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Strong-coupling perturbation theory for the two-dimensional Bose-Hubbard model
in a magnetic field
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The Bose-Hubbard model in an external magnetic field is investigated with strong-coupling perturbation
theory. The lowest-order secular equation leads to the problem of a charged particle moving on a lattice in the
presence of a magnetic field, which was first treated by Hofstadter. We present phase diagrams for the
two-dimensional square and triangular lattices, showing a change in shape of the phase lobes away from the
well-known power-law behavior in zero magnetic field. Some qualitative agreement with experimental work
on Josephson-junction arrays is found for the insulating phase behavior at small fields.
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[. INTRODUCTION netic field is expected to increase the region of the MI phase
because the localizing effect on the itinerant bosons reduces
The simplest model of strongly interacting bosons is thethe stability of the SF phase.

Bose-Hubbard modelBHM), which has been used to de-  We consider bosons with a total spin of 0. The only effect
scribe superfluid heliurh,Cooper pairs in thin granular su- of a perpendicular magnetic field is then on the orbital
perconducting film$,and Josephson-junction arrayduch ~ motion of the bosons, which effects changes in the phase of
theoretical work has concentrated on the phase diagram @fie hopping matri>ZT'=(tjk) between lattice sitelsandk. By
the BHM in zero magnetic fiefdbecause of the technical choosing a Landau gauge for the vector potenfigr)

problems associated with introducing an external magnetic- H(0,0), the Bose-Hubbard Hamiltonian in an external
field (such as the sign problem in quantum Monte Carlomagnetic field becomes

simulationg. Experimentalists, on the other hand, have con-

centrated on studying systems in an external magnetic field U o .

because the phase transition can be tuned by adjusting tHdBH:_E (t,-kb;rkar H.c)+ > 2 n,—(n,-—l)—,uz n;,

magnetic field rather than changing the samples meas(red. (k) ! ! 1

We study the BHM on two-dimensional lattices in a perpen- @

dicular magnetic field by extending the strong-coupling perwhere the hopping matrix is nonzero only between nearest

turbation theory for the field-free cad@his theoretical tech- neighbors and is given by

nigue can incorporate magnetic-field dependence in a

straightforward manner and is useful in studying field-tuned . _ 1 [k

transitions. We concentrate on pure systems in this contribu- ty=te™ 2™k, Ajk=¢7f, A(r)-dr. ()

tion and do not include any effects due to disorder. We 07

present ze_ro-temperature phase dlggram_s., study exc'tat'o?his hopping matrix is Hermitian becausés real andA

gap energies, calculate the dynamical critical exporzent ~ i e

for small fields(assuming that there is critical behavior in a = —Aj - Here the boson creation operator for the lattice site

field), and compare our theoretical results with experimentaj is b}, n;=bb; is the corresponding number operatdris

ones. the on-site repulsion of the bosons, apdis the chemical
The BHM contains the key physics of a many-particle potential. We choos®l to be our energy scale and measure

bosonic system with competing potential and kinetic-energyall energies in units olJ. The magnetic flux quantum is

effects. The typical zero-temperature phase diagram for thgiven by ¢p,=hc/e, and the magnetic flux per plaguette

nonmagnetic case shows incompressible Mott-insulatin@m¢=A(r)-dr~a®H is a measure of the strength of the

(MI) phases surrounded by compressible superfluid phasesagnetic fieldH (wherea is the lattice spacing

(SP.* The insulator to superfluid transitions at the tip of the  The form of the zero-temperature phase diagram can be

lobes (where the density remains constaatre driven by understood by starting from the atomic limitvheret=0

guantum phase fluctuations, while those at the sides of thand every site is occupied by a fixed number of bosafs

lobes (where the density varigsare driven by density fluc- The energy to add one boson onto a site wighbosons is

tuations, i.e., particle or hole excitations. Introducing a magE(ny+1)—E(ng) =neU — i, so that there is a finite energy
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gap when fp—1)U<u<ngU and the system is an incom- extra boson are equal, the system undergoes a phase transi-
pressible Mott insulator. Whep=nyU, then all states with  tion from the incompressible Ml phase to the compressible
a density betweeny andny+1 bosons per site are degen- SF phase with density larger than. The similar occurs
erate in energy, and the system becomes a compressibiéen the state with one extra hole is degenerate with the Ml
fluid. As the strength of the hopping matrix elements in-Phase(except now the density of the SF phase is less than
creases, the range of the chemical potential about which théo)- The detailed formalism of the strong-coupling expan-
system is incompressible decreases. The Mott insulatotion for _the ground-state energies has already been
phase disappears at a critical value of the hopping matrigresented.The only modifications of the previous calcula-
elements(which depends on the strength of the magnetictions needed here are to take into account the fact that the
field) and the system becomes a superfiiside Fig. 2 We  NOPping matrix now has a complex phase and the changes
provide a systematic study of the BHM in a magnetic fielgrequired for the nonbipartite hopping matrix of the triangular
by examining the system in a perturbative expansion abodﬁt.t'_ce- Thg important parameter thgt enters the re'sults is the
the atomic limit with the boson kinetic energy acting as theminimal eigenvalueet of the kinetic-energy matrix—t;,
perturbation. which includes a factoe that depends on the magngtlc.ﬂeld..
The paper is organized as follows: Sec. Il describes thd his parameter determines how the degeneracy is lifted in
formalism used in the strong-coupling perturbation theory inthe first-order secular equation for the energy of the excited
the presence of a magnetic field. Section Ill presents thétates in the charge sector. Formally this solution of the mini-
results for the phase diagrams and the excitation energies [Ral €igenvalue is identical to finding the band minimum in

a magnetic field and Sec. IV contains the conclusions.  the Hofstadter probler. _ .
The Mott phase diagram is determined by the two Mott
Il. FORMALISM phase boundaries, one for the particle excitatibwbere

Ep(no,t) —E4(ng, t)=0] and one for hole excitations
Our procedure is to calculate the ground-state energy dfwhereE(ng,t) —Eg4(ng,t)=0]. For each value dfthere is
the MI phase withn, bosons per sit&,(ng,t), and of the  a critical value of the chemical potential where the system
excited states in the charge sector with one extra bosochanges phase from an incompressible to compressible fluid.
Ep(ng,t) and one extra holeEy(ng,t), in a Rayleigh-  The upper and lower curves for the Mott phase lobe are then
Schralinger perturbative expansion in the hopping matrixdescribed by this critical value of the chemical potential
elementt. When the energy of the Ml and the state with oneun(t). The results of our expansion through third order are

2.2, Mo 2 2 25 7 3
Mp(t):n0+ €(n0+1)t_n0(no+ 1)6 t +?(5n0+4)zt _no(n0+ 1)[(2n0+1)(_2_6 )+Z(Tn0+ E)]Et
+126,4N0( 33+ Zng+ 3)cog 2mh) 13+ O(1%),
242 no+1 2 2 25 11 3
mp(t)=ng—1—engt+ng(ng+1)et —T(5n0+1)zt +Nng(Ng+1)[(2ng+1)(—2—€°)+z(Fno+ 7 )]et

—128,,1(Ng+ 1) (3n3+5ng+ 3)cog 2md)t3+ O(t?), 3
0

where §,;=0 or 1 for the square or the triangular lattice, = We consider a rational flux 2¢=27p/q. To find the

respectively, anc is the corresponding number of nearestminimal eigenvalues of the hopping matrix we follow
neighbors(4 or 6, respectively These results have been Bellisard and Hasegaw#. In the Landau gauge, the system
verified by both analytical small-cluster calculations and bymaintains its translational invariance in thelirection while
numerical cluster expansions. it requiresm steps for translational invariance in thalirec-
The magnetic field appears in two places. tion. For the square lattice, the period equalsq, for the
(1) The magnetic field couples to the orbital current of thetriangular latticem=g/2 for eveng andm=q for oddg. A
bosons as the particle or hole travels around a plaquette antburier transformation now changdsto the following m
encloses the flux 2¢. In our third-order calculation, the matrix7r¢(k):
orbital coupling only enters for the triangular lattigeenters

at fourth order for the square lattice as four hops are required M, A, O Al
to enclose a plaqueite .
(2) The other effect of the magnetic field is to change the A M;
minimal energy of the extra particle or hole moving in the T’¢(k)=t o - - 0 , (4)

Mott phase background. Although the location of the mini-
num of the dispersion of the particlbole) in the Brillouin
zone is gauge dependent the value of the minimum is not. Am 0 An1 My
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-2.0 ' - ' ' expansioft because it maintains the full periodicity of the
triangular lattice in zero magnetic field.

Rather than plotting the phase diagrams for just a third-
order expansion, we choose to extrapolate our results using
knowledge about the overall structure of the phase diagram.
There are numerous ways in which one can envision extrapo-
lating the results of our third-order expansion to higher or-
der. It has been demonstrated by Elstner and Monien that a
Pade analysis of the strong-coupling perturbation series
yields rapid convergence in zero fiefdl.We apply this
50F / — Square Lattice L method to the magnetic-field case for small magnetic fields
;o T Triangular Lattice \ by using a Padapproximant? for the logarithmic derivative
; ! of the difference in particle and hole Mott phase boundaries
/ . . | A(t)= up(t) —un(t). We assume the same behavior as
0.0 0.2 0.4 0.6 08 1.0 found in the zero-field case, where the tip of the Mott lobe

magnetic flux @ has a power-law “critical point” with an exponertw,
A(t)=A(t) (terir—t)?. (This form is just an ansatz though,
as the critical behavior at the tip of a Mott lobe is unknown
in a magnetic field. Then the Padanalysis fits

energy/t=¢

FIG. 1. Band minimum of the magnetic band structufe) for
the square and triangular lattice.

with A1)

+ _!
1:_tcrit A(t)

a J—
A= @)

M3%=—2cogkja+2mng), AN=-ekd (5
to estimate the critical point and the dynamical critical expo-
nent (the pole determines,; and the residue determines
_ , A . zv). The rest of the Padapproximant determineé(t),
Ay'=—eld(1+2ment Tk (6)  which then allowsA(t) to be constructed. A similar Pade
. . . o analysis for the midline of the Mott Iobﬁm(t)=%[,up(t)
Th(i eigenvalues within the corresponding Brillouin zdhe + up(t)] (which is a regular function of) then allows the
={k|0sk,<27m/m,0< ky=< 27/m} determine them energy  entire phase diagram to be constructed.
bands of a boson moving in the magnetic field.

The minimal eigenvalue of the band structeétes shown
in Fig. 1 as a function of the magnetic flux per plaquette
2m¢. This is the parameter that enters E8). to determine Atomic systems with a lattice spacirayof around 2 A
the Mott phase boundary. Notice how on the square latticeequire a field ofH=5x10* Tesla for a half flux quantum
the largest dip is atp=1/2 followed by 1/3, 1/4, and per plaquette. This is too large a field to be accessed experi-
2/5, ... while on the triangular lattice the sequence corre-mentally, hence atomic systems always lie in the low-field
sponds to 1/2, 1/4, 1/3, and 3/8 .. Therelation e(¢) region, where the perturbation theory is most accurate. How-
=e€(1— ¢) holds for both lattices, since the flux of2is  ever, for macroscopic lattice systems wik=2Xx10 4 cm
equivalent to a flux of 0. Hence, the maximal magnetic field(as in a Josephson-junction arfathe whole magnetic-field
that can be applied corresponds ¢o=1/2. This maximal range is attainable by experiments with fields as lowHas
field configuration is realized by all real hopping matrix el- =0.5 G. We show below how our theoretical results com-
ements for each lattice: on the square lattice one takes thrgmre to the superfluid insulator transitions on two dimen-
positive and one negative matrix element on each plaquettsjonal Josephson-junction arrays.
while on the triangular lattice one takes all matrix elements Figure 2 presents the phase diagram of the first three lobes
to be negative. In particular, the “fully frustrated” case of for the square latticéFig. 2[@] and the triangular lattice
¢=1/2 on a triangular lattice is the only nonzero magnetic-{Fig. 2(b)] in the low magnetic-field region. The incompress-
field case that can be easily treated by a high-ordeible, Mott-insulating phase grows in size when the magnetic

My =—2 cogkja+4mne),

IIl. RESULTS
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FIG. 3. (a) Dependence of the gap enerffpr fixed hopping on the magnetic field. Notice the kinks that develop at commensurate
magnetic fields ¢=1/3 or 1/4). The curve is cut off at=0.35 because the perturbation theory fails for larger values. ) Dependence
of the dynamical critical exponerty on magnetic field when the truncated expansi@eshed lines or a Padepproximant(solid lineg,
are fit to the power-law behavior at the tip of the lobe. Notice our fit show be field dependent and rapidly approaching 1, which leads
us to conjecture thaty=1 for all magnetic fields.

field increases from zero. This shows, as expected, the localal result is found where the insulator to superfluid transi-
izing effect of the magnetic field on the itinerant bosons. Ittions on Josephson-junction arrays was studied by changing
appears that the shape of the lobes changes from a simplee ratio of the Josephson coupling eneEgyand the charg-
power-law dependence at the tip to something else. There airg energyE.. SinceE; is the energy scale for the super-
three possibilities for the shape of the phase lobe at the tipzonducting coupling between the islands &qdis the scale

(i) it remains power-law-like with an exponent that may de-for the interaction between the charge carriers, they can be
pend on the magnetic fieldii) it has a more exotic “cusp- related to the hopping enerdyand the on-site repulsiod,

like” dependence as seen in the Kosterlitz-Thouless transirespectively. The results for small temperatures can be ex-
tion; or (iii) it has a discontinuous change in slope at the tiptrapolated toTf =0 and show a transition at larggy/E for

and thereby has a “first-order-like” shape corresponding tothe ¢=1/2 case than for theée=0 case, which qualitatively
the crossing of the two curves representing the upper anghatches with our calculationsincet,,;; /U increases with
lower phase lobes, with no “critical” behavior at the fifhis  magnetic fieldl.

last result corresponds tov=1). There is theoretical evi- The experimental data can be analyzed in one of two dual
dence in favor of this last conclusion, which is a similar pictures with the Bose-Hubbard model. In the first view, the
behavior to what happens to the MI phase in the presence ®osons are the Cooper pairs on each island, and the main
disorder, but here the explanation is differ&hlf ¢=p/qis  effect of the magnetic field is to modify the hopping matrix.
expressed in lowest terms, then the order parameter requirggrtices appear in this case as supercurrent loops in the sys-
q components to describe it. Apincreases, it is more likely tem_ while the density of vortices increases as the magnetic
that the transition is first order rather than second order, angg|q is modified, the density of Cooper pairs remains essen-
hence one would expect that the tip has a slope discontinuity, ., constant over the low-field ranggen the order of
|r_nmed|ately upon the introduction of the magnetic f'eld'Gaus$ explored in the experiments. The second picture em-
since small fields correspond to large valuesjoThe Pade ploys the duality transformation that views the vortices

analysis given above assumes tfiatholds, but azv ap- 4 coives as the bosonic particlesThe mobility of the
proaches 1 for larger fields, the system crosses over to the

behavior of(iii ) unless something more exotic liki) inter- vartices Is determined bigc and their mteracnpn b.EJ’ SO
venes. We cannot distinguish between scenaliipsr (iii) the roIe.s qf those parameters are reversed in th|§ case. The
with the low-order expansions presented here, but our resulf§@gnetic field then takes on the role of the chemical poten-
suggest scenaridiii) is correct, because the exponent tial. We will not employ this secqnd plqture here, which has_
rapidly approaches 1 as the field is increased. Clearly furthe?€en used to evaluate the Mott insulating phase of the vorti-
theoretical analysis is needed to decide this ig8ue. ces '12 the quasi-one-dimensional  Josephson-junction
For larger magnetic fields, we find that the two boundarie'rays.
of the Mott phase lobe no longer cross at a critical value of ~ Another qualitative agreement with experiment is found
but rather they “repel” each other. This indicates that the tipfor small fields. As shown in Fig. 2 the MI phase area and
of the MI phase lobe has moved out to such a large value dhe location of the tip of the lobe increase with increasing
t that the perturbation theory needs to be carried out to highenagnetic field up to abou$=0.1 (for the square lattice
order to achieve proper convergence. Such an exercise hdeasurements showE(/Ec)i;~0.59 and 0.83 forg=0
already been carried out through a linked-cluster expansioand 0.1, respectively, which is quantitatively similar to our
for the fully frustrated caseg=1/2) on a triangular latticet  results witht,,;; increasing by about 45% from 0.057 to
The calculation from 3rd to 11th order converges toward &.083 as¢ increases from 0 to 0.1. In addition, the tip loca-
“first-order” transition (zv=1) att.,;;~0.06 which yields a tion for larger field strengths saturates in the experiments,
much larger insulating phase regime than the case with nwhich is a result that we cannot confirm, because our analy-
magnetic field wheré,,;;~0.038. A comparable experimen- sis through third order infails whent,;; becomes too large.
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In Fig. 3(a) we show the evolution of the excitation-gap triangular planes, which have a weakly first-order transition
energiesA (t) for fixed hoppingt as a function of magnetic rather than a critical poirlt, and should be the effective
field. Initially the gap energy increases which indicates themodel for the critical behavior on the triangular lattice with
increasing stability of the MI phase in a weak magnetic field.¢p=1/2.
For larger magnetic fields, we see dips in the gap energy
around rational magnetic fluxes such gs=1/3 or 1/4
(which can be reliably calculated for small valuestpf A
similar commensurable structure is found in experiments that In conclusion, we applied a strong-couplitd) expan-
measure the zero-bias resistandgy)( of a Josephson- sion (up to third order to study the insulator-superfluid
junction array in a magnetic fieRlA small R, indicates phase transitions of the two-dimensional Bose-Hubbard
proximity to the SF phase. At rationdl the vortices form a model under the influence of a magnetic field. Although our
lattice which is commensurable with the Josephson-junctiomnalysis is limited, we are able to produce reasonable results
array and favors a pinning of the vortices, leading to a dethat both agree with physical intuition and with experiments.
crease of the zero-bias resistance. Qualitatively, we see th&'e found that the Mott insulating phase enlarges with an
same behavior in the excitation gap energies and the zerdacreasing magnetic field. This is explained by the localizing
bias resistance. Notice how the dips track closely with theeffect of the magnetic field on the moving bosons. Qualita-
dips seen in the minimal eigenvalue of the hopping matrix asive agreement in the increase of the critical hopping energy
shown in Fig. 1. This behavior explains the dips seen in the.;; was found with experimental results on Josephson-
experimental data on the triangular lattice that are mosjunction arrays. For small magnetic fields, we find a power-
prevalent at 1/2, followed by 1/4, 1/3, 3/8, and so on. Thelaw behavior of the gap energy close to the critical point
experimental dafaalso show that the system has four differ- (te; , scrir) With a dynamical critical exponent that increases
ent regions of superconducting stability for one valuet,of with ¢. For larger magnetic fields, we find a repulsion of the
centered at 0, 1/2, 1/4, and 1/3. While our results in Fig) 3 two phase boundaries, which indicates a change from the
only show superconductivity arounsl=0 [whereA (t) =0], power-law like behavior to either Kosterlitz-Thouless behav-
we can see that if was increased, and the calculations car-ior or to a “first-order” transition. Our results are also con-
ried out to higher order, it is likely that we would see addi- sistent with the “critical point” immediately changing to a
tional superconducting regions appeari(vge believe first  “first-order” discontinuous change in the slope of the phase
around 1/2, followed by 1/4 and 1/3). boundaries as the magnetic field is turned on. We found that

Finally we study the magnetic-field dependence of thethe gap energies for small fixed hopping and variable mag-
dynamical critical exponergy [(Eqg. 7] for small fields in  netic field illustrate commensurability effects for rational
Fig. 3(b). The BHM in zero magnetic field can be mapped fluxes which is also seen in Josephson-junction array experi-
onto a three-dimensionaY model which hagzr=0.67 in- ments. More work is needed to understand the change in
dependent of the lattice structure. By using the Pauysis  character of the insulator to superfluid phase transition as a
on our third-order expansion, we obtamv=0.61 for the magnetic field is introduced: does the system have a field-
square lattice andv=0.72 for the triangular lattice ad dependent power-law dependence which crosses over to a
=0. A Padeanalysis of a tenth-order expanstbyieldszy  “first-order” (or more exotic cusplike shapas the field
=0.69 for both lattice types, which shows the convergencéncreases, or does it immediately become “first-order” in a
of higher-order calculations in our method. As seen in Fig. 3field? Higher-order calculations are needed to decide this is-
the dynamical exponent appears to increase as the magnesige. It would also be interesting to extend the scaling analy-
field increases. It is, however, difficult to conclude whethersis of the BHM to include its behavior in an external mag-
zv remains equal to its zero-field value, increases with magnetic field.
netic field, or immediately jumps to one upon the onset of a
magnetic field, solely on the basis of this third-order analy-
sis. But, the fact that the most likely point to haxe<1 is
¢=1/2 (because it requires only two components for the We would like to thank M. Ma for useful and interesting
order parameter and a higher-order expansion predizis  discussions. J.K.F. acknowledges support from an ONR YIP
=1 there, leads us to conjecture tlzat=1 for all nonzero Grant No. N000149610828 and from the Petroleum Re-
magnetic fields. This latter result is supported by Montesearch Fund administered by the American Chemical Society
Carlo data on the antiferromagneficY model for stacked (ACS-PRF 29623-GBpG
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