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The total electronic Raman scattering spectrum, including the nonresonant, mixed and reso-
nant components, is determined for the charge–density–wave (CDW) phase of the spinless Falicov–
Kimball model at half filling within dynamical mean-field theory. Its frequency dependence is in-
vestigated for different values of the energy of the incident photons. The spectra reflect different
structures in the density of states and how they are modified by screening and resonance effects.
The calculations are performed for the B1g, B2g and A1g symmetries (which are typically examined
in the experiment). Our results for the resonance effects of the Raman spectra, found by tuning
the energy of the incident photons, give some information about the many-body charge dynamics
of the CDW-ordered phase.
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I. INTRODUCTION

Experiments on inelastic light scattering are employed
to learn about the complicated charge dynamics of a wide
class of strongly correlated electronic materials. The pho-
ton couples to the charge excitations during the inelastic
scattering process and directly probes the charge excita-
tions of different symmetries. In this work, we study the
strongly correlated electron systems with charge-density-
wave (CDW) ordering. CDW systems possess a static
spatial modulation of the electronic charge with some
spatial ordering wavevector. Since the underlying ionic
cores are charged, they also respond to this charge mod-
ulation of the electron density and often create a distort-
ed lattice structure that follows the modulated charge
order of the electrons. A direct measurement of the lat-
tice distortion due to the ionic displacement is often the
best way to measure the presence of CDW order; it is
more difficult to directly measure the electronic charge
modulation in the material.

In the present work, we investigate how CDW or-
der affects inelastic light scattering experiments by uti-
lizing dynamical mean-field theory (DMFT) to exactly
solve the total electronic Raman spectra. Since inelas-
tic Raman scattering is sensitive to different symmetry
charge modulations (when polarizers are used on the in-
cident and scattered light) it can provide information
about the symmetry of the CDW state and of the many-
body charge excitations. We expect our results should
be relevant to different experimental systems that dis-
play charge-density-wave order via nesting on a bipartite
lattice at half filling, especially in compounds which are
three-dimensional like BaBiO3 and Ba1−xKxBiO3 [1–3]
because DMFT is most accurate in higher spatial di-
mensions; it may also be relevant to some layered two-

dimensional systems, at least in a semi-quantitative fash-
ion. Our work is the next step in recent results on trans-
port, optical conductivity, and nonresonant inelastic X-
ray scattering in CDW systems [4–6] to the realm of reso-
nant inelastic light scattering. Since experimental inelas-
tic light scattering work on CDW systems was focused on
the Raman scattering of the soft phonon modes, future
experimental work should examine the electronic scat-
tering directly. Hence this work has the potential to be
directly relevant to the next generation of Raman exper-
iments on strongly correlated CDW materials.

One of the simplest models which posseses static CDW
ordering at low temperature is the Falicov–Kimball mod-
el [7]. Historically, this model was introduced in 1969 to
describe metal-insulator transitions in rare-earth com-
pounds and transition-metal oxides. Later, it was found
that it has an exact solution within DMFT [8] (for a re-
view see Ref. [9]). The Falicov–Kimball model has two
kinds of particles: itinerant electrons and localized elec-
trons. Mobile electrons hop from site to site with a hop-
ping integral between nearest neighbors and they interact
with the localized electrons when both sit on the same
site (the interaction energy is U); we denote the itin-
erant electron creation (annihilation) operator at site i

by d̂†i (d̂i) and the local electron creation (annihilation)

operator at site i by f̂ †
i (f̂i). The model has commensu-

rate (chessboard) CDW order at half filling and this is
the main property we exploit here. Brandt and Mielsch
determined the formalism for calculating the ordered-
phase Green’s functions [10] shortly after Metzner and
Vollhardt introduced the idea of the many-body problem
simplifying in large dimensions [11]. The CDW order pa-
rameter is known to display anomalous behavior at weak
coupling [12,13], and higher-period ordered phases exist
on the Bethe lattice [14].
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II. DMFT FOR THE CDW PHASE
OF THE FALICOV–KIMBALL MODEL

As mentioned above, the Falicov–Kimball model pos-
sesses the possibility for a transition into a commensurate
CDW phase with doubly modulated (chessboard-like)
density of charge, when both the itinerant and localized
particles are half-filled. Since the hypercubic lattice is a
bipartite lattice, implying that it is separated into two
sublattices (called A and B) with the nearest-neighbor
hopping being nonzero only between the different sub-
lattices, the CDW order corresponds to the case where
the average filling of the electrons remains uniform on
each sublattice, but changes from one sublattice to an-
other. We start by writing the Falicov–Kimball model
Hamiltonian as the sum of its local and nonlocal parts

Ĥ =
∑

ia

Ĥa
i −

∑

ijab

tab
ij d̂†iad̂jb, (1)

where i and a = A or B are the site and sublat-
tice indices, respectively, and tab

ij is the hopping ma-
trix, which is nonzero only between different sublattices
(tAA

ij = tBB
ij = 0). The local Hamiltonian is equal to

Ĥa
i = Un̂a

idn̂
a
if − µa

dn̂a
id − µa

f n̂a
if ; (2)

with the number operators of the itinerant and local-

ized electrons given by n̂id = d̂†i d̂i and n̂if = f̂ †
i f̂i, re-

spectively. Note that we have introduced different chem-
ical potentials for the different sublattices. This is con-
venient for computations, because it allows us to work
with a fixed order parameter, rather than iterating the
DMFT equations to determine the order parameter.
That method of iterative solution is subject to critical
slowing down near Tc, while working with a fixed order
parameter is not. The equilibrium solution occurs when
the chemical potential is uniform throughout the system
(µA

d = µB
d and µA

f = µB
f ), which is the unique condition

used to find the order parameter at a given temperature.
We apply the DMFT, which provides an exact solution

for the Falicov–Kimball model in the limit of infinite spa-
tial dimensions. In contrast to the uniform case [15, 16],
in the CDW phase, the DMFT equations become matrix
equations. Since the DMFT solutions for the chessboard
phase are described in detail in previous work [5, 6], we
concentrate only on a few basic points as a summary and
to establish our notation. The first step of DMFT is to
scale the hopping matrix element as t = t∗/2

√
D [11] (we

use t∗ = 1 as the unit of energy) and then take the limit
of infinite dimensions D → ∞. The self-energy is then
local:

Σab
ij (ω) = Σa(ω)δijδab, (3)

and in the case of two sublattices has two values ΣA(ω)
and ΣB(ω). Now, we can write the solution of the Dyson
equation (in momentum space) in a matrix form

Gk(ω) = [z(ω) − tk]
−1

, (4)

where the irreducible part z(ω) and hopping term tk are
represented by the following 2 × 2 matrices:

z(ω) =

(

ω + µA
d − ΣA(ω) 0

0 ω + µB
d − ΣB(ω)

)

,

(5)

tk =

(

0 εk

εk 0

)

,

with εk = −t∗ lim
D→∞

∑D
i=1 cos(ki)/

√
D.

The second step of DMFT is to map the lattice Green’s
function onto a local problem by means of the dynamical
mean field. Since there are two sublattices, a dynamical
mean field λa(ω) is introduced on each of them. As a re-
sult, the local lattice Green’s function on each sublattice
becomes:

Gaa(ω) =
1

ω + µa
d − Σa(ω) − λa(ω)

. (6)

The third equation that closes the system of equations
for Gaa(ω), Σa(ω) and λa(ω) is obtained from the con-
dition that the local Green’s function is defined as the
Green’s function of an impurity problem with the same
dynamical mean field λa(ω). Such a problem can be ex-
actly solved for the Falicov–Kimball model and the result
is equal to

Gaa(ω) =
1 − na

f

ω + µa
d − λa(ω)

+
na

f

ω + µa
d − U − λa(ω)

, (7)

where na
f is an average concentration of the localized elec-

trons on sublattice a which is found from the equilibrium
condition of a uniform chemical potential (µA

f −µB
f = 0).

These equations are self-consistently solved numerical-
ly. In Ref. [5], we analyzed the evolution of the DOS in
the CDW-ordered phase. We summarize the main points
which are needed here. At T = 0, a real gap develops of
magnitude U with square root singularities at the band
edges. As the temperature increases, the system devel-
ops substantial subgap DOS which are thermally acti-
vated within the ordered phase until T is raised high
enough that the system enters the normal phase. Plots
of the DOS can be found in Ref. [5]. Note that the sin-
gular behavior occurs for one of the “inner” band edges
on each sublattice, and that the subgap states develop
very rapidly as the temperature rises. Furthermore, at
half filling the DOS on each sublattice is related to the
DOS on the other sublattice by a reflection about ω = 0.

III. INELASTIC LIGHT SCATTERING

For an electronic system with nearest-neighbor hop-
ping, the interaction with a weak external transverse
electromagnetic field determined by the vector potential
A is described by the Hamiltonian [17, 18]:

Hint = − e

~c

∑

k

j(k) · A(−k)

+
e2

2~2c2

∑

kk′

Aα(−k)γα,β(k + k′)Aβ(−k′), (8)

where the number current operator and stress tensor for
itinerant electrons are equal to
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jα(q) =
∑

abk

∂tab(k)

∂kα
d̂†a(k + q/2)d̂b(k − q/2) and γα,β(q) =

∑

abk

∂2tab(k)

∂kα∂kβ
d̂†a(k + q/2)d̂b(k − q/2), (9)

respectively. Here tab(k) are the components of the 2 × 2 hopping matrix in Eq. (5). The formula for the inelastic
light scattering cross-section derived by Shastry and Shraiman is equal to [17, 18]

R(q, Ω) = 2π
∑

i,f

e−βεi

Z
δ(εf − εi − Ω)

∣

∣

∣
g(ki)g(kf )ei

αef
β

〈

f
∣

∣

∣
M̂αβ(q)

∣

∣

∣
i
〉∣

∣

∣

2

. (10)

It describes the scattering of band electrons by photons with Ω = ωi−ωf and q = ki−kf being the transferred energy

and momentum, respectively, ei(f) is the polarization of the initial (final) states of the photons and εi(f) denotes

the electronic eigenstates. The quantity g(q) = (hc2/V ωq)1/2 is called the “scattering strength” with ωq = c|q|, and

Z = Tr exp(−βĤ) the partition function. The scattering operator M̂(q) is constructed from both the number current
operator and the stress tensor; it has both nonresonant and resonant contributions

〈

f
∣

∣

∣
M̂αβ(q)

∣

∣

∣
i
〉

= 〈f |γα,β(q)| i〉 +
∑

l

(

〈f |jβ(kf )| l〉 〈l |jα(−ki)| i〉
εl − εi − ωi

+
〈f |jα(−ki)| l〉 〈l |jβ(kf )| i〉

εl − εi + ωf

)

(11)

with the sum l over intermediate states. After substi-
tuting into the cross-section formula, one obtains three
terms in the cross-section: a nonresonant term; a mixed
term; and a pure resonant term (because it is constructed
from the square of the scattering operator). The compo-
nents of the cross-section can be extracted from the ap-
propriate correlation functions (response functions) first
calculated on the imaginary Matsubara frequencies and
then analytically continued onto the real axis [16]. Hence,
we concentrate on the light-scattering response function
χ(q, Ω), which is related to the cross-section and has non-
resonant, mixed and resonant contributions:

R(q, Ω) =
2πg2(ki)g

2(kf )

1 − exp(−βΩ)
χ(q, Ω),

(12)

χ(q, Ω) = χN (q, Ω) + χM (q, Ω) + χR(q, Ω).

Inelastic light scattering examines charge excitations
of different symmetries by employing polarizers on both
the incident and scattered light. The A1g symmetry has
the full symmetry of the lattice and is primarily mea-
sured by taking the initial and final polarizations to
be ei = ef = (1, 1, 1, 1, . . .). The B1g symmetry in-
volves crossed polarizers: ei = (1, 1, 1, 1, . . .) and ef =
(−1, 1,−1, 1, . . .); while the B2g symmetry is rotated by
45 degrees; it requires the polarization vectors to satisfy
ei = (1, 0, 1, 0, . . .) and ef = (0, 1, 0, 1, . . .). For Raman
scattering (q = 0), it is easy to show that for a system
with only nearest-neighbor hopping and in the limit of
large spatial dimensions, the A1g sector has contribu-
tions from nonresonant, mixed and resonant scattering,
the B1g sector has contributions from nonresonant and
resonant scattering only, and the B2g sector is purely
resonant [19, 20].

An analysis of the total electronic Raman spectra for
the uniform phase of the Falicov–Kimball model has al-

ready been completed [16]. A full calculation of the non-
resonant inelastic light scattering for all q in the CDW
chess-board phase has also been presented [6]. Here we
focus on the total response including the mixed and res-
onant contributions for the Raman scattering (q = 0) in
CDW phase.

IV. MIXED AND RESONANT RESPONSES

The way we determine the mixed and resonant re-
sponse functions is as follows: we construct the corre-
sponding multi-time correlation function in terms of the
generalized polarizations, then perform a Fourier trans-
formation to the imaginary Matsubara frequencies and
finally analytically continue onto the real frequency ax-
is to extract the response function. Such a procedure
requires a lot of algebra and analysis [16]; we do not
present all of the details here, but instead we summarize
the main points.

The mixed response function is extracted from the
multi-time correlation function which is built on three
operators: one stress tensor and two current operators,
as follows

χγ̃,f̃ ,̃i(τ1, τ2, τ3) =
〈

Tτ γ̃(τ1)j̃
(f)(τ2)j̃

(i)(τ3)
〉

. (13)

The symbol Tτ is a time ordering operator and the
tilde denotes contractions with the polarization vectors

[γ̃ =
∑

αβ

ei
αγα,β(q)ef

β and j̃(i,f) =
∑

α
ei,f

α jα(∓ki,f )]. Fur-

thermore, we perform the Fourier transformation from
the imaginary times τ1, τ2, and τ3 to the imaginary Ma-
tsubara frequencies iνi, iνf , and iνi − iνf . As a result,
the correlation function is represented as a sum over
Matsubara frequencies of the generalized polarizations
Πm+i,m+i−f,m:
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χγ̃,f,i(iνi − iνf , iνf ,−iνi)

= T
∑

m

[Πm−f,m+i−f,m + Πm+i,m+i−f,m] , (14)

where we introduced the shorthand notation
Πm−f,m+i−f,m = Π(iωm − iνf , iωm + iνi − iνf , iωm)
for the dependence on the fermionic iωm = iπT (2m+ 1)
and bosonic iνl = i2πT l Matsubara frequencies. In the
case of a CDW ordered phase, the Feynman diagrams

for the generalized polarizations Πm,m+l are shown in
Fig. 1, where we introduce additional sublattice indexes
a to s.

Now one has to carefully perform the analytic contin-
uation to the real axis (iνi,f → ωi,f ± i0+, iνi − iνf →
Ω ± i0+) and replace the sum over Matsubara frequen-
cies by an integral over the real axis. Then the mixed
response function is expressed directly in terms of the
generalized polarizations

χM (q, Ω) =
1

(2πi)2

+∞
∫

−∞

dω [f(ω) − f(ω + Ω)]

× Re
{

Π(ω − ωf + i0+, ω + Ω + i0+, ω − i0+) − Π(ω − ωf + i0+, ω + Ω − i0+, ω − i0+)

+ Π(ω − ωf − i0+, ω + Ω + i0+, ω − i0+) − Π(ω − ωf − i0+, ω + Ω − i0+, ω − i0+) (15)

+ Π(ω + ωi + i0+, ω + Ω + i0+, ω − i0+) − Π(ω + ωf + i0+, ω + Ω − i0+, ω − i0+)

+ Π(ω + ωf − i0+, ω + Ω + i0+, ω − i0+) − Π(ω + ωf − i0+, ω + Ω − i0+, ω − i0+)
}

,

where f(ω) = 1 /[exp(βω) + 1] is the Fermi-Dirac distribution function.

Fig. 1. Feynman diagrams for the generalized polarizations of the mixed response function. Due to the properties of the
dynamic irreducible charge vertex of the Falicov–Kimball model, we have m = m

′.

The mixed contribution is nonzero only for the A1g

symmetry; for other symmetries it vanishes after the
summation over wave vectors. The next step is to calcu-
late these generalized polarizations. There are two types
of diagrams for the generalized polarizations (see Fig. 1):
the bare loop and the renormalized loop. The reducible
charge vertex Γ̃ab (shaded rectangle in Fig. 1) is defined
from the Bethe-Salpeter-like equation through the irre-
ducible one Γa which is local in the DMFT approach on
each sublattice [6] and has the same functional form as
in the uniform phase [21–23]. Also, we used the fact that
the total reducible charge vertex is a diagonal function
of frequencies for the Falicov–Kimball model [21–23]; for
other models, where the vertex is no longer diagonal,
the analysis is more complicated. The final expression
for the generalized polarization is too cumbersome to be
presented here.

Similar to the mixed response, the resonant response
function is constructed from a multi-time correlation
function which is built on four current operators

χi,f,f,i(τ1, τ2, τ3, τ4)

=
〈

Tτj(i)(τ1)j
(f)(τ2)j

(f)(τ3)j
(i)(τ4)

〉

. (16)

Furthermore, we perform the same formal analytic con-
tinuation procedure as for the mixed response function.
In Fig. 2, we present the Feynman diagrams for the gen-
eralized polarizations which contribute to the resonant
response function.

For the resonant response function, the analytical con-
tinuation onto the real axis is quite complex, but the
general method remains the same and the final formula
for the resonant response function is similar to the mixed
response function in Eq. (15) (see Ref. [16] for results in
the normal phase). In contrast to the nonresonant and
mixed response, the resonant response contributes to all
symmetries. In addition, both the bare and renormalized
loops in Fig. 2 are present in the resonant response func-
tion. In the B2g symmetry we have only the resonant
response, in the B1g symmetry we have both nonreso-
nant and resonant responses, and in the A1g symmetry
we have all three responses.

V. RESULTS AND CONCLUSIONS

A detailed analysis of the single particle DOS in the
chessboard CDW phase of the Falicov–Kimball model
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has been presented earlier [5]. Here we show results for
Raman scattering in the CDW phase with U = 2 and
temperature T = 0.05 (which lies below the critical tem-
perature Tc ≈ 0.0769). In Fig. 3, we show the DOS (left
panel) and varying contributions to the Raman response
for the A1g and B1g symmetries.

In Fig. 3 (a) one can see the main features of the
DOS for chessboard phase at intermediate T : the gap
of width U edged by singularities at ω = ±U/2 and par-

tially filled by subgap states placed at ω = ±E/2 (E ≈ 1
for the case of U = 2 and T = 0.05). As a result, the
scattering spectra displays features (peaks) at frequen-
cies Ω = (U −E)/2, E, (U +E)/2, and U . Such features
(peaks) were already observed for the optical conductivi-
ty [5] and for the nonresonant Raman and X-ray respons-
es [6]. In addition, there can also be features at ωi − U ,
ωi − (U + E)/2, ωi − E, and ωi − (U − E)/2.

Fig. 2. Feynman diagrams for the generalized polarizations of the resonant response function. Both the renormalized and
bare loop diagrams contribute in all symmetries (A1g, B1g and B2g).

Fig. 3. (a) DOS and (b) different contributions to the Raman responses (ωi = 4) at T = 0.05 and U = 2. The solid
line corresponds to the total response, the dashed-dotted line corresponds to the nonresonant contribution, the dashed line
corresponds to the resonant contribution, and the dotted line corresponds to the mixed contribution.
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Fig. 4. Total Raman response for the A1g symmetry at T = 0.05 for U = 2 on (a) a linear and (b) a logarithmic scale.
Different curves correspond to different incident photon energies ranging from ωi = 1.5 to ωi = 4.0 in steps of 0.5.

Fig. 5. Total Raman response for the B1g symmetry at T = 0.05 for U = 2 on (a) a linear and (b) a logarithmic scale.
Different curves correspond to different incident photon energies ranging from ωi = 1.5 to ωi = 4.0 in steps of 0.5.

Fig. 6. Total Raman response for the B2g symmetry at T = 0.05 for U = 2 on (a) a linear and (b) a logarithmic scale.
Different curves correspond to different incident photon energies ranging from ωi = 1.5 to ωi = 4.0 in steps of 0.5.

In the case of B1g symmetry [Fig. 3 (b)], there is a
large peak in the nonresonant response at a frequency
equal to Ω = U that reflects the transitions between the
states above and below the gap. The peak has a square
root-like singularity, that comes from the shape of DOS
when there is CDW order and the fact that there is no
screening for the nonresonant response in this symmetry
channel. The smaller peak corresponds to transitions be-
tween states of the upper (bottom) band and the lower
(upper) subgap states at [Ω = (U +E)/2]. In addition to
the nonresonant response, the resonant one has contribu-

tions from the renormalized charge excitations (Fig. 2)
which reduce the high-energy transitions. As was men-
tioned above, all contributions contribute in the total re-
sponse for the A1g symmetry [Fig. 3 (b)]. Because of the
charge renormalization in the nonresonant, mixed and
resonant response functions, the total response is small-
er than in the B1g symmetry and there is no square root
singularity.

The total Raman response is presented in set of
Figs. 4–6 for the different symmetry channels and for dif-
ferent energies of the incident photons. One can see the
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main features which were already observed for the opti-
cal conductivity and nonresonant scattering: four peaks
at Ω = (U − E)/2, E, (U + E)/2, and U which corre-
spond to the different interband transitions. In addition,
the resonant and mixed contributions strongly modify
the nonresonant response: there is a strong enhancement
of the scattering when the energy of the incident photon
is close to the energy of the interband transitions and
there is the appearance of additional features (peaks) at
the frequencies Ω = ωi − U , ωi − (U − E)/2, ωi − E,
and ωi − (U + E)/2 as measured from the energy of the
incident photon.

The resonant response is particularly large near the
transferred energy Ω ≈ 1.5 when ωi ≈ 2. By examining
results on a finer grid of photon frequencies (not shown
here) we establish that the resonant profile has a narrow
full width at half max of much less than 0.1, and a very
sharp dependence on ωi (the peak height drops by more
than three orders of magnitude by the time ωi = 2.1
or 1.9). In addition, the resonant response in this region
does not depend too strongly on the symmetry channel of
the scattering. Note how similar the curves appear (on a
log scale) for the different symmetry channels, especially
for transferred energies away from U where the gap edge
creates sharp features in the B1g channel. Finally, there
are joint resonances, as the lower energy peaks do res-
onate with the large peak, especially for ωi ≈ 2. Similar
resonant effects can be seen for the lower-energy peaks
when the incident photon frequency is lower, but they
are not as dramatic as what happens for the peak near
Ω ≈ 1.5. These resonant effects could be strong signa-

tures of the CDW phase in real materials. The resonant
enhancements in the normal phase do not produce such
enormous peaks or have such sharp dependences on the
incident photon frequencies; this behavior is arising pre-
dominantly from the CDW order.

In conclusion, we have examined the total electron-
ic Raman scattering response for the spinless Falicov–
Kimball model in the ordered CDW phase. Space limi-
tations allowed us to only consider one value of the in-
teraction and temperature, but we see some interesting
results, primarily the appearance of a huge resonantly
enhanced peak near ωi = U that is essentially indepen-
dent of the symmetry channel. Such a peak could be an
important signal for experiments on these systems as in-
dicating the appearance of the CDW phase via a direct
measurment of the electronic charge dynamics. Future
work will elaborate on how these features evolve with U
and T and will provide additional details of the formal-
ism that could not be included here.
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ПОВНЕ ЕЛЕКТРОННЕ КОМБIНАЦIЙНЕ РОЗСIЯННЯ СВIТЛА
В ЗАРЯДОВОВПОРЯДКОВАНIЙ ФАЗI БЕЗСПIНОВОЇ МОДЕЛI ФАЛIКОВА–КIМБАЛА

О. П. Матвєєв1, А. М. Швайка1, Дж. К. Фрiрiкс2

1Iнститут фiзики конденсованих систем НАН України,

вул. Свєнцiцького, 1, 79011, Львiв, Україна
2Фiзичний факультет, унiверситет Джорджтауну, Вашингтон, DC 20057, США

Для безспiнової моделi Фалiкова–Кiмбала на гiперкубiчнiй ґратцi з подвiйною модуляцiєю густини за-

ряду при половинному заповненнi в межах теорiї динамiчного середнього поля розраховано повнi спектри

комбiнацiйного розсiяння свiтла з урахуванням нерезонансних, змiшаних та резонансних внескiв. Дослiдже-

но їхнi частотнi залежностi для рiзних енерґiй фотонiв падаючого свiтла. Отриманi спектри вiдображають

наявнiсть рiзних структур на густинi станiв та їхню змiну внаслiдок динамiчного екранування та резонан-

сних ефектiв. Усi розрахунки виконанi для типових для експерименту симетрiй A1g, B1g та B2g. Одержанi

результати з резонансних ефектiв у спектрах комбiнацiйного розсiяння, якi отримано при змiнi енерґiї на-

лiтаючих фотонiв, дають iнформацiю про багаточастинкову зарядову динамiку в зарядововпорядкованiй

фазi.
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