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Strong-coupling perturbation theory for the two-dimensional Bose-Hubbard model
in a magnetic field
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The Bose-Hubbard model in an external magnetic field is investigated with strong-coupling perturbation
theory. The lowest-order secular equation leads to the problem of a charged particle moving on a lattice in the
presence of a magnetic field, which was first treated by Hofstadter. We present phase diagrams for the
two-dimensional square and triangular lattices, showing a change in shape of the phase lobes away from the
well-known power-law behavior in zero magnetic field. Some qualitative agreement with experimental work
on Josephson-junction arrays is found for the insulating phase behavior at small fields.
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I. INTRODUCTION

The simplest model of strongly interacting bosons is
Bose-Hubbard model~BHM!, which has been used to de
scribe superfluid helium,1 Cooper pairs in thin granular su
perconducting films,2 and Josephson-junction arrays.3 Much
theoretical work has concentrated on the phase diagram
the BHM in zero magnetic field4 because of the technica
problems associated with introducing an external magn
field ~such as the sign problem in quantum Monte Ca
simulations!. Experimentalists, on the other hand, have co
centrated on studying systems in an external magnetic
because the phase transition can be tuned by adjusting
magnetic field rather than changing the samples measure5,6

We study the BHM on two-dimensional lattices in a perpe
dicular magnetic field by extending the strong-coupling p
turbation theory for the field-free case.7 This theoretical tech-
nique can incorporate magnetic-field dependence in
straightforward manner and is useful in studying field-tun
transitions. We concentrate on pure systems in this contr
tion and do not include any effects due to disorder. W
present zero-temperature phase diagrams, study excita
gap energies, calculate the dynamical critical exponentzn
for small fields~assuming that there is critical behavior in
field!, and compare our theoretical results with experimen
ones.

The BHM contains the key physics of a many-partic
bosonic system with competing potential and kinetic-ene
effects. The typical zero-temperature phase diagram for
nonmagnetic case shows incompressible Mott-insula
~MI ! phases surrounded by compressible superfluid ph
~SF!.4 The insulator to superfluid transitions at the tip of t
lobes ~where the density remains constant! are driven by
quantum phase fluctuations, while those at the sides of
lobes~where the density varies! are driven by density fluc-
tuations, i.e., particle or hole excitations. Introducing a m
PRB 600163-1829/99/60~4!/2357~6!/$15.00
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netic field is expected to increase the region of the MI ph
because the localizing effect on the itinerant bosons redu
the stability of the SF phase.

We consider bosons with a total spin of 0. The only effe
of a perpendicular magnetic fieldH is then on the orbital
motion of the bosons, which effects changes in the phas
the hopping matrixT̂5(t jk) between lattice sitesj andk. By
choosing a Landau gauge for the vector potentialA(r )
5H(0,x,0), the Bose-Hubbard Hamiltonian in an extern
magnetic field becomes

HBH52(̂
jk&

~ t jkbj
†bk1H.c.!1

U

2 (
j

n̂ j~ n̂ j21!2m(
j

n̂ j ,

~1!

where the hopping matrix is nonzero only between nea
neighbors and is given by

t jk5te2 i2pÃjk, Ãjk5
1

f0
E

j

k

A~r !•dr . ~2!

This hopping matrix is Hermitian becauset is real andÃjk

52Ãk j . Here the boson creation operator for the lattice s
j is bj

† , n̂ j5bj
†bj is the corresponding number operator,U is

the on-site repulsion of the bosons, andm is the chemical
potential. We chooseU to be our energy scale and measu
all energies in units ofU. The magnetic flux quantum is
given by f05hc/e, and the magnetic flux per plaquet
2pf5A(r )•dr;a2H is a measure of the strength of th
magnetic fieldH ~wherea is the lattice spacing!.

The form of the zero-temperature phase diagram can
understood by starting from the atomic limit,7 where t50
and every site is occupied by a fixed number of bosonsn0.
The energy to add one boson onto a site withn0 bosons is
E(n011)2E(n0)5n0U2m, so that there is a finite energ
2357 ©1999 The American Physical Society
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gap when (n021)U,m,n0U and the system is an incom
pressible Mott insulator. Whenm5n0U, then all states with
a density betweenn0 and n011 bosons per site are dege
erate in energy, and the system becomes a compres
fluid. As the strength of the hopping matrix elements
creases, the range of the chemical potential about which
system is incompressible decreases. The Mott insul
phase disappears at a critical value of the hopping ma
elements~which depends on the strength of the magne
field! and the system becomes a superfluid~see Fig. 2!. We
provide a systematic study of the BHM in a magnetic fie
by examining the system in a perturbative expansion ab
the atomic limit with the boson kinetic energy acting as t
perturbation.

The paper is organized as follows: Sec. II describes
formalism used in the strong-coupling perturbation theory
the presence of a magnetic field. Section III presents
results for the phase diagrams and the excitation energie
a magnetic field and Sec. IV contains the conclusions.

II. FORMALISM

Our procedure is to calculate the ground-state energ
the MI phase withn0 bosons per siteEg(n0 ,t), and of the
excited states in the charge sector with one extra bo
Ep(n0 ,t) and one extra holeEh(n0 ,t), in a Rayleigh-
Schrödinger perturbative expansion in the hopping mat
elementt. When the energy of the MI and the state with o
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extra boson are equal, the system undergoes a phase tr
tion from the incompressible MI phase to the compressi
SF phase with density larger thann0. The similar occurs
when the state with one extra hole is degenerate with the
phase~except now the density of the SF phase is less t
n0). The detailed formalism of the strong-coupling expa
sion for the ground-state energies has already b
presented.7 The only modifications of the previous calcula
tions needed here are to take into account the fact that
hopping matrix now has a complex phase and the chan
required for the nonbipartite hopping matrix of the triangu
lattice. The important parameter that enters the results is
minimal eigenvalueet of the kinetic-energy matrix2t jk
which includes a factore that depends on the magnetic fiel
This parameter determines how the degeneracy is lifted
the first-order secular equation for the energy of the exc
states in the charge sector. Formally this solution of the m
mal eigenvalue is identical to finding the band minimum
the Hofstadter problem.8

The Mott phase diagram is determined by the two M
phase boundaries, one for the particle excitations@where
Ep(n0 ,t)2Eg(n0, t)50] and one for hole excitations
@whereEh(n0 ,t)2Eg(n0 ,t)50]. For each value oft there is
a critical value of the chemical potential where the syst
changes phase from an incompressible to compressible fl
The upper and lower curves for the Mott phase lobe are t
described by this critical value of the chemical potent
mp/h(t). The results of our expansion through third order a
mp~ t !5n01e~n011!t2n0~n011!e2t21
n0

2
~5n014!zt22n0~n011!@~2n011!~222e2!1z~ 25

4 n01 7
2 !#et3

112d latn0~ 31
4 n0

21 21
2 n013!cos~2pf!t31O~ t4!,

mh~ t !5n0212en0t1n0~n011!e2t22
n011

2
~5n011!zt21n0~n011!@~2n011!~222e2!1z~ 25

4 n01 11
4 !#et3

212d lat~n011!~ 31
4 n0

215n01 1
4 !cos~2pf!t31O~ t4!, ~3!
m

whered lat50 or 1 for the square or the triangular lattic
respectively, andz is the corresponding number of neare
neighbors~4 or 6, respectively!. These results have bee
verified by both analytical small-cluster calculations and
numerical cluster expansions.

The magnetic field appears in two places.
~1! The magnetic field couples to the orbital current of t

bosons as the particle or hole travels around a plaquette
encloses the flux 2pf. In our third-order calculation, the
orbital coupling only enters for the triangular lattice~it enters
at fourth order for the square lattice as four hops are requ
to enclose a plaquette!.

~2! The other effect of the magnetic field is to change
minimal energy of the extra particle or hole moving in t
Mott phase background. Although the location of the mi
num of the dispersion of the particle~hole! in the Brillouin
zone is gauge dependent the value of the minimum is no
t
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We consider a rational flux 2pf52pp/q. To find the
minimal eigenvalues of the hopping matrixT̂, we follow
Bellisard9 and Hasegawa.10 In the Landau gauge, the syste
maintains its translational invariance in thex direction while
it requiresm steps for translational invariance in they direc-
tion. For the square lattice, the periodm equalsq, for the
triangular lattice,m5q/2 for evenq andm5q for odd q. A
Fourier transformation now changesT̂ to the following m

3m matrix T̃f(k):

T̃f~k!5tS M1 A1 0 Am
!

A1
! M2 � �

0 � � � 0

� � Mm21 Am21

Am 0 Am21
! Mm

D , ~4!
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with

Mn
sq522 cos~kya12pnf!, An

sq52eikxa, ~5!

Mn
tri 522 cos~kya14pnf!,

An
tri 52eikxa~11ei2pf(2n11)1 ikya!. ~6!

The eigenvalues within the corresponding Brillouin zoneB
5$k¢ u0<kx<2p/m,0<ky<2p/m% determine them energy
bands of a boson moving in the magnetic field.

The minimal eigenvalue of the band structureet is shown
in Fig. 1 as a function of the magnetic flux per plaque
2pf. This is the parameter that enters Eq.~3! to determine
the Mott phase boundary. Notice how on the square lat
the largest dip is atf51/2 followed by 1/3, 1/4, and
2/5, . . . while on the triangular lattice the sequence cor
sponds to 1/2, 1/4, 1/3, and 3/8, . . . . The relation e(f)
5e(12f) holds for both lattices, since the flux of 2p is
equivalent to a flux of 0. Hence, the maximal magnetic fi
that can be applied corresponds tof51/2. This maximal
field configuration is realized by all real hopping matrix e
ements for each lattice: on the square lattice one takes t
positive and one negative matrix element on each plaqu
while on the triangular lattice one takes all matrix eleme
to be negative. In particular, the ‘‘fully frustrated’’ case
f51/2 on a triangular lattice is the only nonzero magne
field case that can be easily treated by a high-or

FIG. 1. Band minimum of the magnetic band structuree(f) for
the square and triangular lattice.
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expansion11 because it maintains the full periodicity of th
triangular lattice in zero magnetic field.

Rather than plotting the phase diagrams for just a th
order expansion, we choose to extrapolate our results u
knowledge about the overall structure of the phase diagr
There are numerous ways in which one can envision extra
lating the results of our third-order expansion to higher
der. It has been demonstrated by Elstner and Monien th
Padé analysis of the strong-coupling perturbation ser
yields rapid convergence in zero field.11 We apply this
method to the magnetic-field case for small magnetic fie
by using a Pade´ approximant12 for the logarithmic derivative
of the difference in particle and hole Mott phase boundar
D(t)5mp(t)2mh(t). We assume the same behavior
found in the zero-field case, where the tip of the Mott lo
has a power-law ‘‘critical point’’ with an exponentzn,
D(t)5A(t)(tcrit2t)zn. ~This form is just an ansatz though
as the critical behavior at the tip of a Mott lobe is unknow
in a magnetic field.! Then the Pade´ analysis fits

]

]t
ln D~ t !5

zn

t2tcrit
1

A8~ t !

A~ t !
, ~7!

to estimate the critical point and the dynamical critical exp
nent ~the pole determinestcrit and the residue determine
zn). The rest of the Pade´ approximant determinesA(t),
which then allowsD(t) to be constructed. A similar Pad´
analysis for the midline of the Mott lobemm(t)5 1

2 @mp(t)
1mh(t)# ~which is a regular function oft) then allows the
entire phase diagram to be constructed.

III. RESULTS

Atomic systems with a lattice spacinga of around 2 Å
require a field ofH>53103 Tesla for a half flux quantum
per plaquette. This is too large a field to be accessed exp
mentally, hence atomic systems always lie in the low-fie
region, where the perturbation theory is most accurate. H
ever, for macroscopic lattice systems witha>231024 cm
~as in a Josephson-junction array!, the whole magnetic-field
range is attainable by experiments with fields as low asH
>0.5 G. We show below how our theoretical results co
pare to the superfluid insulator transitions on two dime
sional Josephson-junction arrays.5

Figure 2 presents the phase diagram of the first three lo
for the square lattice@Fig. 2~a!# and the triangular lattice
@Fig. 2~b!# in the low magnetic-field region. The incompres
ible, Mott-insulating phase grows in size when the magne
e
FIG. 2. Phase diagram for th
square~a! and the triangular~b!
lattice in relatively small magnetic
fields using the Pade´ analysis.
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FIG. 3. ~a! Dependence of the gap energy~for fixed hopping! on the magnetic field. Notice the kinks that develop at commensu
magnetic fields (f51/3 or 1/4). The curve is cut off atf50.35 because the perturbation theory fails for larger values off. ~b! Dependence
of the dynamical critical exponentzn on magnetic field when the truncated expansions~dashed lines!, or a Pade´ approximant~solid lines!,
are fit to the power-law behavior at the tip of the lobe. Notice our fit showszn to be field dependent and rapidly approaching 1, which le
us to conjecture thatzn51 for all magnetic fields.
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field increases from zero. This shows, as expected, the lo
izing effect of the magnetic field on the itinerant bosons
appears that the shape of the lobes changes from a si
power-law dependence at the tip to something else. There
three possibilities for the shape of the phase lobe at the
~i! it remains power-law-like with an exponent that may d
pend on the magnetic field;~ii ! it has a more exotic ‘‘cusp-
like’’ dependence as seen in the Kosterlitz-Thouless tra
tion; or ~iii ! it has a discontinuous change in slope at the
and thereby has a ‘‘first-order-like’’ shape corresponding
the crossing of the two curves representing the upper
lower phase lobes, with no ‘‘critical’’ behavior at the tip~this
last result corresponds tozn51). There is theoretical evi
dence in favor of this last conclusion, which is a simil
behavior to what happens to the MI phase in the presenc
disorder, but here the explanation is different.13 If f5p/q is
expressed in lowest terms, then the order parameter req
q components to describe it. Asq increases, it is more likely
that the transition is first order rather than second order,
hence one would expect that the tip has a slope discontin
immediately upon the introduction of the magnetic fie
since small fields correspond to large values ofq. The Pade´
analysis given above assumes that~i! holds, but aszn ap-
proaches 1 for larger fields, the system crosses over to
behavior of~iii ! unless something more exotic like~ii ! inter-
venes. We cannot distinguish between scenarios~i! or ~iii !
with the low-order expansions presented here, but our res
suggest scenario~iii ! is correct, because the exponentzn
rapidly approaches 1 as the field is increased. Clearly fur
theoretical analysis is needed to decide this issue.14

For larger magnetic fields, we find that the two boundar
of the Mott phase lobe no longer cross at a critical value ot,
but rather they ‘‘repel’’ each other. This indicates that the
of the MI phase lobe has moved out to such a large valu
t that the perturbation theory needs to be carried out to hig
order to achieve proper convergence. Such an exercise
already been carried out through a linked-cluster expan
for the fully frustrated case (f51/2) on a triangular lattice.11

The calculation from 3rd to 11th order converges towar
‘‘first-order’’ transition (zn51) at tcrit'0.06 which yields a
much larger insulating phase regime than the case with
magnetic field wheretcrit'0.038. A comparable experimen
al-
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tal result is found5 where the insulator to superfluid trans
tions on Josephson-junction arrays was studied by chan
the ratio of the Josephson coupling energyEJ and the charg-
ing energyEC . SinceEJ is the energy scale for the supe
conducting coupling between the islands andEC is the scale
for the interaction between the charge carriers, they can
related to the hopping energyt and the on-site repulsionU,
respectively. The results for small temperatures can be
trapolated toT50 and show a transition at largerEJ /EC for
the f51/2 case than for thef50 case, which qualitatively
matches with our calculations~since tcrit /U increases with
magnetic field!.

The experimental data can be analyzed in one of two d
pictures with the Bose-Hubbard model. In the first view,
bosons are the Cooper pairs on each island, and the
effect of the magnetic field is to modify the hopping matr
Vortices appear in this case as supercurrent loops in the
tem. While the density of vortices increases as the magn
field is modified, the density of Cooper pairs remains ess
tially constant over the low-field ranges~on the order of
Gauss! explored in the experiments. The second picture e
ploys the duality transformation that views the vortic
themselves as the bosonic particles.15 The mobility of the
vortices is determined byEC and their interaction byEJ , so
the roles of those parameters are reversed in this case.
magnetic field then takes on the role of the chemical po
tial. We will not employ this second picture here, which h
been used to evaluate the Mott insulating phase of the v
ces in the quasi-one-dimensional Josephson-junc
arrays.16

Another qualitative agreement with experiment is fou
for small fields. As shown in Fig. 2 the MI phase area a
the location of the tip of the lobe increase with increas
magnetic field up to aboutf50.1 ~for the square lattice!.
Measurements show (EJ /EC)crit'0.59 and 0.83 forf50
and 0.1, respectively, which is quantitatively similar to o
results with tcrit increasing by about 45% from 0.057
0.083 asf increases from 0 to 0.1. In addition, the tip loc
tion for larger field strengths saturates in the experime
which is a result that we cannot confirm, because our an
sis through third order int fails whentcrit becomes too large
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In Fig. 3~a! we show the evolution of the excitation-ga
energiesD(t) for fixed hoppingt as a function of magnetic
field. Initially the gap energy increases which indicates
increasing stability of the MI phase in a weak magnetic fie
For larger magnetic fields, we see dips in the gap ene
around rational magnetic fluxes such asf51/3 or 1/4
~which can be reliably calculated for small values oft). A
similar commensurable structure is found in experiments
measure the zero-bias resistance (R0) of a Josephson
junction array in a magnetic field.5 A small R0 indicates
proximity to the SF phase. At rationalf the vortices form a
lattice which is commensurable with the Josephson-junc
array and favors a pinning of the vortices, leading to a
crease of the zero-bias resistance. Qualitatively, we see
same behavior in the excitation gap energies and the z
bias resistance. Notice how the dips track closely with
dips seen in the minimal eigenvalue of the hopping matrix
shown in Fig. 1. This behavior explains the dips seen in
experimental data on the triangular lattice that are m
prevalent at 1/2, followed by 1/4, 1/3, 3/8, and so on. T
experimental data5 also show that the system has four diffe
ent regions of superconducting stability for one value ot,
centered at 0, 1/2, 1/4, and 1/3. While our results in Fig. 3~a!
only show superconductivity aroundf50 @whereD(t)50#,
we can see that ift was increased, and the calculations c
ried out to higher order, it is likely that we would see add
tional superconducting regions appearing~we believe first
around 1/2, followed by 1/4 and 1/3).

Finally we study the magnetic-field dependence of
dynamical critical exponentzn @~Eq. 7!# for small fields in
Fig. 3~b!. The BHM in zero magnetic field can be mapp
onto a three-dimensionalXY model which haszn50.67 in-
dependent of the lattice structure. By using the Pade´ analysis
on our third-order expansion, we obtainzn50.61 for the
square lattice andzn50.72 for the triangular lattice atf
50. A Pade´ analysis of a tenth-order expansion11 yields zn
50.69 for both lattice types, which shows the converge
of higher-order calculations in our method. As seen in Fig
the dynamical exponent appears to increase as the mag
field increases. It is, however, difficult to conclude wheth
zn remains equal to its zero-field value, increases with m
netic field, or immediately jumps to one upon the onset o
magnetic field, solely on the basis of this third-order ana
sis. But, the fact that the most likely point to havezn,1 is
f51/2 ~because it requires only two components for t
order parameter!, and a higher-order expansion predictszn
51 there, leads us to conjecture thatzn51 for all nonzero
magnetic fields. This latter result is supported by Mon
Carlo data on the antiferromagneticXY model for stacked
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triangular planes, which have a weakly first-order transit
rather than a critical point,17 and should be the effective
model for the critical behavior on the triangular lattice wi
f51/2.

IV. CONCLUSIONS

In conclusion, we applied a strong-couplingt/U expan-
sion ~up to third order! to study the insulator-superfluid
phase transitions of the two-dimensional Bose-Hubb
model under the influence of a magnetic field. Although o
analysis is limited, we are able to produce reasonable res
that both agree with physical intuition and with experimen
We found that the Mott insulating phase enlarges with
increasing magnetic field. This is explained by the localizi
effect of the magnetic field on the moving bosons. Quali
tive agreement in the increase of the critical hopping ene
tcrit was found with experimental results on Josephs
junction arrays.5 For small magnetic fields, we find a powe
law behavior of the gap energy close to the critical po
(tcrit ,mcrit) with a dynamical critical exponent that increas
with f. For larger magnetic fields, we find a repulsion of t
two phase boundaries, which indicates a change from
power-law like behavior to either Kosterlitz-Thouless beha
ior or to a ‘‘first-order’’ transition. Our results are also con
sistent with the ‘‘critical point’’ immediately changing to
‘‘first-order’’ discontinuous change in the slope of the pha
boundaries as the magnetic field is turned on. We found
the gap energies for small fixed hopping and variable m
netic field illustrate commensurability effects for ration
fluxes which is also seen in Josephson-junction array exp
ments. More work is needed to understand the chang
character of the insulator to superfluid phase transition a
magnetic field is introduced: does the system have a fi
dependent power-law dependence which crosses over
‘‘first-order’’ ~or more exotic cusplike shape! as the field
increases, or does it immediately become ‘‘first-order’’ in
field? Higher-order calculations are needed to decide this
sue. It would also be interesting to extend the scaling an
sis of the BHM to include its behavior in an external ma
netic field.
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