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We employ an exact solution of the simplest model for pump-probe time-resolved photoemission
spectroscopy in charge-density-wave systems to show how, in nonequilibrium, the gap in the density of
states disappears while the charge density remains modulated, and then the gap reforms after the pulse has
passed. This nonequilibrium scenario qualitatively describes the common short-time experimental features
in TaS, and TbTe;, indicating a quasiuniversality for nonequilibrium “melting” with qualitative features

that can be easily understood within a simple picture.
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The theory of second-order equilibrium phase transitions
has a long history and is now well understood [1]. In the
case of electronic phase transitions induced by electron-
phonon interactions, gaps in the electronic excitation
spectrum typically open up simultaneously with the for-
mation of long-range charge-density-wave (CDW) or
superconducting order in weak coupling, and precede
the formation of these orders in strong coupling. Recent
experiments in ultrafast pump-probe spectroscopy that
investigated layered CDW materials have revealed a new
nonequilibrium paradigm where long-range CDW order
persists but, by conventional interpretation, the local
electronic excitation spectrum becomes gapless (by creat-
ing subgap states) for a transient period of time [2—12]. The
similarity of these experiments to each other for quite
different materials points towards a quasiuniversal behavior
in nonequilibrium, whose main features are captured with a
simple exactly solvable model that we present below.

We concentrate on two materials that have been mea-
sured experimentally. The quasi-two-dimensional material
1T-TaS, orders in a three sublattice star-of-David pattern,
and develops an insulating gap that is believed to be due to
strong electronic correlations [13—15]. In TbTes, the
system condenses in unidirectional incommensurate CDW
stripes, and the order only partially gaps the Fermi surface,
leaving the system with metallic conductivity [6,8,16,17]. In
both materials, experiments have clearly shown the transient
collapse of the CDW gap in the density of states (DOS) as
the system is pumped into a nonequilibrium state by a large-
amplitude pulse [4-6,8-10]. At picosecond times after the
pump pulse, the DOS, as inferred from the time-resolved
photoemission spectroscopy (PES), oscillates due to cou-
pling with the soft phonon that is involved in the CDW
transition, before the gap fully reforms at longer times.
In TaS,, a pump-probe core-level x-ray photoemission
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spectroscopy experiment [7] further shows that the ampli-
tude of the electronic CDW order parameter (given by the
difference of the electronic charge density on the different
sublattices of the CDW) is reduced by the pulse, but does not
vanish; it eventually settles into a long-time value that is
reduced from the original size due to heating of the system
and relaxation back to equilibrium. Hence, unlike in
equilibrium, experiments show that the electronic CDW
order parameter and the gap in the electronic energy
spectrum become partially decoupled in the sense that the
gap collapses while residual modulated CDW order remains.

This change in character of the many-body state has been
named a nonequilibrium melting (or phase transition) of
the CDW but it has an inherently different character from
the equilibrium phase transitions. For example, the gap is
initially fragile to the presence of an electric field while the
electronic order parameter is initially robust (due to the
frozen in lattice distortion yielding an inhomogeneous
potential for the electrons), so the behavior of the system
during the transient closing of the gap is different from an
equilibrium phase transition.

Electrons interact on time scales on the order of a
femtosecond, which motivates the hot-electron model
[4,5,18,19], where the electrons rapidly thermalize amongst
themselves forming a hot quasithermal gas that equilibrates
with the phonons on much longer time scales [12,20]. The
most interesting quantum regime is the short-time transient
one where properties change most rapidly in time and are
not described by such simplifications. In particular, a hot
electron model can never lead to a closing of the gap in the
DOS for short times when the lattice distortion remains
frozen in, and the core-hole PES calculations below
definitely suggest the latter.

Before introducing the simplified model for the CDW,
we show how the electronic order parameter can survive to
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hot electron temperatures with a real materials calculation
for TaS,. In a CDW system pumped by a laser pulse, the
lattice distortion is frozen in at short times and cannot relax
[12]. Hence, the electrons always see a corrugated potential
due to the ordered arrangement of the ion cores [21] and
respond to that potential by modulating their charge
distribution so that the electronic order parameter does
not vanish. We illustrate this in Fig. 1, where we calculate
the core-level x-ray photoemission spectroscopy for TaS,
with the lattice distortion fixed at its 7 = O value, but the
electrons raised to temperatures up to 4000 K. The core-
level splitting is proportional to the CDW order parameter
of the conduction electrons, indicating that the order
decreases but remains for any finite temperature, as seen
in experiment [7]. These results were calculated within
density-functional theory using the all-electron, full poten-
tial code [22] WIEN2K. The Perdew-Burke-Ernzerhof [23]
version of the generalized gradient approximation was used
to take into account the electron-electron interaction at the
standard level done in density-functional theory (see the
Supplemental Material [24]).

An electric field pump is described by the Peierls
substitution, which is a time-dependent shift of the momen-
tum. Hence, the set of instantaneous energy eigenvalues is
independent of the field and is always gapped. But the
nonequilibrium DOS is also influenced by how the eigen-
functions change as a function of time, and often has the
gap region modified. We examine the simplest model of a
CDW insulator, where the ordering is driven by a periodic
potential that is equal to zero on the B sublattice and equal
to U on the A sublattice of a bipartite lattice with equal
numbers of A and B sites (the electrons are at half filling to
form an insulator) (see the Supplemental Material [24]).
The Hamiltonian, using standard notation for the creation
and annihilation operators, is

H(t) ==Y wj()cie; + (U =-p)d clei—ud clei (D)
ij

i€A i€B

with the chemical potential satisfying y = U/2 for half
filling and the time-dependent hopping given by the Peierls
substitution (see the Supplemental Material [24]) in
the presence of the pump pulse. The fixed underlying
potential in our model mimics the lattice distortion, which
does not change for short transient times. In equilibrium,
the DOS develops a gap of magnitude equal to U (we
choose U = 1¢* throughout here with ¢* the renormalized
hopping for a hypercubic lattice in infinite dimensions and
the initial temperature before the pulse equal to zero). The
DOS is reflection symmetric about zero energy on the A
and the B sublattices [see Fig. 2(a)]. On one lattice, there is
a pileup of states, which gives a divergence that grows like
the inverse square root at the lower gap edge, while on
the other, the singularity lies at the upper gap edge
(these singularities govern much of the behavior and are
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FIG. 1 (color online). Calculated Ta 4f core-level photoemis-
sion spectrum for the commensurate CDW phase of 1T-TaS,.
(a) Dependence of the spectrum on electronic temperature in the
hot electron model. The f5,, and f7,, levels are split due to spin-
orbit coupling (2 eV) and further split due to the existence of three
inequivalent Ta sites in the CDW phase (0.5 eV). (b) Site-
projected contributions to the f7/, spectrum. The 4f levels on Ta
a and b sites lie close in energy and combine into a single peak.
Inset is the star-of-David structure for the CDW (a red, b green,
and ¢ blue). (c) Electronic-temperature dependence of the
splitting between the a — b and ¢ peaks in the 4f;,, spectrum.

independent of dimension). The Fourier transform of such a
DOS can be shown to oscillate with an amplitude that
decays with an inverse square root of time.

We model the laser pulse by a one and a half cycle
electric field that approximately runs from a time of
—15h/t* to 15h/r* with an amplitude E, at t = 0 that
can be adjusted and is shown in Fig. 4(d). The exact
solution of this nonequilibrium CDW (including a solution
for the pump-probe PES signal [25]) requires one to use a
Kadanoff-Baym-Keldysh formalism [26-28]. We solve for
the retarded and lesser Green’s functions, which depend on
two times [26] (z and #') using an exact evolution operator
that can be expressed as a direct product of 2 x 2 matrices
for each momentum point in the small Brillouin zone, and
evaluated via the Trotter formula (see the Supplemental
Material [24]). The solution is complicated because the
different terms in the Trotter formula do not commute.

We redefine the Green’s functions in terms of the
Wigner coordinates corresponding to the average [7,,. =
(t+17)/2] and relative [t =t — ¢'] times. The transient
DOS at t,,, is then defined to be the imaginary part of the
Fourier transform of the retarded Green’s function with
respect to t,;. Similarly, the time-resolved PES response
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FIG. 2 (color online). (a) The equilibrium local DOS on the A
sublattice. (b) The nonequilibrium local DOS for E, = 0.75 at an
average time —40h/¢*. (c) Imaginary part of the retarded Green’s
function in real time. The inset shows that the retarded Green’s
function has a long temporal tail.

function is found from a probe-pulse-weighted Fourier
transform of the lesser Green’s function [19,25]. The
Green’s functions are nonlocal in time and they have long
tails as functions of relative time; hence, the pump pulse
can modify them both at the time of the pulse, and for long
average times before or after the pulse has ended.

We illustrate this with the DOS in Fig. 2, which shows
how the gap region can be significantly changed even for
average times far before the pulse is turned on. Note that
because this is a nonequilibrium situation, the DOS can
become negative (due to no Lehmann representation for
transient times), implying that the standard interpretation of
the DOS fails for transient times. For example, even at a
time 40h/t* before the center of the pulse acts on the
system (254 /t* before the pulse starts), we can see that the
gap region of the DOS is significantly changed [Fig. 2(b)].
One can directly trace this to the change of the Green’s
function starting at a relative time of about 604/f* and
continuing to long times (f* ~ 10°h/t*). The Green’s
function “feels” the effect of the field, because one time is
before and one after the field has been turned on, leading to
the fragile gap in the DOS.

We show the time-resolved PES signal for an electric
pulse amplitude satisfying £y, = 0.75 in Fig. 3, using a
probe pulse that has a Gaussian envelope with a width of
14h/t* (the “gap” in the time-resolved PES signal is more
robust than in the DOS due to the finite width of the probe
pulse, which limits the range in time for the Fourier
transform, bypassing some effects due to the long tails,
and the fact that the PES signal is always manifestly non-
negative). One can see that in the range of average time
from about —204 /1" up to about 204/ ¢* the gap disappears,
and then reforms for longer times. We also see a significant
transfer of electrons from the lower to the upper band due to
the nonequilibrium pumping of energy into the system. The
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FIG. 3 (color online). Calculated time-resolved PES at 7 =0
with E; = 0.75 and averaged over the A and B sublattices, plotted
in false color. The electric field is shown above the plot. Movies
of this time evolution can be found with the Supplemental
Material for E, = 0.75, 1.0, and 1.25 [24].

system does tend toward a steady state at long times, but it
is not thermal because there is no electron scattering
to thermalize the excited electrons. These results are
similar for Ey = 1 and E, = 1.25 (see the Supplemental
Material [24]).

Figures 4 and 5 provide summaries of the various
features of the nonequilibrium “phase transition.”
Figure 4(a) shows the PES signal at @ = 0 as a function
of time for a range of different probe pulse widths (full
width at half maximum) at a pulse amplitude E, = 0.75.
One can clearly see that the suppression of the gap (by
filling in subgap states) is robust once the width is large
enough. The inset shows how the gap magnitude grows
with the field amplitude, but the width in time remains the
same. Figure 4(b) shows that the electronic CDW order
parameter of the conduction electrons is reduced due to the
pump pulse but does not vanish at Ey = 0.75. For Ey = 1,
the order parameter barely touches zero for an instant and
then recovers to a small positive value. For £y = 1.25 and
1.5, a small reversal of the order is found in this system,
which remains reversed after the electric field pulse has
gone. The steady state arises because this system is a closed
system and the only exchange of energy occurs when the
electric field pulse is present. All of these order parameters
have oscillations with a period of 2z/U at long times,
which eventually are dephased, as does the current in
Fig. 4(c) (the definition is given in the Supplemental
Material [24]).

In Fig. 5, we see complex behavior for the expectation
value of the total energy £(¢) = (H(z)) while the pulse is
on (E, =0.75), eventually settling down to a constant
value. We can use this steady-state energy to estimate the
effective temperature of the system, by calculating the
energy as a function of temperature for the system in
equilibrium, and setting the temperature by equating to
the nonequilibrium energy after the pulse (yields
kgT = 2.38¢"). We also can calculate the filling in the
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FIG. 4 (color online). (a) Calculated time-resolved PES signal
at the Fermi energy with different probe pulse widths and
Ey = 0.75. Inset: the same result for the widest width probe
pulse but different E, values. (b) Conduction electron order
parameter for the CDW as a function of time for different
pulse amplitudes (zero is indicated by the magenta dashed
line). (c) Transient current for E, = 0.75. With a small field,
the current follows in phase with the electric field. For time
delays after the pump pulse, the oscillations in the current
have the same frequency as the order parameter has (2z/U,
enhanced purple dashed line). (d) Pump pulse electric field
with amplitude E, = 0.75.

lower and the upper bands of the CDW as a function of time
for the nonequilibrium case [Fig. 5(b)], and compare it to
the equilibrium fillings in each band as a function of
temperature. This yields kgT = 1.67¢" (for Ey =1 the
energy temperature is 3.91¢" and the filling one is 3.33¢*
while for Ey = 1.25 the energy temperature is 31.5¢* and
the filling one is a negative temperature —2250¢). In
thermal equilibrium, these two temperatures must agree.
Their difference is one measure of the nonthermal nature of
the final state. What is remarkable is that this noninteracting
system can remain fairly close to a thermal distribution for
small amplitudes of the field. The energy approaches a
constant before the current does, because no energy can be
added to the system when the electric field vanishes
since d{H(1))/dt = —E(t) - (j(1)).

Conclusion.—In this work we have shown that a new
paradigm exists in nonequilibrium, where driving a CDW
system with large fields can cause the gap to transiently
vanish for intermediate times in the presence of a generi-
cally reduced order parameter. We find this behavior with
an exact solution of a simplified model of a CDW insulator
described by a staggered potential that is different on one of
two sublattices. While this exact solution does not capture
all of the quantitative details of the experiments (particu-
larly when coupling of electrons to phonons becomes
important), for short and intermediate times it provides a
consistent qualitative explanation of the experimental data
and is consistent with the emergence of a quasiuniversal

Time t [/t ]

FIG. 5 (color online). Calculated current (a), transient filling of
the upper (red) and lower (blue) bands (b), and total energy (c) for
the CDW system with U =1 and E, = 0.75.

behavior in nonequilibrium. The time scale for the reopen-
ing of the gap is smaller in this model than in experiment
because we have not included a phonon bath that couples
to the electrons via the electron-phonon coupling. This
allows for an oscillating transfer of energy back and forth
between electrons and phonons, until they are damped.
When the phonons transfer energy back to the electrons, it
is similar to repumping the electrons by an external pulse,
which we believe is why the gap remains closed for a
longer time in experiments.

The calculations of the core-level x-ray PES in the hot
electron model was supported by the National Science
Foundation under Grant No. DMR-1006605. The develop-
ment of the parallel computer algorithms for the time-
resolved PES calculations was supported by the National
Science Foundation under Grant No. OCI-0904597. The
data analysis and application to experiment was supported
by the Department of Energy, Office of Basic Energy
Research under Grants No. DE-FG02-08ER46542
(Georgetown), No. DE-AC02-76SF00515 (Stanford and
SLAC), and No. DE-SC0007091 (for the collaboration).
High performance computer resources utilized the National
Energy Research Scientific Computing Center supported
by the Department of Energy, Office of Science, under
Contract No. DE- AC02-05CHI11231. J.K.F. was also
supported by the McDevitt bequest at Georgetown. H. R.
K. acknowledges support from DST (India). The Indo-US
collaboration was supported by the Indo-US Science and
Technology Forum under a center grant numbered
JC-18-20009.

[1] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge,
England, 1995).

176404-4



PRL 112, 176404 (2014)

PHYSICAL REVIEW LETTERS

week ending
2 MAY 2014

[2] J. Demsar, L. Forr6, H. Berger, and D. Mihailovic, Phys.
Rev. B 66, 041101(R) (2002).

[3] V. Brouet, W. L. Yang, X. J. Zhou, Z. Hussain, N. Ru, K. Y.
Shin, I.R. Fisher, and Z.X. Shen, Phys. Rev. Lett. 93,
126405 (2004).

[4] L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen,
H. Berger, S. Biermann, P.S. Cornaglia, A. Georges, and
M. Wolf, Phys. Rev. Lett. 97 067402 (2006).

[5] L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen,
M. Wolf, H. Berger, S. Biermann, and A. Georges, New J.
Phys. 10, 053019 (2008).

[6] F. Schmitt et al., Science 321, 1649 (2008).

[7] S. Hellmann et al., Phys. Rev. Lett. 105, 187401 (2010).

[8] F. Schmitt, P. S. Kirchmann, U. Bovensiepen, R. G. Moore,
J.-H. Chu, D. H. Lu, L. Rettig, M. Wolf, I. R. Fisher, and
Z.-X. Shen, New J. Phys. 13, 063022 (2011).

[9] J.C. Petersen et al., Phys. Rev. Lett. 107, 177402 (2011).

[10] N. Dean, J. C. Petersen, D. Fausti, R.I. Tobey, S. Kaiser,
L. V. Gasparov, H. Berger, and A. Cavalleri, Phys. Rev. Lett.
106, 016401 (2011).

[11] T. Rohwer et al., Nature (London) 471, 490 (2011).

[12] M. Eichberger, H. Schifer, M. Krumova, M. Beyer, J.
Demsar, H. Berger, G. Moriena, G. Sciaini, and R.J.D.
Miller, Nature (London) 468, 799 (2010).

[13] P. Fazekas, in Modern Trends in the Theory of Condensed
Matter, Lecture Notes in Physics, edited by A. Pekalski and
J. A. Przystawa Vol. 115 (1980) p. 328.

[14] X. Wu and C. Lieber, Science 243, 1703 (1989).

[15] J.-J. Kim, W. Yamaguchi, T. Hasegawa, and K. Kitazawa,
Phys. Rev. Lett. 73, 2103 (1994).

[16] A. Fang, N. Ru, I. R. Fisher, and A. Kapitulnik, Phys. Rev.
Lett. 99, 046401 (2007).

[17] V. Brouet et al., Phys. Rev. B 77, 235104 (2008).

[18] P.B. Allen, Phys. Rev. Lett. 59, 1460 (1987).

[19] J. K. Freericks, H. Krishnamurthy, Yizhi Ge, A. Y. Liu, and
Th. Pruschke, Phys. Status Solidi B246, 948 (2009).

[20] T. Hertel, E. Knoesel, M. Wolf, and G. Ertl, Phys. Rev. Lett.
76, 535 (1996).

[21] M. D. Johannes and I. I. Mazin, Phys. Rev. B 77, 165135
(2008).

[22] K. Schwarz and P. Blaha, Comput. Mater. Sci. 28, 259
(2003).

[23] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.
77, 3865 (1996).

[24] See  Supplemental Material at http:/link.aps.org/
supplemental/10.1103/PhysRevLett.112.176404 for techni-
cal descriptions of the calculations and formalism and for
movies that animate cross-sectional cuts through Fig. 3.

[25] J. K. Freericks, H.R. Krishnamurthy, and Th. Pruschke,
Phys. Rev. Lett. 102, 136401 (2009).

[26] L.P. Kadanoff and G. Baym, Quantum Statistical
Mechanics (Benjamin, New York, 1962).

[27] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964)
[Sov. Phys. JETP 20, 1018 (1965)].

[28] G.D. Mahan, Many-Particle Physics (Springer—Verlag,
Berlin, 2000), 3rd ed.

176404-5


http://dx.doi.org/10.1103/PhysRevB.66.041101
http://dx.doi.org/10.1103/PhysRevB.66.041101
http://dx.doi.org/10.1103/PhysRevLett.93.126405
http://dx.doi.org/10.1103/PhysRevLett.93.126405
http://dx.doi.org/10.1103/PhysRevLett.97.067402
http://dx.doi.org/10.1088/1367-2630/10/5/053019
http://dx.doi.org/10.1088/1367-2630/10/5/053019
http://dx.doi.org/10.1126/science.1160778
http://dx.doi.org/10.1103/PhysRevLett.105.187401
http://dx.doi.org/10.1088/1367-2630/13/6/063022
http://dx.doi.org/10.1103/PhysRevLett.107.177402
http://dx.doi.org/10.1103/PhysRevLett.106.016401
http://dx.doi.org/10.1103/PhysRevLett.106.016401
http://dx.doi.org/10.1038/nature09829
http://dx.doi.org/10.1038/nature09539
http://dx.doi.org/10.1126/science.243.4899.1703
http://dx.doi.org/10.1103/PhysRevLett.73.2103
http://dx.doi.org/10.1103/PhysRevLett.99.046401
http://dx.doi.org/10.1103/PhysRevLett.99.046401
http://dx.doi.org/10.1103/PhysRevB.77.235104
http://dx.doi.org/10.1103/PhysRevLett.59.1460
http://dx.doi.org/10.1002/pssb.200881555
http://dx.doi.org/10.1103/PhysRevLett.76.535
http://dx.doi.org/10.1103/PhysRevLett.76.535
http://dx.doi.org/10.1103/PhysRevB.77.165135
http://dx.doi.org/10.1103/PhysRevB.77.165135
http://dx.doi.org/10.1016/S0927-0256(03)00112-5
http://dx.doi.org/10.1016/S0927-0256(03)00112-5
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176404
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176404
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176404
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176404
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176404
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176404
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176404
http://dx.doi.org/10.1103/PhysRevLett.102.136401

