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Strongly interacting quantum systems exhibit same of the most interesting

phenomena in condensed matter physi=. Until very recently the study of these
systems has heen confined to either numerical simulations of rather small systems

(which still have an enormous number of q“ant”m stat=) or approximate ~na.
lytical methods which are uncontrolled. Mat of the effort concentrated on the
fermionic systems. In the last few yearn the hmonic systems have attracted a lot of

interest.l ,2,3,4,5 Example of the bmonic strongly correlated systems inc]ude ~h~rt

coherence length superconductors, Jc6ephson junction arrays, the dynamics of flux
lines in high temperature superconductors and the quantum hall effect.6 The ~n-
tial physics of all of these problems is the competition between the hopping matr~
elements and the short range strong repulsion. The minimum mdel which contains
the bmicphysics of theproblem istheso called Bme Hubbard model:
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H=–t~b~bJ–p~fii

i.i

where b< is the bmn annihilation operator at site i, t is the hopping matrix el-
ement between the site i and j, U is the strength of the on-site repulsion, and p
isthecbemical potential. Tbe approximate form of the zero temperature (’T=O)
ph= d]agram can be understood hy starting from the strong- mupling or “atomic”
limit, ‘,7,8 In this limit, the kinetic energy vanishes (t = O) and every site is occupied
byafixed number of bo30ns, no. The ground-state bwonoccupancy (no) is then

chmn in such a way a.3 to minimize the on-site energy. For a finite deviation from
integer filiing, afinite amount ofenergy (gap) isrequired tomovea particle through
the lattice. The bmns are localized, producing aMott insulator. This energy gap
decreas= with increming strength of the hopping matrix elements until it vankhe
and the bmons condenw into the superfluid ph=e. A3 the strength of the hop
ping matrix elements increms, therange of the chemical potential pabout wbih
the system is incompr~sible decrea3=. The Mott-insulator phase will completely
disappear at a critical value of thehopping matrix elements.

The Hamiltonian, Eq. (l), h= been studied numerically with the Quantum
Monte Carlo Method, e.g.,2 ,4,5 and analytically by mean field approximatiom,g

renormalisation gr0up3,7 and other technique.s.5 Here we prewnt an analyti~l

approachl” which fallows w to calculate the Mott-insulator . superfluid ph33e
boundary at zero temperature with an accuracy comparable to the best available
numerical results. We proceed % follows. We determine theenergy the of the Mott
insulator in many bcdy perturbation theory in power3 of the kinetic energy. We
compare the energy of the Mott - insulator with the energy of a m calld “defect
state” in wbi& one additional boson (or one additional hole) is in an extendd
state. The energy of the defect state is alwdetermind with many body perturb-
ation theory. The Mott - insulator superfluid transition occurs when the energy of
the’’defect state” and the Mott - insulator state are equal. Tozerothorderin t/U
the Mott insulating state is given by. Tozeroth order in t/f/ the Mott imulating
state is given by

lwMott(no))(”)= fi ~ @!)no10),=,m
(2)

where no is the number of b~mon each site, Nisthenumber ofsites in the lattice
and 10) is the vacuum state. The defect pha3e is characterized by one additional
particle (hole) which moves coherently throughout the lattice. Theansatz for tbe
“defwt state” to zeroth order in t/fJis determined by degenerate perturbation
theory

l~De,(nO)):}t,c,e = &~ fib~l~~ott(no))(o)

‘0) ‘A~fib,l~Mott(no))(0)
‘vDef(nO))hO’e - A ,

(3)
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FIGURE 1. Ph& diagram of the Bc6e Hubbard model in one (left) and two

(right)dimension. The WUarES (left) are the r-ults of the Quantum Monte Carlo
calculation by Scalettar et al. for the one dimensional B- Hubbard model. The
square (right) is the r=ult of the Quantum Monte Carlo calculation of Wlvedi et
al. The hopping matrix element is scaled by the dimension d.

where the fi is the eigenvector of the hopping matr~ tij with the 10w~t eigenvalue.
The energi- of three state can be calculated with Rayleigh-SchrHlnger perturba-
tion theory. The result of the a third order perturbation calculation spialized to
the hypercubic Iattim in one and two dimensions is shown in the Figure 1.

We have repeatedly compared a strong-coupling expansion to the numerid
QMC simulations for tbe incomprmsible-compr-ible phase boundary of the hose

Hubbard model. A mem-field treatment of the hose Hubbard model (e.g. 1,9) cannot

capture the physim of the one dimensional system which is completely dominated by
fluctuations. The dimensionality only enters m a triviaf prefactor in integrals over
the phase space. For this reason, mean-field theories will always give a concave shape
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to the Mott-insulator lobes independent of the dimension. A strong-coupling expm-
sion, on the other hand, e~ily distinguish- the shape difference from one dimension
to higher dimensions md shows that a proper treatment of density fluctuations is
critical in determining the Mott-insulator to superfluid transition. In conclusion
we have described an analytical method to accurately calculate the ph~e diagram
of the bme Hubbard model in my dimension. Extensions of these techniqum to
include disorder will be prmented separately.
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