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Strongly interacting quantum systems exhibit some of the most interesting
phenomena in condensed matter physics. Until very recently the study of these
systems has been confined to either numerical simulations of rather small systems
{which still have an enormous number of quantum states} or approximate ana-
lytical methods which are uncontrolled. Most of the effort concentrated on the
fermionic systems. In the last few years the bosonic systems have attracted a lot of
interest.!23:45 Examples of the bosonic strongly correlated systems include short
coherence length superconductors, Josephson junction arrays, the dynamics of flux
lines in high temperature superconductors and the quantum hall effect.® The essen-
tial physics of all of these problems is the competition between the hopping matrix
elements and the short range strong repulsion. The minimum model which contains
the basic physics of the problem is the so called Bose Hubbard model;
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where b; is the boson annihilation operator at site i, ¢ is the hopping matrix el-
ement between the site ¢ and 7, U is the strength of the on-site repulsion, and
is the chemical potential. The approximate form of the zero temperature (I' = 0)
phase diagram can be understood by starting from the strong- coupling or “atomic”
limit.}7® In this limit, the kinetic energy vanishes (¢ = 0) and every site is occupied
by a fixed number of bosons, ny. The ground-state boson occupancy (ng) is then
chosen in such a way as to minimize the on-site energy. For a finite deviation from
integer filling, a finite amount of energy {gap) is required to move a particle through
the lattice. The bosons are localized, producing a Mott insulator. This energy gap
decreases with increasing strength of the hopping matrix elements until it vanishes
and the bosons condense into the superfluid phase. As the strength of the hop-
ping matrix elements increases, the range of the chemical potential . about which
the system is incompressible decreases. The Mott-insulator phase will completely
disappear at a critical value of the hopping matrix elements.

The Hamiltonian, Eq. (1), has been studied numerically with the Quantum
Monte Carlo Method, e.g.,2%® and analytically by mean feld approximations,®
renormalisation group®” and other techniques® Here we present an analytical
approach!® which allows us to calculate the Mott-insulator - superfluid phase
boundary at zero temperature with an accuracy comparable to the best available
numerical results. We proceed as follows. We determine the energy the of the Mott
insulator in many body perturbation theory in powers of the kinetic energy. We
compare the energy of the Mott - insulator with the energy of a so called “defect
state” in which one additional boson {or one additional hole) is in an extended
state. The energy of the defect state is also determined with many body perturba-
tion theory. The Mott - insulator superflnid transition occurs when the energy of
the "defect state” and the Mott - insulator state are equal. To zeroth order in ¢/U
the Mott insulating state is given by. To zeroth order in t/U the Mott insulating
state is given by
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where ng is the number of bosons on each site, N is the number of sites in the lattice
and {0) is the vacuum state. The defect phase is characterized by one additional
particle (hole) which moves coherently throughout the lattice. The ansatz for the
adefoct state” to zeroth order in t/U is determined by degenerate perturbation

theory:
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FIGURE 1. Phase diagram of the Bose Hubbard model in one (left) and two
{right)dimension. The squares (left) are the results of the Quantumn Monte Carlo
calculation by Scalettar et al. for the one dimensional Bose Hubbard model. The
square (right) is the result of the Quantum Monte Carlo calculation of Trivedi et
al. The hopping matrix element is scaled by the dimension d.

where the f; is the eigenvector of the hopping matrix ¢;; with the lowest eigenvalue.
The energies of these state can be calculated with Rayleigh-Schrédinger perturba-
tion theory. The result of the a third order perturbation calculation specialized to
the hypercubic lattice in one and two dimensions is shown in the Figure 1.

We have repeatedly compared a strong-coupling expansion to the numerical
QMC simulations for the incompressible-compressible phase boundary of the bose
Hubbard model. A mean-field treatment of the bose Hubbard model (e.g.1%} cannot
capture the physics of the one dimensional system which is completely dominated by
fluctuations. The dimensionality only enters as a trivial prefactor in integrals over

the phase space. For this reason, mean-field theories will always give a concave shape
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to the Mott-insulator lobes independent of the dimension. A strong-coupling expan-
sion, on the other hand, easily distinguishes the shape difference from one dimension
to higher dimensions and shows that a proper treatment of density fluctuations is
critical in determining the Mott-insulator to superfluid transition. In conclusion
we have deseribed an analytical method to accurately calculate the phase diagram
of the bose Hubbard model in any dimension. Extensions of these techniques to
include disorder will be presented separately.

We would like to thank R. Scalettar, G. Batrouni and K. Singh, for providing
us with the Quantum Monte Carlo data for the one dimensional bose Hubbard
model and for many useful discussions. This research was supported in part by the
NSF under Grant No. PHY89-04035 and DMR90-02492.
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