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The first reliable analytic calculation of the phase diagram of the bose gas on a d-dimensional
lattice with on-site repulsion is presented. In one dimension, the analytic calculation is in excellent
agreement with the numerical Monte Carlo results. In higher dimensions, the deviations from the
Monte Carlo calculations are larger, but the correct shape of the Mott insulator lobes is still obtained.
Explicit expressions for the energy of the Mott and the “defect” phase are given in a strong-coupling
expansion.
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Strongly interacting quantum systems continue to challenge theoretical physics. Fermionic examples of strong
correlations include high temperature superconductors, heavy fermion materials and metal-insulator transitions. The
study of these systems has been confined to either numerical simulations which are plagued by finite-size effects (with
the notable exception of the infinite-dimensional expansion) or uncontrollable approximations. Similar problems
arise in strongly interacting bosonic systems which have attracted a lot of recent interest3–6. Physical realizations
include short correlation length superconductors, granular superconductors, Josephson arrays, and the dynamics of
flux lattices in type II superconductors. The relevant physics of these problems is contained in the bose Hubbard
Hamiltonian which describes the competition between kinetic energy and potential energy effects. Various aspects
of this model were investigated analytically by mean-field theory3,7, by renormalization group techniques3,5 and by
projection methods8. The bose Hubbard model was also studied with Quantum Monte Carlo methods (QMC) by
Batrouni et al.4 in one dimension (1+1) and by Krauth and Trivedi9 in two dimensions (2+1). In this contribution,
we show that the phase diagram obtained from a strong-coupling expansion has the correct dependence on the
dimensionality of the spatial lattice, and agrees with the QMC calculations (to within a few percent).

We study the minimal model which contains the key physics of the strongly interacting bose system – the competition
between kinetic and potential energy effects:
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where bi is the boson annihilation operator at site i, tij is the hopping matrix element between the site i and
j, U is the strength of the on-site repulsion, and µ is the chemical potential. The approximate form of the zero
temperature (T = 0) phase diagram can be understood by starting from the strong-coupling or “atomic” limit3,10,11.
In this limit, the kinetic energy vanishes (tij = 0) and every site is occupied by a fixed number of bosons, n0.
The ground-state boson occupancy (n0) is then chosen in such a way as to minimize the on-site energy. If the
chemical potential, µ = (n0 + δ)U , is parametrized in terms of the deviation, δ, from integer filling n0, then the
on-site energy is E(n0) = −δUn0 − 1

2Un0(n0 − 1), and the energy to add a boson onto a particular site satisfies
E(n0 + 1) − E(n0) = −δUn0. Thus for a nonzero δ, a finite amount of energy (gap) is required to move a particle
through the lattice. The bosons are localized, producing a Mott insulator. This energy gap decreases with increasing
strength of the hopping matrix elements until it vanishes and the bosons condense into the superfluid phase. For
δ = 0 the energy of the two different boson densities is degenerate [E(n0) = E(n0 + 1)] and no energy is needed to
add or extract a particle; i.e., the compressibility is finite. As the strength of the hopping matrix elements increases,
the range of the chemical potential µ about which the system is incompressible decreases. The Mott-insulator phase
will completely disappear at a critical value of the hopping matrix elements.

We are interested in the determination of the phase boundary between the (incompressible) Mott insulator and the
(compressible) superfluid phase. A strong-coupling expansion for this boundary is determined by calculating both the
energy of the Mott insulating phase and of a defect phase (which contains an extra hole or particle) in a perturbative
expansion of the kinetic energy. At the point where the energy of the Mott phase is degenerate with the defect phase,
the system becomes compressible, and, since there is no disorder, also superfluid3. There are two distinct cases for
the defect phase: δ < 0 corresponds to adding a boson to the Mott-insulator phase (with n0 bosons per site); and
δ > 0 corresponds to adding a hole to the Mott-insulator phase (with n0 + 1) bosons per site. The phase boundary
will depend on the number of bosons per site, n0, of the initial Mott insulator phase.

To zeroth order in t/U the Mott insulating state is given by
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where n0 is the number of bosons on each site, N is the number of sites in the lattice and |0〉 is the vacuum state.
The defect phase is characterized by one additional particle (hole) which moves coherently throughout the lattice. To
zeroth order in t/U the wave function for the “defect phase” is determined by degenerate perturbation theory:
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where the fi is the eigenvector of the hopping matrix tij with the lowest eigenvalue12.
For simplicity we will only consider hopping between the nearest neighbors of a hypercubic lattice in d-dimensions.

The number of nearest neighbors is denoted by z = 2d and the hopping matrix element by t; the minimum eigenvalue
of the hopping matrix is −zt. The many body version of standard Rayleigh-Schrödinger perturbation theory is
employed throughout. To third order in t/U , the energy of the Mott state with n0 bosons per site becomes
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which is proportional to the number of sites. Note that the odd-order terms vanish. The energy difference between
the Mott insulating phase and the defect phase with an additional particle (δ < 0) satisfies
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to third order in t/U ; while the energy difference between the Mott insulating phase and the defect phase with an
additional hole (δ > 0) satisfies
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These results have been verified by small-cluster calculations on two and four-site clusters. Note that the energy
difference in Eqs. (5) and (6) is independent of the lattice size N .

The phase boundary between the incompressible Mott phase and the compressible superfluid phase occurs when
the energy difference between the two different phases vanishes13. The two branches of the Mott phase boundary
meet when

δ(particle)(n0) + 1 = δ(hole)(n0). (7)

The additional one on the left hand side arises because δ is measured from the point µ/U = n0. Equation (7) may be
used to estimate the critical value of the hopping matrix element, tcritical(n0), beyond which no Mott-insulator phase
exists.

In one dimension, the upper boundary of the Mott insulator lobe (with a particle density of n0) is given by

δ(particle)(n0, t/U) = −2(n0 + 1)(t/U) + n2
0(t/U)2 + n0(n0 + 1)(n0 + 2)(t/U)3 (8)

to third order in t/U , and the lower boundary is given by

δ(hole)(n0, t/U) = 2n0(t/U) − (n0 + 1)2(t/U)2 + n0(n0 + 1)(n0 − 1)(t/U)3. (9)

The slope of the phase boundaries about the point µ = n0U are equal in magnitude to first order
[limt→0

d
dt

δparticle(n0, t/U) = − limt→0
d
dt

δhole(n0 + 1, t/U)], but change in magnitude as a function of the density
(n0), implying that the Mott-phase lobes always have an asymmetrical shape.

The strong-coupling expansion for the t, µ phase diagram in one dimension is compared to the QMC results of
Batrouni et al.4 in Figure 1. The solid lines indicate the phase boundary between the Mott-insulator phase and the
superfluid phase at zero temperature as calculated from Eq. (8) and Eq. (9). The squares are the results of the QMC
calculation at a small but finite temperature T = U/24. Note that the overall agreement of the two calculations is
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FIG. 1: The t, µ phase diagram of the bose Hubbard model in one dimension (d = 1). The solid lines give the phase boundaries
of the Mott insulator to the superfluid state as determined from a third-order strong-coupling calculation. The squares are the
result of the QMC calculation of Batrouni et al. [2].

excellent. For example, the critical value of the chemical potential for the first lobe (n0 = 1) satisfies δcritical ≈ −0.755
so that the critical value of the hopping matrix element is (t/U)critical = 0.215, while the QMC calculations found
(t/U)critical = 0.215 ± 0.014. A closer examination shows that the first lobe (n0 = 1) has a systematic deviation at
larger values of t. This is most likely a finite-temperature effect, since the Mott-insulator phase becomes more stable
at higher temperatures7.

It is known from the scaling theory of Fisher et al.3 that the phase transition at the tip of the Mott lobe is in the
universality class of the (d + 1) dimensional XY model. Although a finite-order perturbation theory cannot describe
the physics of the tricritical point correctly, it turns out that the density fluctuations dominate the physics of the phase
transition even close to the tricritical point. Note how the Mott lobes have a cusp-like structure in one dimension,
mimicking the Kosterlitz-Thouless behavior of the critical point.

Figure 2 presents the strong-coupling expansion for the t, µ phase diagram in two dimensions. For comparison,
the tricritical point of the first Mott-insulator lobe as obtained by the QMC simulations of Krauth and Trivedi9 is
marked with a solid square. Their numerical calculation gives a critical value of (t/U)critical = 0.122 ± 0.01, whereas
our calculation yields (t/U)critical ≈ 0.136 which is in reasonable agreement. As already mentioned above we cannot
hope to describe the physics close to tricritical point with our approach, but note that the qualitative shape of the
Mott lobes has changed from one dimension to two dimensions, mimicking the “smooth” critical behavior of the XY
model in three or larger dimensions.

Finally the strong-coupling expansion is compared to the exact calculation in infinite dimensions3. In infinite
dimensions, the hopping matrix element must scale inversely with the dimension14, t = t∗/d, t∗ = finite, producing
the mean field theory of Ref.3. In Figure 3 the strong-coupling expansion (solid line) is compared to the exact solution
(dashed line). Even in infinite dimensions, the agreement of the strong-coupling expansion with the exact results is
quite good.

We have repeatedly compared a strong-coupling expansion to the numerical QMC simulations for the incompressible-
compressible phase boundary of the bose Hubbard model. A mean-field treatment of the bose Hubbard model
(e.g.3,7) cannot capture the physics of the one dimensional system which is completely dominated by fluctuations.
The dimensionality only enters as a trivial prefactor in integrals over the phase space. For this reason, mean-field
theories will always give a concave shape to the Mott-insulator lobes independent of the dimension. A strong-coupling
expansion, on the other hand, easily distinguishes the shape difference from one dimension to higher dimensions
and shows that a proper treatment of density fluctuations is critical in determining the Mott-insulator to superfluid
transition. In conclusion we have described an analytical method to accurately calculate the phase diagram of the
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FIG. 2: The t, µ phase diagram of the bose Hubbard model in two dimensions (d = 2). The solid lines give the phase boundaries
of the Mott insulator to the superfluid state as determined from a third-order strong-coupling calculation. The point indicates
the tricritical point as determined by the QMC calculation of Krauth and Trivedi [7].

bose Hubbard model in any dimension. Extensions of these techniques to include disorder will be presented separately.
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FIG. 3: The t, µ phase diagram of the bose Hubbard model in infinite dimensions (d → ∞). The solid lines give the phase
boundaries of the Mott insulator to the superfluid state as determined from a third-order strong-coupling calculation. The
dashed lines are the result of the mean field calculation of Fisher et al. [1].


