neutron or x-ray diffraction
for the solid state. However, due to the difference of lattice
constants between solid state crystals and optical lattices, the
required wavelength corresponds to that of visible light. The
observation of well-de�ned Bragg peaks has been used to
con�rm a crystalline structure formed by atoms in an optical
lattice [18]. Since this method allows one to determine the
distance between atoms forming the crystalline structure, it
can be applied in order to detect the checkerboard pattern as
well. In the case of a strong repulsive interaction between the
light and heavy atoms, checkerboard squares of different color
are occupied by different kinds of atoms and the problem is
similar to the detection of antiferromagnetic (AF) order. It has
recently been proposed to use Bragg diffraction of light to
detect such an order [19] in a Hubbard system. In the case of
AF order, the spin–dependent scattering is achieved by using
the probe light frequency near atomic resonance, where the
interaction between light and atoms is neither purely diffractive
nor purely absorptive. In a similar way, the probe light can be
tuned to be scattered in differently by the light and heavy
atoms. As a result, we can expect a (π,π ) peak in the case of a
two-dimensional checkerboard pattern with the light scattered
by the heavy atoms. Moreover, the intensity of this peak can
give information about the fraction of the system occupied by
ordered atoms. This method can also be used to detect other
types of correlations. If the “labyrinthine” patterns obtained
in Monte Carlo simulations [7] are superpositions or mixtures
of horizontal and vertical stripes, the Bragg scattering in this
case should reveal (0,π ) and (π,0) peaks.

The Bragg spectra integrated over the frequency gives the
static structure factorS(k), a key quantity that can be expressed
as

S(k) =
1
N
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In a practical realization we get a new con�guration{wi} in
each MC step and in each stepS(k) is calculated. Then,S(k)
is averaged over the entire MC run.

III. RESULTS

Simulations have been carried out on a 50× 50 square
lattice with 625 heavy and 625 light atoms. In contrast to solid
state simulations, there is no translational symmetry in the real
system and therefore we use hard-wall boundary conditions at
the edges. For steep harmonic trap potentials (and at lowT )
most of the atoms are in the center of the system, however,
if the potentials are shallow the results may be affected by
the �nite size of the cluster. Figure1 illustrates the real-space
distributions of the light and heavy atoms for different shapes
of the trap for the light atoms [see Eq. (3) for the trap potential
parametrization]. The trapping potential for the heavy atoms
is kept atRh = 30a for all simulations.

From Fig.1one can see that if the light atoms’ trap potential
is suf�ciently steep and the repulsion between the two species
of atoms is relatively strong (U = 5J ), the heavy atoms are
pushed out from the center of the trap. This is an intuitive result.
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