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Bang-bang shortcut to adiabaticity in trapped-ion quantum simulators
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We model the bang-bang optimization protocol as a shortcut to adiabaticity in the ground-state preparation of
a trapped-ion quantum simulator. Compared to a locally adiabatic evolution, the bang-bang protocol typically
produces a lower ground-state probability, but its implementation is so much simpler than the locally adiabatic
approach, that it can become a competitive choice to use for maximizing ground-state preparation in systems that
cannot be solved with conventional computers. We describe how one can optimize the shortcut and provide specific
details for how it can be implemented with current trapped-ion quantum simulators. However, when frustration
is strong enough, no method appears to work well for adiabatic state preparation within the experimental time
frames, and one must confront the issue of dealing with diabatic excitations within the simulation.
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I. INTRODUCTION

There has been much recent progress in trapped-ion quan-
tum simulation. Original experiments focused on adiabatic
state preparation [1–3] of the transverse-field Ising model
by initially orienting all of the spins along the field axis
(in a large initial field) and then exponentially ramping the
field to zero to prepare the ground state of the Ising model.
Adiabatically preparing a complex quantum ground state is one
of the crucial steps in many quantum computing algorithms
and forms the cornerstone for adiabatic quantum computa-
tion. Unfortunately, when the system size was increased in
experiments, and frustrated antiferromagnetic systems were
examined, it became clear that there was a large amount
of diabatic excitation [4]. This led to the study of excited
states [4–7] and to a protocol that optimizes the field ramp
with a locally adiabatic criterion [8]. In addition, other ex-
perimental situations were examined, such as Lieb-Robinson
bounds [9,10] and higher-spin cases [11]. Currently, there are
two foci for adiabatic state preparation: (i) Find shortcuts
which will allow the original protocol to be achieved or
(ii) use the diabatic excitations as a means to study low-energy
excitations. Within the first category, recent work has found
an exact shortcut for adiabatic state preparation [12,13] (at
least for the nearest-neighbor transverse-field Ising model), but
the multiple-spin interactions needed to accomplish this goal
are too complicated to implement in the current generation
of quantum simulators. In the second category, we already
mentioned experimental [4,5,7] and theoretical [6] methods
to produce or measure specific excitations. It is also possible,
especially for ferromagnetic systems [14], for the diabatic
excitations to resemble an equilibrium thermal state, which
likely is related to the eigenstate thermalization hypothesis.

The bang-bang protocol has long been known within the
field of quantum control as a useful optimization algorithm
[15]. It invokes a control strategy similar to the algorithm
employed with a thermostat, which sequentially turns the

climate control system fully on or fully off to maintain the
temperature within a specified range. Here, it corresponds to
quenching the magnetic field to an initial value, holding it
for a fixed time, and then subsequently quenching it to zero.
This protocol is illustrated schematically in Fig. 1(a), along
with the more conventional locally adiabatic ramp [8] and the
exponential ramp. The locally adiabatic ramp is determined
by having uniformity in the diabatic excitations throughout
the ramp subject to the experimental limitation on the total
time allowed for the experiment to run. It strives to ramp
the field quickly when the energy gap to the lowest coupled
excited state is high, and more slowly when that gap is
small. However, determining the ramp profile requires explicit
knowledge of the excitation energy to the first coupled excited
state as a function of magnetic field. While this can be found
experimentally, utilizing different methods for small systems
[5–7], it is a difficult procedure to carry out for large systems
that have significant frustration. This effectively rules out the
usefulness of such an approach for quantum simulators that
examine frustrated systems, which cannot already be simulated
by conventional computers. The bang-bang protocol is much
simpler and can be easily employed on large frustrated systems,
as long as one can determine the probability that the system
remains in the ground state. It is motivated, in part, from a
mathematical proof which says the most adiabatic ramp starts
and ends with the flattest field profile [16]; the bang-bang
approach carries this functional form to its extreme limit by
employing a quench after a hold time. It works by projecting the
initial state onto a collection of eigenstates at an intermediate
field, allowing those states to evolve in the constant field until
the projection onto the field-free ground state is maximized,
and subsequently quenching to zero field, while projecting the
final state onto the field-free eigenstates. It is not clear whether
waiting longer times will necessarily improve the bang-bang
shortcut. But, our results certainly suggest that improvements
in the final ground-state probability can occur if one runs the
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FIG. 1. (a) Comparison of the different ramp protocols. The
magnetic interactions are held fixed, while the field is ramped from an
initial value about five times the average nearest-neighbor exchange
to zero. Three ramp profiles are shown—the locally adiabatic ramp,
which strives to have a uniform rate of diabatic excitation throughout
the ramp, the bang-bang protocol, with sharp steps, and the exponen-
tial ramp with a time constant one fifth of the experimental run time.
(b) The low-lying spectra of an N = 10 Ising chain with spin-spin
interactions for the trap used in Ref. [4] vs the ground-state energy as
a function of the magnetic field (here, the exchange coefficients decay
with an approximate power law of α = 1.05). Since the transverse-
field Ising model has both spatial parity and spin-reflection parity, the
red line denotes the lowest-energy state that is coupled to the ground
state and hence plots �(B), as described in the text.

experiment over a longer period of time. It is likely that this
is intimately related to quantum speed limits [17], as recently
discussed by Campbell and Deffner, who relate the energy cost
associated with an adiabatic shortcut to quantum speed limits
via operator norms [18].

The results in Sec. III show that the bang-bang protocol
appears to work better the longer range the interactions are.
Moreover, as the power α for the decay of the spin-spin
coupling increases, we find the bang-bang protocol deviates
more and more from the locally adiabatic approach. Neverthe-
less, because of its simplicity in implementation, it remains
an attractive alternative for the temporal profile of the field

ramp. In addition, it can provide a different perspective for
understanding diabatic excitations within quantum simulators.

In Sec. II, we discuss the formalism for this work, the results
are presented in Sec. III, and the conclusions follow in Sec. IV.

II. FORMALISM

The Hamiltonian for the transverse-field Ising model is

H(t) = −
N∑

i,j = 1
i < j

Jij σ
x
i σ x

j − Bz(t)
N∑

i=1

σ z
i . (1)

Here, σ r
i is the Pauli spin matrix (with eigenvalues ±1 and

with r = x, y, or z denoting the spatial direction of the Pauli
matrix) at lattice site i, Bz(t) is the time-dependent transverse
field, and N is the number of spins in the lattice; we work in
units with h̄ = 1 and simulate the transverse-field Ising model
in a linear Paul trap. Experimentally, the model is generated
by using the clock states of the 171Yb+ ion as the spin-up
and spin-down states and driving the system with a laser-
induced spin-dependent force. This is achieved by employing
both red and blue detuned laser beams from the carrier
transition which induce a σx operation on the hyperfine states,
whose strength is proportional to the phonon coordinate at
lattice site i. Integrating out the phonons, under the assumption
that they are only virtually occupied during the experiment,
yields the following static spin-exchange coefficients—after
averaging over their time dependence—[19] (we use conven-
tional frequency units for all parameters),

Jij = �2νR

N∑

m=1

bm
i bm

j

μ2 − ω2
m

. (2)

We employ the experimental parameters from Ref. [4]
where � = 600 kHz is the Rabi frequency, νR = h/(Mλ2) =
18.5 kHz is the recoil energy of a 171Yb+ ion (with h being
Planck’s constant, M the mass of the ion, and λ = 355 nm
the wavelength of the laser light). In addition, bm

i is the
value of the orthonormal eigenvector at the ith ion site of
the mth transverse normal mode for the N -ion chain, ωm

is the corresponding normal-mode frequency, and μ is the
detuning of the laser from the transverse center-of-mass mode
(which we take to be μ = 4.8 MHz+111.7 kHz). We let J0 <

0 denote the average nearest-neighbor spin-spin interaction
for the antiferromagnetic case. The transverse center-of-mass
mode is fixed at 4.8 MHz. The axial center-of-mass mode
has its frequency adjusted from 355 kHz to 1.25 MHz, cor-
responding to a nearest-neighbor exchange interaction which
is near 1 kHz (|J0| ≈ 1 kHz); the exchange coefficients decay
with an approximate power law Jij ≈ J0/|Ri − Rj |α (with
Ri the equilibrium position of the ith ion) that ranges from
0.5 < α < 2 (where a smaller trap frequency corresponds to a
larger power law). As the power law becomes more uniform
(α → 0), the number of ion sites where the linear chain is stable
decreases. Thus, we only present data for smaller ion number
cases in that regime (see below for details). For large α, we
have to decrease the frequency to unphysically low values to
use the same scheme to adjust the power law; furthermore,
because the bang-bang protocol does not work well there, we
do not show or discuss those data in detail here.

022313-2



BANG-BANG SHORTCUT TO ADIABATICITY IN … PHYSICAL REVIEW A 97, 022313 (2018)

FIG. 2. False-color plots of the ground-state probability for the bang-bang shortcut to adiabaticity as a function of hold time and quench
magnetic field for α = 1.05. Different panels correspond to different N values: (a) N = 4; (b) N = 8; (c) N = 12; and (d) N = 14. Note the
interesting plateaus that form, and remain at specific times for a range of magnetic quench fields. The light green circle marks the optimized
value for the time interval of texp < 6 ms. Note that the false-color scale changes in each panel, as indicated on the accompanying legend.

For the bang-bang optimization, the time evolution of the
wave function is trivial to calculate. Each quench is handled by
the sudden approximation. Both the quench field and the hold
time are varied to optimize the final ground-state probability.
An experimental implementation requires determining the
probability to be in the final ground state to carry out the
optimization. This might be difficult to achieve if the ground
state is not known a priori, but techniques do exist that allow
for an estimation of ground-state probabilities [20] without
requiring knowledge of the ground-state wave function. Note
that since we want to pick the B field to be near the region
of minimal gap, we typically choose values between 0.2 �
B0/|J0| � 0.5 when optimizing the protocol.

The locally adiabatic ramp is significantly more compli-
cated to determine [11]. We start by calculating the excitation
spectra �(B) = E1ex − Eg.s. for the first coupled excited state
relative to the ground state (which can only be done if the
system can be solved on a conventional computer; see Fig. 1).
Then we determine the adiabaticity parameter γ from the
relation [8] γ = tf /

∫ B0

0 dB/�2(B), where B0 = 5|J0| is the
initial magnetic field and tf is the total experimental time for
the ramp. Note that because the initial state corresponds to
the ground state for B → ∞, the locally adiabatic protocol
also starts with a magnetic field quench. With the adiabaticity
parameter determined, the magnetic field ramp Bz(t) is found
by solving the first-order differential equation dBz(t)/dt =
�2[Bz(t)]/γ . We then evolve the wave function with the
time-dependent field ramp by employing the Crank-Nicolson
algorithm [21] employing a step size that is small enough. This
method is also used for the exponential ramp.

The initial state for both cases is the state where the spins are
completely aligned with the field, corresponding to Bz � |J0|.
However, the field ramp always starts with an initial field that
is much lower than this: It is equal to 5|J0| for the locally
adiabatic ramp and is often much smaller for the bang-bang
shortcut.

III. RESULTS

We choose the total experimental run time to be 6 ms—this
is key for any realistic discussion of experiments, because this
time is far too short to achieve adiabatic state preparation for
all but the smallest systems. However, this time is somewhat
longer than current experiments (which ran on the order of
2.4 ms [4]), even though it is certainly within reach with
available technology. Moreover, it is certainly long enough that
it allows us to compare the results of the bang-bang shortcut

to adiabaticity to the locally adiabatic ramp for chain sizes up
to N = 14. We adjust the power law for the different cases by
modifying the ratio of the trap frequencies, as is commonly
done in experiment. This means we cannot examine as large
systems for the smaller powers of α, because they become
unstable, but it does allow us to otherwise compare different
systems on the same footing.

We start by considering an intermediate power-law range,
where the exchange couplings decay as a power law of approx-
imately α = 1.05. In Fig. 2, we show false-color images of the
probability to be in the final ground state after the bang-bang
shortcut for a given quench field (horizontal axis) and a given
hold time (vertical axis). Note that there are high probability
plateaus (primarily red and orange) and that the plateaus remain
over a wide range of varying N in Figs. 2(a)–2(d). We use the
word “plateau” due to the long flattened red regions in Fig. 2;
the optimal probability is at the peak of this plateau region. As
the system size increases, these plateaus are pushed upwards
to longer hold times, and the area decreases, but they remain
robust for a wide range of parameters—this is the key behind
the ease in optimizing the bang-bang shortcut. Note how the red
and orange plateaus lie in about the same location as the size of
the system increases. This structure arises from the relationship
between the eigenstates of the target final system (B = 0) and
of the intermediate system (B ≈ J0) which necessitates a finite
time evolution to maximize the amplitude of the target ground
state in the eigenbasis of the intermediate system. (An analogy
to this is inserting a polarizer at an angle θ between a pair of
perpendicular polarizers as a light transmission device—one
can never fully transmit the light, but placing the third polarizer
at θ = 45◦ will optimize the transmission.) The requirement
that the hold time moves to longer times as N increases must
be related to the quantum speed limit [17].

In Fig. 3, we plot vertical cuts through the false-color
plots that show the final ground-state probability for the
bang-bang shortcut at the optimal quench field near 6 ms for
different power laws of the spin-spin exchange parameters.
One notes that the stability of the plateaus is robust and does not
depend strongly on the exponent of the decay of the exchange
interactions, because the peaks occur at nearly the same time
and have nearly the same magnitude for different power laws.
One can also clearly see that as N increases, the plateaus
at smaller hold times disappear, but the ones at higher hold
times remain robust. These plateaus show that there are optimal
quench fields and hold times for the bang-bang protocol, so it
works better than some random choice of quench field and
hold time. But in cases where the plateaus are broad, the
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FIG. 3. Vertical cuts (perpendicular to the plateaus) through the false-color optimization plots for the bang-bang shortcut with three different
power laws for the exchange coefficients: α = 0.75, 1.05, and 1.25. Different panels correspond to different size ion chains: (a) N = 4;
(b) N = 8; (c) N = 10; and (d) N = 12 (only the larger two power laws are stable here).

optimization does not depend strongly on the field or hold time,
and the bang-bang approach becomes robust for a wide range
of choices. As the size of the chain increases, and the magnetic
frustration becomes stronger, one inevitably needs to go to
longer hold times to achieve higher ground-state probabilities.

We also examined similar behavior for α = 0.5 (Nmax =
8), α = 0.75 (Nmax = 10), α = 1.25 (Nmax = 15), α = 1.5
(Nmax = 12), α = 2 (Nmax = 12), α = 2.5 (Nmax = 12), and
α = 3 (Nmax = 12). In all cases, we find that the bang-bang
protocol produces similar stability plateaus as found for the
α = 1.05 case (for α � 1.5, we stopped our calculations
at Nmax = 12 because the bang-bang approach was not so
competitive with the locally adiabatic ramp; for smaller α, we
stopped at the given Nmax values because the chain became
unstable due to the zigzag transition). Thus, the appearance of
stable plateaus seems to be a universal feature of the bang-bang
protocol, which explains its broad applicability. We find that
the bang-bang protocol worked better for the smaller powers
of α, as we show in the following series of figures (see Fig. 4).

One can see that the locally adiabatic ramp usually does
better than the bang-bang shortcut for shorter-range couplings,
but in some cases, the bang-bang approach is superior. In
all cases, the bang-bang approach performs better than an
exponential ramp, which is the most common experimental
choice and the only other choice one can make if knowledge
of the excitation gap is not known beforehand. Note, however,
that even though the locally adiabatic ramp can outperform
the bang-bang protocol most of the time, it requires detailed
knowledge of the coupled energy spectrum and therefore
becomes problematic to use for highly frustrated experimental

systems or for systems with large numbers of ions. The
bang-bang protocol then emerges as a superior alternative to
exponential ramping, especially for systems where one wants
to perform fast prototyping. In particular, the fact that the
bang-bang protocol does surpass the locally adiabatic protocol
for some cases, provides an explicit counterexample to the
conjecture that the locally adiabatic ramp is the optimal ramp
for minimizing diabatic excitation [8].

IV. CONCLUSIONS

We examined the possibility of using a bang-bang shortcut
to adiabaticity in trapped-ion quantum simulation as a way
to optimize the ground-state probability for adiabatic state
preparation. While we were not always able to produce better
results than the locally adiabatic technique, the ease of imple-
menting this protocol makes it a promising method for future
experiments. We found that interesting stable plateaus formed
in the plot of the final ground-state probability as a function of
the quench field and the hold time. This illustrated not only why
the bang-bang approach works but also showed that one needs
to go to longer times for larger systems to be able to continue
to optimize the ground-state probability. The plateaus also
indicate that experimental optimization with the bang-bang
approach is relatively simple—one picks a reasonable quench
field on the order of J and varies the hold time to find the
peak of the plateau. Then one varies the magnetic field in the
vicinity of the optimal hold time. Because the plateaus occur
at roughly the same hold time, one does not need to optimize
over the magnetic field and the hold time simultaneously, but

FIG. 4. Comparison of the final ground-state probability for the bang-bang shortcut vs the locally adiabatic ramp vs the exponential ramp.
The horizontal axis is the number of ions in the chain. (a) is for the case α = 0.5, where the bang-bang protocol occasionally beats the locally
adiabatic one. This also holds for (b) with α = 0.75. (c) is for α = 1.05. In that panel, the inset is the ratio of the ground-state percentage for the
bang-bang shortcut to the locally adiabatic ramp (black) and to the exponential ramp (green). One can clearly see that the bang-bang shortcut
produces about 80% of the locally adiabatic probability for the ground state and it does not appear to improve as the number of ions increases.
(d) shows the case α = 2, where the bang-bang protocol always beats the exponential ramp, but lags significantly behind the locally adiabatic
ramp. This same situation holds for larger α (not shown here). The lines are guides to the eye.
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instead can alternate between optimizing over the field and the
hold time. This speeds up the optimization procedure roughly
quadratically, so that one rapidly settles in on the optimal field
and hold time.

In general, our results also indicate that when a system has
significant frustration, none of these techniques can maintain
a high probability in the ground state—thus it is more useful
to consider working with the diabatic distribution of excited
states that ensues. In some cases, these distributions can closely
mimic thermal distributions [14], but this does not often occur
for frustrated spin systems. One advantage of this is with
regards to phonon creation, since the continuous change in
time of the Hamiltonian with the locally adiabatic ramp or
the exponential ramp is likely to create more phonons [as
quantitatively determined by the magnitude of

∫
dtBz(t) [22]].

We hope that experimentalists will consider employing
quantum control ideas such as the bang-bang shortcut within

their experiments in the near future as they can be used to gain
an even better understanding of how these quantum simulators
work. In addition, whenever the bang-bang optimization occurs
at a shorter time than the locally adiabatic ramp, then the
experiment will have less decoherence, which can be another
factor that is important in optimizing the state preparation, but
is one that we do not model in this work.
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