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Universal thermopower of bad metals
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Abstract. Transport properties of strongly correlated materials, such as vanadates,
cobaltates, cuprates, Kondo semiconductors, and organic salts are poorly understood, despite
an overwhelming amount of experimental data. One common feature of these vastly different
materials is that they are formed by doping the parent compound away from a Mott-Hubbard
insulating state. Starting from this observation, and the general properties of the transport
relaxation time of a doped Mott-Hubbard systems, we calculate the transport coefficients from
the Kubo formula. Our analysis shows that the resistivity and thermopower of such systems
exhibit simple universal features which depend on the concentration of the charge carriers.

1. Introduction
The transport properties of strongly correlated materials, such as oxides in the families of
vanadates[1, 2], cobaltates[3, 4, 5] or cuprates [6, 7, 8, 9], valence fluctuators such as YbAl3[10],
Kondo metals and semiconductors such as CeB6[11, 12], FeSi [13] or FeSb2[14, 15], and organic
charge transfer salts[16, 17] are widely studied, as it is believed that some of these systems might
be useful for thermoelectric applications. The oxides with a large power factor are considered
for the thermoelectric recovery of waste heat in the industrial processes, because they are stable
at high temperatures, abundant, and non-toxic. The valence fluctuators and Kondo systems are
considered for low-temperature cooling, because their Peltier coefficient often has a maximum
around 100 K. However, the thermoelectric efficiency of these materials has to be improved if
they are to be used in real devices. It is clear that the optimization and the search for new
materials would benefit from an understanding of their transport coefficients.

In this paper, we focus on the thermoelectric properties of a particular class of compounds
obtained by doping away the parent material from a Mott-Hubbard insulating state. For
temperatures above 100 K, where the scattering of the charge carriers becomes incoherent and
the mean free path is very short, the thermopower S(T ) and the resistivity ρ(T ) of such strongly
correlated systems exhibit some universal features which depend on the concentration of carriers.
At very low concentrations (lightly doped Mott insulators) the thermopower has a pronounced
low-temperature peak that shifts to higher T with doping, the resistivity is very large and has a
sharp low-T upturn. The sign of S(T ) is negative for electron and positive for hole doping. At
moderate carrier concentration (bad metals) S(T ) has a small low-T peak that shifts to lower
temperature with doping and changes sign at high enough temperatures. Here, ρ(T ) increases
linearly in a broad temperature range without any sign of saturation. Such a behavior of ρ(T )
is often used to define a bad metal. At the highest carrier concentration (dirty metals) S(T ) is

International Conference on Strongly Correlated Electron Systems 2014 (SCES2014) IOP Publishing
Journal of Physics: Conference Series 592 (2015) 012056 doi:10.1088/1742-6596/592/1/012056

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



positive for electron doping (negative for hole doping) and ρ(T ) shows a well resolved T 2 term.
Here, both S(T ) and ρ(T ) are monotonic functions of temperature.

A doping-induced transformation of a Mott-Hubbard insulator into an ’underdoped’ bad
metal and, then, into an ’overdoped’ dirty metal is seen most clearly in vanadates[1, 2]
cobaltates[3, 4] and cuprates[6, 7, 9]. In other materials, like iron silicides FeSi[13] and
FeSb2[18, 15], sodium doped cobalt oxide NaxCoO2[5], misfit cobaltites[19], and several other
oxides[20], the carrier concentration is more difficult to change and the transport coefficients
of each particular system exhibits only one of the above described features. The fact that
the universal behavior is observed in so many vastly different compounds points to a common
cause and, here, we show that the universality follows from the general features of the transport
relaxation time of doped Mott-Hubbard systems.

The paper is organized as follows. In the next section, we calculate the resistivity and
thermopower of doped Mott-Hubbard insulators using the Kubo formula and the general form
of the transport relaxation time. Then, we present the results obtained for various concentrations
of the charge carriers and show that calculated S(T ) and ρ(T ) capture the main features of the
experimental data. The last section summarizes our results.

2. Calculations
The Kubo formula gives the electrical conductivity σ(T ) = σ0L11(T ) and the thermopower
S(T ) = S0 [L12/(TL11)− µ/T ], where σ0 is a material specific constant, S0 = kB/e, and µ
is the chemical potential, in terms of the transport integrals Lmn. Typical models of strong
correlations, like the Hubbard model, Falicov-Kimball model, and periodic Anderson model,
satisfy the Jonson-Mahan theorem[21], so that the transport integrals can be written as[22]

Lmn(T ) =
∑
σ

∫ ∞
−∞

dω

(
−∂f(ω)

∂ω

)
ωm+n−2 τσ(ω) . (1)

The summation is over the spin states σ and τσ(ω) is the exact transport relaxation time
which includes the velocity factors, averaged over the Fermi surface, and the effects of vertex
corrections, if present. The derivative of the Fermi function, (−df(ω)/dω), is sharply peaked
around the chemical potential, so that the integral is cut-off outside the Fermi window |ω| ≥ kBT .
In what follows, we set kB = h̄ = 1 and measure all energies with respect to µ. In the absence
of the magnetic field, all spin states are equivalent and the spin label can be dropped.

The transport relaxation time of the typical models of strong correlations, exhibits the
following features[23, 24]: τ(ω) is non-negative within narrow energy bands and vanishes outside.
Thus, it must have at least one maximum within each band. In a Fermi liquid, τ(ω) diverges
as T → 0 and ω → 0, and the resistivity, ρ(T ) = 1/σdc(T ), follows at low temperatures a
T 2 law. If there is residual scattering in the material, due to disorder or impurity scattering,
τ(ω) and ρ(T ) remain finite even at T = 0. For temperatures above the Fermi liquid scale,
the transport relaxation time of strongly correlated metals typically has two maxima, located
in the upper and the lower Hubbard band, separated by a large gap. At physically relevant
(intermediate) temperatures, the width of the Fermi window is much smaller than the gap
between the Hubbard bands and neither the shape nor the maxima of τ(ω) change appreciably
with temperature. Since the chemical potential of a strongly correlated metal is either within
the lower or the upper Hubbard band, we calculate the resistivity focusing on τ(ω) with just a
single broad maximum at ω0, neglecting the excitations across the gap.

The value of the integral in Eq. (1) crucially depends on the overlap between (−df/dω) and
τ(ω), i.e., on temperature and doping. Temperature broadens the Fermi window, while doping
changes the number of carriers, so that ω0 gets shifted with respect to µ = 0. Apart from that
shift, we assume that τ(ω) is unchanged by doping. This is a rather drastic approximation,
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because we know from model calculations[23, 24] that the value and the shape of τ(ω) around
ω0 are doping-dependent. However, the comparison with the exact solution of the Falicov-
Kimball[24, 25] and Hubbard model[23, 26] shows that the approximate solution, which is easy
to find for any doping, captures the main features of the microscopic models.

Figure 1. Rescaled relaxation time τ(ν)/τ0 of electron-doped systems is plotted as a function
of rescaled frequency ν = ω/x0 relative to the chemical potential, indicated by the vertical line
at ν = 0. (For definition of the scaling factors see the text.) The right-most curve (ν0 =1.1)
corresponds to a lightly doped Mott insulator, the left-most curve (ν0 = 0.1) describes a dirty
metal, and the intermediate curves (ν0 =0.5, 0.75, 0.9) correspond to a bad metal.

To estimate the transport integrals we use a simple model which neglects the asymmetry of
τ(ω) around ω0 and make the lowest order expansion,

τ(ω) ≈ τ0 − τ1(ω − ω0)
2 , (2)

where τ0 = τ(ω0) and τ1 = d2τ(ω)/dω2
∣∣∣
ω→ω0

. In this approximation, τ(ω) is a parabolic function

for Λ− < ω < Λ+ and τ(ω) = 0 otherwise. The cutoffs Λ± are obtained by setting τ(ω) = 0 in
Eq. (2) which yields Λ± = ω0 ± x0, where x20 = τ0/τ1 is inversely proportional to the curvature
of τ(ω) at ω0. For Λ− ≤ µ ≤ ω0, the transport coefficients of electron-doped systems mainly
depend on the low-energy part of τ(ω), because the Fermi window renders the high-energy part
irrelevant. The parameter x0 = ω0−Λ− defines an effective bandwidth relevant for the transport
properties reminiscent of the Kondo scale. To perform the integration we introduce the new
energy and temperature variables, ν = ω/x0 and T̃ = T/x0, and write the relaxation time as,
τ(ν)/τ0 = 1− (ν − ν0)2, where ν0 = ω0/x0. Integrating by parts, and using τ(Λ−) = τ(Λ+) = 0,
yields

Lmn(T̃ ) = 2τ0 x
m+n−2
0

∫ ν0+1

ν0−1
dν f(ν)

d[νm+n−2τ(ν)]

dν
, (3)

where f(ν) = 1/[1 + exp(ν/T̃ )], dτa/dν = 2(ν − ν0), and we took the spin degeneracy into
account. The transport integrals are not reduced to the usual Fermi-Dirac integrals, because
the limits are finite. However, the integrand is a regular function and the numerical evaluation
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is straightforward. The approximate transport relaxation times used in this calculations is
plotted in Fig. 1 for several values of ν0, corresponding to a few typical band fillings. The right-
most curve (ν0=1.1) corresponds to a lightly doped Mott insulator, the intermediate curves
(ν0=0.5, 0.75, 0.9) correspond to bad metals, and the left-most curve (ν0= 0.1) describes an
electron-doped dirty metal. For ν0=0, the symmetry point of τ(ν) is right at ω=0, such that
the thermopower vanishes. However, for |ν0| � 1, the parabolic approximation is insufficient,
because in this concentration range the sign of thermopower is strongly dependent on the
asymmetry of τ(ν). In what follows, we use Eqs.(2) and (3) to obtain the temperature
dependence of the resistivity and thermopower in various concentration regimes, neglecting
the temperature dependence of the chemical potential.

Figure 2. The rescaled resistivity obtained from Eq. (3) plotted as a function of rescaled
temperature, for various concentrations of the charge carriers. The parameters are the same as
in Fig. 1.

3. Results and discussion
The renormalized resistivity, ρ(T̃ )/ρ0 and thermopower S(T̃ )/S0, where ρ0 = 1/(σ0τ0) and
S0 = kB/|e|, are shown in Figs. 2 and 3 for electron-doped systems and the same values of ν0
as in Fig. 1. We find three different types of behavior, depending on the relative position of ω0

with respect to µ, i.e., on the number of charge carriers.
For ν0 ≥ 1, when the chemical potential is below the band-edge, the low-temperature

resistivity is very large and it decreases rapidly as temperature increases. At about T ' ω0/2
the resistivity drops to a minimum and at about T ' ω0, it assumes a linear form. Unlike the
resistivity, which has a finite residual value, the thermopower must vanish at T = 0, so that S(T )
exhibits a very large low-temperature peak. The peak decreases and moves to higher energies
as doping increases. At fixed doping, for T ≥ ω0, the thermopower decays logarithmically above
the peak, which is typical of lightly doped Mott insulators. For ν0 ≤ 1, when the chemical
potential is above the band edge but below ω0, the low-temperature resistivity starts, at T = 0,
from a finite value and grows to a well pronounced maximum, which is reduced and shifted to
lower temperature as ν0 is reduced (doping is increased). The minimum still occurs at about
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T ' ω0/2 and, for T ≥ ω0, the resistivity becomes a linear function in a broad temperature
range. The thermopower has a peak in the same temperature range as ρ(T ) and follows the
same concentration dependence as ρ(T ) but the peak of S(T ) is much less pronounced, which
is typical of bad metals. For ν0 � 1, the maximum of τ(ν) is close to the chemical potential
and ρ(T ) increases parabolically from its zero-temperature value, as found in dirty metals. At
higher temperatures, T > ω0, there is a crossover to the linear behavior. Since the chemical
potential is very close to the maximum of τ(ν), the thermopower of dirty metals is very small.

Figure 3. Thermopower of electron-doped systems, obtained from Eq. (3), is plotted as
a function of rescaled temperature, for various concentrations of the charge carriers. The
parameters are the same as in Fig. 1.

Our simple model shows that the sign of S(T ) is doping-dependent. For ν0 > 0 (ν0 < 0)
and T � ω0, there are more (less) electrons than holes in the system (see Fig.1), so that the
low-temperature thermopower is negative (positive). However, for small ν0, the temperature
dependence of µ(T ) and the asymmetry of τ(ν) can easily change the relative number of electrons
and holes within the Fermi window, and flip the sign of S(T ), as often seen in experimental data.
Temperature at which this happens cannot be obtained from the simplified model but requires
detailed calculations which provide sufficiently accurate results for µ(T ) and τ(ν).

4. Summary and conclusions
In summary, using a model with the parabolic form of the transport relaxation time, we have
shown that the resistivity and thermopower of doped Mott-Hubbard systems exhibit simple
universal features and that, depending on the concentration of the charge carriers, the strongly
correlated materials can be classified into three distinct groups. In lightly doped insulators,
the low-temperature resistivity is exponentially large and the thermopower is sharply peaked
at temperature TS . Here, doping decreases the magnitude of ρ(T ) and S(T ), and increases
TS , as seen in La1−xSrxVO3 for x ≤ 0.18 [2] and in La1−xSrxCoO3 for x ≤ 0.18 [4]. A higher
concentration of the charge carriers produces a bad metal with a quasi linear resistivity and
thermopower which has a small peak that shifts to lower temperatures as doping increases.
Finally, a large enough doping produces a dirty metal with a Fermi liquid-like resistivity,
ρ(T ) ' ρ0 + AT 2, and the thermopower is negative for electron- and positive for hole-
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doped systems. In this concentration range, both ρ(T ) and S(T ) are monotonic functions of
temperature. Such a behavior is found in La1−xSrxVO3 for x ≥ 0.30 [2], La1−xSrxCoO3 for
x ≥ 0.25 [4], and overdoped oxides[7].

The symmetric transport relaxation time cannot explain the sign-change of S(T ) which is
found at high enough temperatures in the underdoped oxides[6, 7], La1−xSrxVO3 for 0.18 ≤ x ≤
0.30 [2], and La1−xSrxCoO3 for 0.18 ≤ x ≤ 0.25 [4]. To explain this observation we have to take
into account the temperature dependence of µ(T ) and the detailed shape of τ(ν), i.e., we need
a proper microscopic calculations. For the Falicov-Kimball model, the simplest model which
yields the Mott-Hubbard transition and admits a solution at arbitrary filling, the concentration
dependence of the temperature at which S(T ) changes sign has been obtained by the dynamical
field theory [25]. In lightly doped insulators, this yields an exponential dependence on the
concentration of the charge carriers and, in and bad metals, a linear dependence. This agrees
with the experiments on cuprates[9] and is expected for other oxides as well. It would be
interesting to perform similar calculations for the Hubbard and the periodic Anderson models
which apply to a broader class of strongly correlated systems than the Falicov-Kimball model.
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