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Universal thermopower of bad metals
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“Bad metals” are known to have a large linear resistivity at high T that is universally seen near the Mott-Hubbard
insulating phase. Less well known is that the thermopower α(T ) of the Mott-Hubbard systems also exhibits simple
universal features: (i) close to the insulating phase, where the resistivity has a low-temperature upturn, α(T ) has
a pronounced low-T peak that shifts to higher T with doping; (ii) when the resistivity is nearly linear, which
occurs at moderate doping, α(T ) has a small low-T peak that shifts to lower T with doping and has a high-T sign
change; and (iii) at the highest doping, where the resistivity acquires a T 2 term, α(T ) is negative and depends
monotonically on T . The universality α(T ) can be understood using the Kelvin formula and the fact that the
chemical potential for doped Mott insulators displays similar behavior at high T . The universality is illustrated
with the exact solution of the simplest model for a doped Mott insulator at high T .
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I. INTRODUCTION

Among the defining features of bad metals is a large
but metallic resistivity and a thermopower which grows to
much larger values than in normal metals. Their resistivity
is often (quasi)linear at high temperatures, continuing to
increase as a function of temperature beyond the minimal
metallic conductivity of the Mott-Ioffe-Regel limit [1,2]. Since
the mean free path inferred from the Drude formula drops
below one lattice spacing, it is difficult to describe charge
and heat transport in terms of quasiparticle currents, and the
Fermi-liquid paradigm fails.

Less well known is that, depending on the concentration
of carriers, the thermopower α(T ) of Mott-Hubbard systems
exhibits (quasi)universal features. This can be used to classify a
wide range of different strongly correlated materials into well-
defined groups: (i) at very low carrier concentration (lightly
doped Mott insulators with a low-T upturn in the resistivity),
α(T ) has a pronounced low-T peak that shifts to higher T

with doping; (ii) at moderate carrier concentration (bad metals
with a resistivity that is nearly linear in temperature), α(T )
has a small low-T peak that shifts to lower T with doping
and has a high-T sign change; and (iii) at the highest carrier
concentration (dirty Fermi liquids with a well-defined T 2 term
in the resistivity), α(T ) is negative and depends monotonically
on T .

The variation of the thermopower with the carrier con-
centration has been studied most thoroughly in vanadates
La1−xSrxVO3 [3], cobaltates [4], and cuprates [5–7]. Those
experiments show that doping first transforms a Mott-Hubbard
insulator into an “underdoped” bad metal and then into an
“overdoped” dirty Fermi liquid. In other materials, like iron
silicide FeSi [8], iron antimodide FeSb2 [9,10], sodium doped
cobalt oxide NaxCoO2 [11], misfit cobaltites [12], and several
other oxides [13], the carrier concentration is more difficult to
change and the thermopower of each particular system exhibits
only one of the above described features. Nevertheless, it
is difficult to imagine that such universal behavior, seen in
so many compounds, does not have a simple underlying
explanation. We provide such an explanation in this work.

Considering the enormous difference in the structural
and electronic properties of the strongly correlated materials
used in the above studies, the universal behavior of the
thermopower suggests that the transport properties of the high-
temperature phase are the consequence of a large on-site
Coulomb interaction and might be described by an effective
band of strongly correlated electrons. (The approach we take
here is similar to the spin-1/2 Anderson model describing
the Kondo effect in real materials.) Indeed, the explanation
involves three simple observations: (i) at high temperature,
above the renormalized Fermi-liquid temperature, the density
of states (DOS) of correlated materials is dominated by
upper and lower Hubbard bands; (ii) the chemical potential,
which is determined primarily by the overall shape of the
DOS, has a similar T dependence at high temperature; and
(iii) the thermopower is well approximated by the Kelvin
formula, which relates it to the temperature derivative of the
chemical potential. These features are not universal in the
thermodynamic sense of a scaling function, and the Kelvin
formula is not always quantitatively accurate, but for dozens
of materials the temperature dependence of the chemical
potentiał, for a system with an upper and lower “Hubbard”
band in the DOS, will always follow a similar pattern. It is
in this limited sense that the behavior of the thermopower is
“universal.”

For large correlation, regardless of the details of a particular
microscopic description, the DOS has a Mott-Hubbard gap,
the optical conductivity is characterized by the transfer of
spectral weight from the low-energy Drude peak to the high-
energy incoherent background, the resistivity is linear, and the
thermopower has anomalous behavior. This is precisely what
is seen in the Hubbard model at high temperature, and it is the
universal features of this bad metal phase that we describe here.
Several recent papers used a single band model to discuss the
effects of strong correlation on the transport properties of bad
metals [14–16]. Because the properties of the thermopower
are universal in the sense described above, we need only find a
model that describes a doped Mott insulator above its Fermi-
liquid temperature. Here, we use the spinless Falicov-Kimball
model [17], which is closely related to the Hubbard model
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[18] but has the advantage that it admits an exact numerically
tractable solution at any doping. However, one should not use it
to infer microscopic properties for materials discussed above.

In Sec. II, we define the model and describe its solution. In
Sec. III, we present our results, and we conclude in Sec. IV.

II. MODEL AND CALCULATIONS

The model is defined by the Hamiltonian

H = − t∗√
Z

∑
ij

c
†
i cj + U

∑
i

wic
†
i ci − (�μ + μ0)

∑
i

c
†
i ci ,

(1)
where the summation is over N lattice sites, c

†
i (ci) is the

itinerant electron creation (annihilation) operator, and wi =
f

†
i fi is one or zero and represents the number operator of a

localized electron on site i. U is the interaction strength and t∗
is the hopping scaled so that we can properly take the infinite
coordination number (Z → ∞) limit (the hopping is between
nearest neighbors only). We work on a Bethe lattice, measure
the energy with respect to the zero-temperature chemical
potential μ0 (μ = �μ + μ0), and rescale the Hamiltonian by
t∗, which makes the Green’s functions and the self-energy
dimensionless. Localized electrons are distributed according
to an annealed thermodynamic ensemble, and

∑
i wi/N = w1

is their average filling. There are Nc itinerant electrons per
site and we take Nc = w1 to describe the so-called simplified
Hubbard model in a paramagnetic phase. We dope away from
half filling, so w1 = 0.5 − δ = Nc, where δ is the doping (or
density of itinerant holes nh). Note that the total number of
holes is 2δ and that the critical doping densities for defining
the different regimes will vary with the explicit models chosen.
At high enough temperatures, the results obtained for w1 = Nc

provide a good approximation to the Hubbard model (by
taking the up-spin electrons as the mobile electrons and the
down-spin electrons as the localized ones). The two models
differ at low T where coherence sets into the Hubbard model,
creating Fermi-liquid phases or different forms of ordered
phases, but that is irrelevant for the universal properties of
the thermopower that we describe here.

The solution is obtained by employing dynamical mean-
field theory (DMFT) [19–21]. We focus on the local retarded
Green’s function Gloc(ω), defined in Ref. [21], and utilize the
conventional DMFT algorithm to formulate the solution. On
the Bethe lattice, Gloc(ω) satisfies a cubic equation [18] that
we solve numerically, and the self-energy is then given by the
expression

�(ω) = ω + μ − Gloc(ω) − 1

Gloc(ω)
, (2)

where we set t∗ = 1.
The electrical conductivity σ , the thermopower

α, and the thermal conductivity κe are calculated
by linear response theory [22]. This gives σ (T ) =
σ0L11(T ), α(T ) = (kB/e)L12/(T L11), and κe =
(kB/e)2(σ/T )(L22/L11 − L2

12/L
2
11), where σ0 = e2/(�Za)

with a an effective lattice spacing,

Lmn(T ) =
∫ ∞

−∞
dω

(
− ∂f (ω)

∂ω

)
ωm+n−2 
tr(ω) (3)

is the transport integral, and f (ω) = 1/(1 + eω/T ) is the Fermi
function. The transport function is


tr(ω) = 4

3π2

∫
dε
(ε)[ImG(ε,ω)]2, (4)

where ε is the noninteracting band energy, 
(ε) is the
noninteracting transport DOS (DOS weighted by the square
of the velocity), and G(ε,ω) is the dimensionless Green’s
function of conduction electrons calculated within DMFT.
Using 
(ε) = (4 − ε2)

√
4 − ε2/2π , the transport function can

be calculated exactly, with the result [23]


tr(ω) = 1

3π2
Im2[Gloc(ω)]

( |Gloc(ω)|2 − 3

|Gloc(ω)|2 − 1

)
. (5)

The numerical data show that the thermopower is well
approximated by the “thermodynamic” Kelvin formula [24],
αK (T ) = −(kB/qe)(∂μ/∂T ), which is obtained by assuming
that the diffusion of δn particles of charge qe, driven by
the thermal force �T/T , changes the entropy by δs and
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FIG. 1. (Color online) Upper panels: The real part (blue, above)
and the imaginary part (red, below) of the self-energy are plotted vs
energy for U = 3 and for various dopings. The energy is measured
with respect to the zero-temperature chemical potential μ0, in units
of t∗. Inset: The local DOS (violet, above) and the transport DOS
(green, below) at T = 0. Lower panel: The chemical potential �μ(T ),
measured with respect to μ0, for various dopings.
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the voltage by �V . In a stationary state without any charge
current, the loss of the thermal energy due to the heat flow,
δs × �T , is balanced by the work done against the electrical
field, qeδn × �V . Thus, �V/�T = (1/qe)(δs/δn) and the
Kelvin formula follows from the appropriate Maxwell relation.
Unlike the Kubo formula, which is obtained by making the
driving fields uniform before they become static, the Kelvin
formula is derived by taking the static limit first; the fact
that it works for strongly correlated systems is somewhat
surprising. As pointed out by Arsenault et al. [16], a good
agreement between αK (T ) and α(T ) can be taken as an
indication that transport properties are mainly determined by
the equilibrium fluctuations, i.e., by the renormalized DOS.
At very high temperatures, the Kelvin formula reduces to
the Heikes formula, αH (T ) = −(kB/e)(μ/T ), which is often
used in the experimental literature to discuss the concentration
dependence of the thermopower of oxides [13]. The difficulty
with αH (T ) is that it only holds in the atomic limit, when the
entropy and thermopower are constant. The Kelvin formula,
on the other hand, is equally simple but provides an expression
that can be used to discuss the thermopower in the full
temperature range.

III. RESULTS

The numerical calculations are performed for U = 3, which
produces a Mott-Hubbard insulator at half filling. In the
upper panel of Fig. 1, we show the frequency dependence
of the zero-temperature self-energy, the local DOS, ρloc(ω) =
−ImGloc(ω)/π , and the transport function 
tr(ω), for various
concentrations of holes. At very low doping, the slope of
Re�(ω) and the magnitude of Im�(ω) at ω = 0 (i.e., at the
chemical potential) are very large, making the quasiparticles
ill defined. As δ increases, Re�(0) decreases, while Im�(0)
increases rapidly up to a maximum. For δ > δs , both Re�(0)
and Im�(0) decrease with δ and the low-energy part of Im�(ω)
becomes a linear function of ω. For large δ, Im�(0) becomes
very small and an approximate description in terms of (dirty)
quasiparticles becomes possible [25].

The temperature dependence of the chemical potential, ob-
tained from the condition Nc = ∫

dωf (ω)ρ(ω) = 0.5 − δρloc,
where the chemical potential shifts the zero of the function
ρloc(ω) as temperature changes, is shown in the lower panel
of Fig. 1. For small doping, the low-temperature values of
μ(T ) are just below the band edge of the lower Hubbard band.
An increase of temperature shifts μ(T ) across the band edge,
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FIG. 2. (Color online) (a) The resistivity ρ(t), (b) thermopower α(T ), (c) thermal conductivity κ(T ), and (d) figure-of-merit ZT plotted vs
temperature for U = 3 and for various dopings, as indicated in the panels. The boundary between lightly doped insulators and bad metals is
indicated by the dashed line; the boundary between the underdoped and overdoped regions is indicated by the dot-dashed line.
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toward the center of the gap, which is typical of a doped Mott
insulator [15]. At higher doping, μ0 is closer to the center of
the Hubbard band and μ(T ) grows slowly toward a maximum.
However, for large enough doping, δ > δs(U ), μ(T ) never
crosses the band edge and the model describes an underdoped
bad metal (δs � 0.1 for U = 3). A further increase of doping
reduces the initial slope and the high-temperature maximum
of μ(T ), until they both vanish at the critical doping, δ = δc,
which separates the underdoped and the overdoped regimes
(δc � 0.22 for U = 3). At δc, μ(T ) is nearly constant over an
extended temperature range and the entropy, considered as a
function of doping, assumes a local maximum; the maximum
of 
tr(ω) is now close to ω = 0 and the thermopower is
negligibly small. In the overdoped regime, δ > δc, there is a
further shift of μ0 away from the center of the lower Hubbard
band and μ(T ) decreases monotonically, as in a Fermi liquid
with the same density of holes.

The local DOS and the transport function are shown in the
insets of the upper panel of Fig. 1. Doping increases the weight
of the lower Hubbard band with respect to the upper one and
shifts the maximum of ρloc(ω) away from the maximum of

tr(ω). For constant impurity concentration, the local DOS
and the transport function of the simplified Hubbard model
are temperature independent, except for a shift given by μ(T ).

The temperature dependence of the resistivity ρ(T ) =
1/σ (T ), thermopower α(T ), thermal conductivity κe(T ), and
the electronic figure of merit ZT at various dopings is shown
in Fig. 2. The transport functions exhibit three different
behaviors, depending on the level of doping. For δ � δs(U ),
the low-temperature transport is not affected by the gap, but
at intermediate temperatures, when μ(T ) crosses the band
edge, the asymmetry of the electron and hole states is much
enhanced. This gives rise to large maxima of ρ(T ) and α(T ),
the breakdown of the Wiedemann-Franz law, and a large ZT .
The signatures of lightly doped insulators are the pronounced
peaks in ρ(T ) and α(T ) and the shifts of these peaks to higher
temperatures for higher doping [15].

In the underdoped bad metal region, δ � δs(U ), transport
is completely determined by the incoherent excitations in the
lower Hubbard band. The peak in ρ(T ) is suppressed and
the linear resistivity extends to low temperatures. The ther-
mopower has a low-temperature peak but its height decreases
rapidly with δ. Unlike in the lightly doped Mott insulators,
the peak of α(T ) in (underdoped) bad metals shifts with δ to
lower temperatures and, at high temperatures, α(T ) changes
sign. The low-temperature peak of ZT is rapidly suppressed
with doping but at higher temperatures ZT becomes large.

In the overdoped dirty metal region, δ � δc, the resistivity
is further reduced but the onset of the linear region is pushed
to higher temperatures. Below the linear region, ρ(T ) exhibits
constant plus T 2 behavior. The initial slope of α(T ) is now
negative and α(T ), like ρ(T ), is a monotonic function of
temperature. ZT is very small at low temperature but it grows
to large values at high temperatures. Here, Im � is sufficiently
small that the transport properties can be described in terms of
“resilient quasiparticles” [25] or by a dirty Fermi liquid.

The comparison between the thermopowers calculated by
the Kelvin and Kubo formulas is shown in Fig. 3. The
semiquantitative agreement between α(T ) � αK (T ) indicates
that the thermodynamic fluctuations are the main cause of
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FIG. 3. (Color online) Thermopower obtained from the Kubo
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for various dopings.

transport anomalies. This is at the heart of the universal features
seen in the thermopower and the central result of our paper:
the chemical potential is a function of the DOS, and the DOS
of doped Mott insulators at high temperature share a similar
structure for a wide range of different models and materials,
so the thermopower will also follow a universal pattern. We
have verified that this result also holds in recent calculations
of the thermopower for the Hubbard model [26,27].

IV. SUMMARY

We studied the transport properties of bad metals at various
dopings using the DMFT solution of the simplified Hubbard
model. Since the self-energy functional of this model is known
exactly, we found the transport properties at arbitrary doping
and obtained the difference between overdoped bad metals and
underdoped bad metals. We also studied a slightly doped Mott-
Hubbard insulator, which is currently not numerically possible
for the systems described by the Hubbard or the Anderson
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model. In general, we find a linear resistivity and anomalous
properties of the thermopower, as observed in the many bad
metals mentioned in the introduction.

We find that the simplified Hubbard model qualitatively
describes the temperature and doping dependence of the
thermopower of many materials with strongly correlated elec-
trons. Taking T = 0.05 as room temperature TRT (assuming
the hopping satisfies t∗ = 0.5 eV), we obtain the following
features, shown in Fig. 4: (i) the values of α(T ) at TRT increase
exponentially, when δ is reduced below δc = 0.2; (ii) α(TRT)
changes sign at δc; and (iii) for δ > δc, α(TRT) is a linear
function of δ. These features are seen in the experiments on
the cuprates [5–7] but they are yet to be confirmed in other
strongly correlated materials mentioned in the introduction.

The universal nature of the thermopower stems from
μ(T ), since the Kelvin formula αK (T ) = −(kB/qe)(∂μ/∂T )
qualitatively captures the exact result. For different doped
Mott insulators the chemical potential is a function of the

DOS which shares a similar structure for a wide range
of different models, once temperature is raised above the
coherence temperature.
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