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Beyond Planck-Einstein quanta: Amplitude-driven quantum excitation
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Linear-response quantum excitation is proportional to the amplitude of the field, with the energy of the
excitation given by the driving frequency. As the amplitude is increased, there is a crossover, where the excitation
energy is governed by the amplitude of the driving field, not its frequency. As the amplitude is increased even
further, then complex quantum oscillations develop. We illustrate this phenomena with the exact solution of
the simplest model of a charge-density-wave insulator driven by a spatially uniform time-dependent electric
field. The driving by the field can be mapped onto a series of Landau-Zener problems, but with a complex,
nonmonochromatic drive that varies for each momentum point in the reduced Brillouin zone.
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I. INTRODUCTION

In 1901, Planck introduced the idea of light quanta to
calculate the spectrum for black body radiation [1], which
was employed by Einstein in 1905 to explain the mysterious
quantum properties of the photoelectric effect [2]. Later, the
solution of the Landau-Zener tunneling problem in the 1930’s
[3,4], where a tunneling excitation is determined by the speed
at which the minimal excitation gap is approached (and is
proportional to the amplitude of an effective driving field),
showed how the amplitude and not the frequency of a driving
field can govern quantum excitation beyond linear response.

We consider one of the simplest problems in driven quantum
systems: the excitation of an insulator across its gap due to
applying a monochromatic or pulsed ac electric field. The
energy transferred to the electrons by this driving frequency
satisfies the Planck-Einstein relation [1,2] E = �ω and is
independent of the amplitude of the driving field, hence we
expect to see no response until the frequency is large enough
that �ω � Egap. Linear-response theory verifies this result,
as the Kubo-Greenwood formula shows that the amplitude
of the field just provides an overall scale to the response
[5,6], and the ability to create an excitation is determined
by energy conservation. As the amplitude of the field is
increased, photons of a lower energy can combine together
and create higher energy photons, and hence one would
expect resonances at �ω/2 (or generally �ω/n for multiphoton
processes). However, the presence of a large field can also
modify the quantum states themselves, and create states inside
the gap region, thereby reducing the effective gap, and allowing
excitations to occur at even lower frequencies.

The Landau-Zener tunneling problem has investigated
some of these aspects [3,4]. While there is no applied field
per se in this problem, one can assume that the rate at which
the gap is approached is proportional to an effective driving
field, and in this situation, it is known that the efficiency
in tunneling to create excitations across the gap depends
exponentially on the driving rate, and hence on the amplitude
of the effective field. Indeed, the adiabatic theorem [7]
guarantees no excitation for infinitesimally small fields with
ω → 0. In addition, a generalized Landau-Zener problem,
with the minimal crossing point passed numerous times due

to an oscillatory drive, has been examined in the context of
Landau-Zener interferometry [8–10]. These studies focus on
the drive through the minimal crossing point occurring with
a single frequency. In the work presented here, because the
electric field couples in a nonlinear way to the electrons, the
drive through the minimal crossing point is a highly nonlinear
function of the driving field frequency, and hence it is not
described by those results of Landau-Zener interferometry.

The Landau-Zener problem, and problems closely related
to it, have been widely studied in many different contexts
both in theory and in experiment. For example, in situations
where the gap vanishes, one has the physical behavior of
the Kibble-Zurek mechanism [11,12], which can be ex-
perimentally studied for linear driving, and for nonlinear
(power-law) driving. In this context, a focus is placed on
how the excitations are related to the critical exponents of
the equilibrium system. We look at this problem in a different
context. For us, there always is a gap, although the magnitude
of the gap changes over the Brillouin zone, but the drive that is
applied is complex, and varies from one momentum point to
another, and can cross the minimal gap region multiple times.
Summing over all momenta points corresponds to averaging
over many Landau-Zener interferometry-like problems, one
for each momentum (and with different gaps), each with an
extremely nonmonochromatic driving field. Hence, this work
is different from those studied elsewhere, and it typically has
no single frequency that will govern the behavior of the system,
nor does it generically satisfy scaling relations. These types
of problems can be experimentally studied in many different
systems, such as graphene [13].

The quantum excitation problem has also been examined
in the field-induced ionization of atoms [14], in Josephson
junctions [9], and in the photoelectric effect [15]. For the
atomic problem, Keldysh [14] showed how a detailed quantum
theory can describe the full regime from the frequency-
driven excitation to the amplitude-driven excitation, and which
has been applied recently to the photoelectric effect, where
multiphoton excitations are observed when the photon light
field has a large amplitude due to enhancement near an isolated
sharp metallic tip [15]. But the quantum excitation problem
in solid state systems is more complex than an ionization
problem. As an electron is excited from a lower band to an
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upper band, the state the particle has been excited to is blocked
from further excitation. Such effects become quite important
as the field becomes strong enough to excite significant
fractions of electrons from the lower to the upper band. In
addition, the oscillating current can both excite and deexcite
electrons across the gap. These effects greatly complicate the
net quantum excitation process.

Two questions immediately come to mind about field-
driven quantum excitations in this context: (i) Does the
excitation continue to depend exponentially on the amplitude
so that nearly all of the excitation occurs near the maximal
amplitude of a pulsed field, and (ii) as the amplitude is
increased do we find a regime of purely amplitude-driven
tunneling, where the excitation becomes independent of the
driving frequency? We answer both of these questions with
an exact solution for the nonlinear excitation of a solid. Note
that this model has no interactions and does not thermalize.
If the gap is large enough, the populations in the upper and
lower bands will hardly change, even if interactions are added,
because the thermalization will occur primarily within each
subband.

In Sec. II, we present the formalism for the calculations,
while results are presented in Sec. III. We provide a summary
in Sec. IV.

II. FORMALISM

The charge-density-wave (CDW) model we use is that of
spinless electrons moving on a lattice with a bipartite structure
which has different site energies on the two sublattices (A/B).
The Hamiltonian in the Schrödinger picture is

H(t) = −
∑
ij

τij (t)c†i cj +
∑
i∈A

(U − μ)c†i ci +
∑
i∈B

(−μ)c†i ci .

(1)

The first term is the kinetic energy, which involves a hopping
between nearest neighbor lattice sites i and j with a hopping
integral τij (t) (the hopping matrix is a Hermitian matrix that is
nonzero only for i and j nearest neighbors). The second and
third terms include the chemical potential μ and the external
potential U which is nonzero only on the A sublattice. We set
μ = U/2 in our calculations to have the case of half filling.
Since the electrons do not interact with each other, the spin
degree of freedom is trivial, and has been neglected here.
The field is introduced via a time-dependent hopping integral,
employing the Peierls substitution [16],

τij (t) = τ ∗

2
√

d
exp

[
− ie

�c

∫ Rj

Ri

A(t) · dr
]

, (2)

and we take the limit as d → ∞ using τ ∗ as the energy unit.
Here A(t) is the time-dependent (but spatially uniform) vector
potential in the Hamiltonian gauge (where the scalar potential
vanishes). The field is chosen to point in the diagonal direction
A(t) = A0(t)(1,1,1, . . .) with A0(t) given by the antiderivative
of the electric field as a function of time. In this case, the
(time-dependent) electronic band structure becomes

ε

(
k − eA(t)

�c

)
= − lim

d→∞
τ ∗
√

d

d∑
i=1

cos

[
ki − eAi(t)

�c

]
, (3)

which is the standard form for the Peierls substitution [16].
Note that one of the advantages of this model is that the
quantum excitation is driven solely by the Peierls substitution
and requires no dipole matrix element that couples opposite
parity bands. The field is treated semiclassically because it
has a large amplitude. The Planck relation affects how the
(quantum) electronic system responds to the (classical) drive.

For concreteness, we work in the infinite-dimensional limit,
although the procedure produces an exact solution in any
dimension (since the only effect of dimensionality is on the
shape of the normal state density of states, we expect the
infinite-dimensional results to be similar to those in two
or higher dimensions; we choose this limit because it will
make for easier comparison with dynamical mean-field theory
calculations in the ordered phase). We take τ = τ ∗/2

√
d and

set τ ∗ = 1 as the energy unit. The band structure in the absence
of a field has a gap of size Egap = U , with a density of states
that is a mirror image on the A and B sublattices (see Fig. 1).
There is a square-root-like singularity at the upper or lower
band edge for the local density of states on each sublattice.
The applied field is chosen to be either a monochromatic ac

FIG. 1. (Color online) (a) Schematic of the charge-density-wave
model on the checkerboard lattice. The A sublattice (red) has the
on-site potential U , while the B sublattice (light blue) has a vanishing
potential. Hopping is between nearest neighbors, as indicated by
the green arrows. The schematic shows a two-dimensional square
lattice, but we work on an infinite-dimensional hypercubic lattice.
(b) Local density of states on the A/B sublattices (red/light blue) and
the average density of states (black) in equilibrium for U = 1.5.
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field turned on at time t = 0 or an oscillating pulse shape. The
instantaneous spectra, under the application of this field, are
independent of time, and hence there always exists a lower and
upper band separated by a band gap of U with “eigenenergies”
E±(k,t) = ±

√
ε2(k − eA0(t)/�c) + U 2/4. This can be seen

by directly diagonalizing the Hamiltonian in the Schrödinger
picture at any instant of time

HS(t) =
∑

k

︷ ︷
c†k c†k+Q︸ ︸

(
U
2 − μ + εk(t) U

2
U
2

U
2 − μ − εk(t)

)

×
(

ck

ck+Q

)
(4)

in momentum space, where we have set εk(t) =
ε(k − eA0(t)/�c).

Since the field points in the diagonal direction, we can
expand the time-dependent band structure to be

εk(t) = cos

(
eaA0(t)

�c

)
εk + sin

(
eaA0(t)

�c

)
ε̄k, (5)

which depends on both the band structure εk and the projection
of the velocity along the direction of the field

ε̄k = − lim
d→∞

t∗√
d

d∑
l=1

sin(akl). (6)

The problem can be solved exactly by employing the
Kadanoff-Baym-Keldysh formalism for the contour-ordered
Green’s function and using the Trotter formula to evaluate
the relevant 2 × 2 evolution operators for each coupled
momenta k and k + Q with Q = (π,π,π, . . .), as described
in detail in Ref. [17]. We sketch the critical formulas
here.

To evaluate the Green’s function, one first solves for
the Heisenberg representation of the creation/annihilation
operators, which yields(

ck(t)
ck+Q(t)

)
= U(k,t,t0)

(
ck(t0)

ck+Q(t0)

)
. (7)

The time-evolution operatorU(k,t,t ′) is a time ordered product
for each momentum,

U(k,t,t ′) = Tt exp

[
− i

∫ t

t ′
dt̄

(
U
2 − μ + εk(t̄) U

2
U
2

U
2 − μ − εk(t̄)

)]
. (8)

Because of the time dependence, the Trotter formula is employed,

U(k,t,t ′) = U(k,t,t − �t)U(k,t − �t,t − 2�t) · · ·U(k,t ′ + �t,t ′). (9)

For a small time step �t at time t , we have

U(k,t,t − �t) = exp

[
− i�t

(
U
2 − μ + εk(t − �t/2) U

2
U
2

U
2 − μ − εk(t − �t/2)

)]
. (10)

This exponential can be exactly found since it is a 2 × 2 matrix, and we show the result for the case of interest of half filling,
where μ = U/2

U(k,t,t − �t) = cos

(
�t

√
ε2
k

(
t − �t

2

)
+ U 2

4

)
I − i

(
εk

(
t − �t

2

)
U
2

U
2 −εk

(
t − �t

2

)) sin
(
�t

√
ε2
k

(
t − �t

2

) + U 2

4

)
√

ε2
k

(
t − �t

2

) + U 2

4

. (11)

In our calculations, we start from a finite minimum time t0,
determining the evolution operatorU(k,t,t0) for all subsequent
times. For each k, we find the two-time evolution operator from
the identity

U(k,t,t ′) = U(k,t,t0)U†(k,t0,t
′). (12)

Once the time evolution at each time pair is found, one can
directly construct the retarded and lesser Green’s functions as
functions of momentum, or, after summing over momentum,
determine the local Green’s functions. We are particularly
interested in the filling in the upper band, which requires one
to use a gauge-invariant formalism to derive. The formulas are
cumbersome, and appear in Appendix B of Ref. [17].

III. RESULTS

The electric field in each direction satisfies E(t) =
E0 sin(ω0t)θ (t) for the monochromatic ac field and

E(t) = E0 sin(ω0t) exp(−t2/25) for the pulsed field. In
Figs. 2(a) and 2(b), we examine the excitation process in the
ac field with ω0 = 1 and ω0 = 3, respectively, for a CDW
with a gap satisfying U = 1.5. Because an ac driving field
produces a periodic response, we must determine the average
occupancy of the upper instantaneous band in its “steady state,”
which is shown by the dashed lines just outside Fig. 2. Both
systems approach this “steady state” relatively quickly, but in
the lower-frequency case [Fig. 2(a)], the final density in the
upper band does not have a monotonic dependence on the
driving amplitude for this range of amplitudes of the field.

In Figs. 3(a) and 3(b), we show similar plots, but now for
the pulsed case. Here we see quite different behavior. First off,
a true steady state occurs, because at long times there is no
field and the system dephases into a steady population in each
band (transfer between bands can only occur when a field is
on). Second, in the lower-frequency case [Fig. 3(a)], one can
see the excitation is dominated by the regions where the field

195104-3



WEN SHEN, T. P. DEVEREAUX, AND J. K. FREERICKS PHYSICAL REVIEW B 90, 195104 (2014)

FIG. 2. (Color online) Time trace for the occupancy in the upper
band as a function of time for an ac field driving of the CDW insulator
with an equilibrium gap equal to U = 1.5 (started initially from
T = 0) and two frequencies: (a) ω0 = 1 (less than the equilibrium
gap) and (b) ω0 = 3 (larger than the equilibrium gap). We take as our
measure of the final occupancy of the upper band the average value
of the occupancy, averaged over one period in the long-time limit.
These values are indicated by the dashed lines. The labels show the
amplitude of the field. The red curve in (b) is for E0 = 0.25. The field
trace is plotted below each panel. Note that the time axis is half as
long in (b).

amplitude is the largest, but the full excitation occurs over an
extended period of time, and certainly is not instantaneous.
Third, the excitation is fairly monotonic in time, implying
it is dominated by excitation processes and there is limited
deexcitation. Note the steplike excitation for low-amplitude
fields, which follow precisely the Landau-Zener picture of
tunneling enhanced when the instantaneous magnitude of the
field is large. In contrast, the higher-frequency case in Fig. 3(b)
shows very dramatic deexcitation processes, and the final
excitation requires one to examine the full time dependence of
the system. It cannot be described just by the regions where the
field amplitude is maximal. Instead, the quantum excitation is
primarily determined by the lower field amplitudes near the
start of the pulse, and the rest of the evolution corresponds to
nearly equal excitation followed by deexcitation. In addition,
none of the final distributions appear to be thermal, as expected,
and are examined in further detail in Ref. [18].

We now examine spectroscopy for the long-time excitation
curves as a function of the driving frequency for an ac drive
(Fig. 4) and for the pulsed field (Fig. 5). In both cases, when the
amplitude is small, the Planck-Einstein relation holds and no
excitation occurs until the frequency becomes approximately

FIG. 3. (Color online) Excitation in the upper band as a function
of time for the (a) low-frequency ω0 = 1 and (b) high-frequency
ω0 = 3 pulsed-field cases. The labels in (a) and the legend in (b)
show the amplitude of the field, which is plotted for the unit amplitude
below each panel.

equal to the gap (there is a small spread due to the finite
spread of the Fourier transform of the applied electric field,
especially for the pulsed case). As the amplitude is increased,
we see the expected nonlinear effect of a peak forming at a
frequency about one half of the gap size. But as the amplitude
is increased further, the excitation spectra become quite flat
in frequency, indicating the crossover to an amplitude-driven

FIG. 4. (Color online) Upper band occupancy spectra for fixed
amplitude and varying driving frequency with an ac field drive and
the light blue dashed line showing where the equilibrium gap is.
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FIG. 5. (Color online) Excited state spectroscopy for the pulsed
field, with the dashed blue line showing the value of the equilibrium
gap. Here, the behavior is similar to Fig. 4, except the frequencies are
less well defined because of the finite pulse width, which becomes
particularly important in the low-frequency regime, and suppresses
the signal there. The amplitude of each pulse is given by the color-
coded labels near each respective curve.

excitation, although the curvature of the band structure never
allows for a fully flat curve. Finally, as the amplitude is
made even larger, we see interesting quantum oscillations
develop in the spectra, which become more complex for larger
amplitude driving. This behavior resembles the dynamical
behavior shown by Shirley for two-level systems [19], and the
appearance could be simply a result of the renormalization
of the energies of multiphoton processes and a narrowing
of the peaks with increasing amplitude. But it might also
signal the onset of a new quantum regime that is governed
primarily by the field amplitude and not the driving frequency
(but with additional frequency-driven resonances at allowed
multiphoton processes). This helps explain the universal dip
of the spectra between half the gap and the gap, because no
multiphoton processes are possible there.

We also can examine the scaling hypothesis of Refs. [9,10]
which says we would expect n+(t → ∞,E0/ω) to be a
constant. If this holds, we expect a self-similar nature to the
family of curves in Fig. 4. Comparing the results at ω = 1 to
ω = 3 shows such a result approximately holds, but carefully

comparing ω = 1 to ω = 2 shows it does not hold when the
field amplitude becomes large. This is because of the averaging
over many Landau-Zener transitions and the nonlinear nature
of the Peierls substitution, which no longer allows the scaling
relations to hold exactly.

IV. SUMMARY

In this paper, we have shown the crossover for how a
quantum system is initially excited by the Planck-Einstein
quanta, but then nonlinear effects change the behavior first
into excitations arising from the nonlinear combination of
photons to create high energy excitations until the excitation is
dominated by the amplitude of the driving field and shows
limited frequency dependence. At the largest amplitudes,
additional quantum oscillations occur, whose origins are likely
due to different high-field quantum effects. This paper shows
a way to examine the details behind quantum excitation in
strong fields that goes beyond the common belief that tunneling
phenomena are dominated by the region in time where the field
amplitude is the largest. We clearly see more complex and rich
phenomena arising in this limit. Initial experiments that have
examined this phenomena have been performed in cold atom
systems on tunable hexagonal lattices [20].
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