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We derive the dynamical mean-field theory equations for transport in an ordered charge-density-wave phase
on a bipartite lattice. The formalism is applied to the spinless Falicov-Kimball model on a hypercubic lattice at
half filling. We determine the many-body density of states, the dc charge and heat conductivities, and the
optical conductivity. Vertex corrections continue to vanish within the ordered phase, but the density of states
and the transport coefficients show anomalous behavior due to the rapid development of thermally activated
subgap states. We also examine the optical sum rule and sum rules for the first three moments of the Green’s
functions within the ordered phase and see that the total optical spectral weight in the ordered phase either
decreases or increases depending on the strength of the interactions.
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I. INTRODUCTION

Dynamical mean-field theory �DMFT� was introduced al-
most two decades ago by Brandt and Mielsch,1 who solved
for the transition temperature into a charge-density-wave
�CDW� phase of the spinless Falicov-Kimball model at half
filling. This work appeared shortly after the idea of examin-
ing strongly correlated electrons in the limit of infinite di-
mensions was introduced.2 Since then, the field of DMFT has
emerged as one of the most powerful nonperturbative tech-
niques for solving the many-body problem. While results for
many properties exist in the homogeneous �unordered�
phase,3 there has been little work in examining the properties
of the ordered phase. Brandt and Mielsch worked out the
formalism for calculating ordered-phase Green’s functions,4

the order parameter was shown to display anomalous behav-
ior at weak coupling,5,6 and higher-period ordered phases
have been examined on the Bethe lattice.7 However, surpris-
ingly, there has been no work on the transport properties in
the ordered phase. Indeed, it is interesting to compare how
transport varies in the homogeneous phase versus the or-
dered phase. At weak coupling, we anticipate the gap forma-
tion of the CDW to greatly suppress the dc transport, while at
strong coupling, it may be a much milder correction to the
Mott-insulating behavior. What is more interesting is to ex-
amine the temperature dependence. For example, in systems
that are metallic at high temperature, the many-body density
of states �DOS� in the CDW phase develops strong tempera-
ture dependence �with increasing T� as the CDW gap region
fills in due to thermal excitations until gap closure is com-
plete at the transition temperature. However, unlike the well-
known superconducting case, where subgap states tend not to
form and the gap is simply reduced in size as T increases,
here we have a rapid development of subgap states, even
though the CDW order parameter remains nonzero. These
subgap states should produce anomalous behavior in the
low-T transport, and indeed, we find this is so but the
quantitative behavior is not that different from exponential

activation of the transport. We anticipate our results should
be relevant to different experimental systems that display
charge-density-wave order, especially in compounds which
are three-dimensional such as8 BaBiO3 and Ba1−xKxBiO3.

This contribution is organized as follows. In Sec. II, we
present the formalism for DMFT in the ordered phase includ-
ing the techniques needed to determine the optical conduc-
tivity and the dc transport. We also determine moment sum
rules for the Green’s functions in the ordered phase. In Sec.
III, we apply the formalism to numerical solutions of the
Falicov-Kimball model at half filling and show how the
transport behaves in the ordered phases. Conclusions and a
discussion follow in Sec. IV.

II. FORMALISM FOR THE ORDERED PHASE

The Falicov-Kimball model9 was introduced in 1969 as a
model for metal-insulator transitions in rare-earth com-
pounds and transition-metal oxides. The spinless version is
arguably the simplest many-body problem that nevertheless
possesses rich physics including the Mott transition, order-
disorder phase transitions, and phase separation �for a review
see Ref. 10�. It involves two kinds of electrons: mobile con-
duction electrons whose creation and destruction operators

are d̂i
† and d̂i at site i, and localized electrons whose creation

and destruction operators are f̂ i
† and f̂ i at site i. The Falicov-

Kimball Hamiltonian can be represented in terms of a local
operator and a hopping operator as follows:

Ĥ = �
i

Ĥi − �
ij

tijd̂i
†d̂j , �1�

where tij is the hopping matrix and

Ĥi = Un̂idn̂if − �dn̂id − � fn̂if �2�

is the local Hamiltonian with the number operators given by

n̂id= d̂i
†d̂i and n̂if = f̂ i

† f̂ i.
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If the lattice can be divided into two sublattices and the
hopping is nonzero only between the two sublattices �i.e.,
there is no hopping within either sublattice�, then the lattice
is called a bipartite lattice, and it has nesting at half filling in
the noninteracting system, which implies that the Fermi sur-
face in the Brillouin zone has flat regions that are connected
by the zone-diagonal wave vector Q= �� ,� , . . . �. Nesting
promotes the formation of a CDW with the average filling of
the electrons being uniform on each sublattice, but changing
from one sublattice to another. This is often called the check-
erboard or chessboard CDW and is the ordered phase that we
will examine in detail in this work.

In order to develop the formalism to determine the
Green’s functions and transport in the ordered CDW phase,
we need to introduce some notation that will help clarify
how the ordered phase is determined. It is convenient to
supplement the lattice site index, which we had been calling
index i, by a double index �i ,a�, where i runs over all of the
lattice sites of one of the sublattices, and the label a=A or B
denotes the sublattice �see Fig. 1� �we are assuming for sim-
plicity that the two sublattices have an equal number of lat-
tice sites as they do on the infinite-dimensional hypercubic
lattice or on the infinite-coordination-number Bethe lattice�.
We rewrite the Hamiltonian from Eq. �1� as

Ĥ = �
ia

Ĥi
a − �

ijab

tij
abd̂ia

† d̂jb, �3�

with the local Hamiltonian satisfying

Ĥi
a = Un̂id

a n̂if
a − �d

an̂id
a − � f

an̂if
a . �4�

In this notation, the bipartite lattice condition is simply that
tij
AA= tij

BB=0. We have introduced different chemical potentials
for the two different sublattices at the moment. This is con-
venient for computations because it allows us to work with a
fixed order parameter, rather than iterating the DMFT equa-
tions to determine the order parameter �which is subject to
critical slowing down near Tc�. Of course, the equilibrium
solution occurs when the chemical potential is uniform
throughout the system ��d

A=�d
B and � f

A=� f
B�.

Our starting point is to find the set of equations satisfied
by the lattice Green’s function. The Green’s function is de-
fined to be

Gij
ab��� = − Tr�T�e

−�Ĥd̂ia���d̂jb
† �0��/Z , �5�

where � is the imaginary time, the time dependence of the
destruction operator is written in the Heisenberg representa-

tion �dia���=exp��Ĥ�dia exp�−�Ĥ��, and Z is the partition

function Z=Tr exp�−�Ĥ�, with �=1 /T the inverse tempera-
ture. The symbol T� is the time-ordering operator, which or-
ders the times so that earlier times appear to the right.

One way to calculate the Green’s function is to use an
equation of motion technique,11 where the derivative with
respect to imaginary time is taken and a differential equation
is found for the Green’s function. In DMFT, this procedure is
carried out for the impurity problem in a time-dependent
field, and the field is adjusted so that the impurity Green’s
function is equal to the local lattice Green’s function. In ad-
dition, we need to define the self-energy via Dyson’s equa-
tion in order to complete the iterative DMFT loop needed to
solve the full problem. Finally, an analytic continuation from
the imaginary axis to the real axis is performed to calculate
dynamical properties. These techniques are all well known
and have been established in the literature,1,4,10,11 so we pro-
vide just a schematic approach to the derivation, highlighting
some key formulas along the way.

The Dyson equation, which can be thought of as defining
the self-energy, is

�
lc

��� + �d
a��ac�il − �il

ac��� + til
ac�Glj

cb��� = �ij�ab, �6�

with � the real frequency. In the case of nearest-neighbor
hopping on an infinite-dimensional hypercubic lattice, we
have that the band structure satisfies �k=−� j exp�ik · �RiA

−R jB��tij
AB=−limD→	 t*�
=1

D cos k
 /�D, where we scaled2

the nearest-neighbor hopping matrix element by t= t* /2�D
�we will use t*=1 as our energy unit�. In addition, the self-
energy is local,12

�ij
ab��� = �i

a����ij�ab, �7�

which further simplifies the Dyson equation. It is simpler to
transform from real space to momentum space to solve the
Dyson equation. However, we do not assume that the
Green’s function is completely translation invariant, instead,
we assume only that there is translation invariance within
each of the sublattices. Then, the momentum representation
of the Dyson equation in Eq. �6� with the local self-energy in
Eq. �7� becomes

Gk��� = �z��� − tk�−1, �8�

where z��� and the hopping term are represented by 2�2
matrices,

z��� = 	� + �d
A − �A��� 0

0 � + �d
B − �B���


 ,

FIG. 1. Schematic illustration of the transition from a homoge-
neous phase to the bipartite CDW phase. The hopping is between
nearest neighbors, which corresponds to the neighboring points in
the horizontal and vertical directions.
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tk = 	 0 �k

�k 0

 . �9�

Substituting Eq. �9� into Eq. �8� and taking the matrix in-
verse yield the following formulas for the momentum-
dependent Green’s functions on the lattice:

Gk
AA��� =

� + �d
B − �B���

Z̄2��� − �k
2

, �10�

Gk
BB��� =

� + �d
A − �A���

Z̄2��� − �k
2

, �11�

Gk
AB��� = Gk

BA��� =
�k

Z̄2��� − �k
2

, �12�

with Z̄ defined by

Z̄��� = ��� + �d
A − �A������ + �d

B − �B���� , �13�

which agree with those of Brandt and Mielsch4 even though
our notation is somewhat different from theirs. The local
Green’s functions on each sublattice then satisfy

Gaa��� =
� + �d

b − �b���

Z̄���
Fz��� , �14�

where the a sublattice is different from the b sublattice and
Fz��� is the Hilbert transform,

Fz��� =� d�����
1

Z̄��� − �
. �15�

The function ���� is the noninteracting density of states,
which is ����=exp�−�2 / t*2� / t*�� for the infinite-
dimensional hypercubic lattice �as discussed above, we take
t*=1�.

In the DMFT solution, we need to map the lattice problem
onto a local �impurity� problem in a time-dependent field that
is adjusted to make the impurity Green’s function equal to
the local Green’s function of the lattice. Here, we have two
different local Green’s functions, one on the A sublattice and
one on the B sublattice; hence, we will need two time-
dependent fields and two impurity problems to solve in order
to complete the DMFT mapping. We call the dynamical
mean fields 
a��� for each sublattice. Then, the solution of
the impurity problem is straightforward and is summarized
by the following set of equations:

G0
a��� = �Gaa���−1 + �a����−1 �16�

=
1

� + �d
a − 
a���

, �17�

Gaa��� =
�1 − nf

a�
� + �d

a − 
a���
+

nf
a

� + �d
a − U − 
a���

, �18�

�a��� = � + �d
a − 
a��� − Gaa���−1, �19�

where we must solve these equations for each of the sublat-
tices a=A and a=B.

The DMFT algorithm for a fixed value of the order pa-
rameter starts by choosing nf

A and nf
B such that nf

A+nf
B is fixed

to the total f-electron filling �the order parameter is �nf
=nf

A−nf
B� and choosing �d

A=�d
B. With those fixed quantities,

we propose a guess for the self-energy on each sublattice,
and then compute the local Green’s function on the real axis
from Eqs. �13� and �14�. Then, we extract the dynamical
mean field on each sublattice from Eqs. �16� and �17� and
find the local Green’s function for the impurity from Eq. �18�
and the new self-energy from Eq. �19�. This loop is repeated
until the Green’s functions converge. Then, one can calculate
the filling of the d electrons and adjust them until they match
the target filling. However, this procedure is not yet complete
because we need to determine the correct equilibrium order
parameter nf

A−nf
B at the given temperature. To find this, it is

actually more convenient to perform the calculations pre-
cisely as described above, but on the imaginary frequency
axis, where � is replaced by i�n= i�T�2n+1� the fermionic
Matsubara frequencies. Then, we calculate the chemical po-
tential for the f electrons on each sublattice via

� f
a = −

U

2
− T ln

1 − nf
a

nf
a − T�

n

ln�1 − UG0
a�i�n�� , �20�

and adjust the order parameter until the two chemical poten-
tials are equal, which is required for the equilibrium solution.
Then, when we calculate the Green’s functions on the real
axis, the chemical potentials and fillings are all already
known, so they do not need to be adjusted during the calcu-
lation.

This algorithm is much more efficient than an algorithm
that starts with a fixed chemical potential for the f electrons
and iterates to determine nf

a on the imaginary frequency axis.
This is because the latter suffers from critical slowing down
and becomes quite inefficient near the critical temperature,
whereas the calculations with the fixed order parameter con-
verge quite rapidly regardless of how close one is to the
critical point.

When the DOS is calculated for each sublattice in the
ordered phase, one finds interesting temperature dependence
of the subgap states as a function of T. It is illustrative to
discuss these evolutions in terms of the moments of the local
interacting DOS. It is well known that in the homogeneous
phase, the integral of A���=−Im G��� /� is equal to 1. How-
ever, there are also exact results known for higher moments
as well.13,14 In particular, because the moments are derived
from operator identities, they continue to hold whether in the
ordered phase or not. So, we find the following identities
immediately:

� d�Aa��� = 1, �21�

� d��Aa��� = − �d
a + Unf

a, �22�
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� d��2Aa��� =
1

2
+ �d

a2 − 2U�d
anf

a + U2nf
a. �23�

We have checked these moments versus our numerical cal-
culations of the Green’s functions on the real axis and they
all agree to high accuracy for all temperatures that we con-
sider. Note that at half filling, we have �d

a=U /2, so the first
moment vanishes in the homogeneous phase. As the system
orders, the first moment on one sublattice becomes negative,
and the first moment on the other sublattice becomes posi-
tive, which indicates that the quantum states are shifting in
response to the ordering. In particular, this redistribution of
states causes the average kinetic energy to evolve more
strongly with temperature in the ordered phase, but its evo-
lution is anomalous and cannot be predicted by any simple
reasoning about how the states evolve �see below�. The evo-
lution of the average kinetic energy plays an important role
in the total spectral weight for the optical conductivity.

At T=0, the order parameter goes to 1, so there is one
sublattice �let us say the A sublattice� which has all the f
electrons. Hence, nf

A=1 and nf
B=0. In this case, the analysis

for the Green’s function simplifies. In particular, only one
term in Eq. �18� survives on each sublattice and we immedi-
ately find �A=U and �B=0. Plugging these results into the
remaining formulas for the DMFT algorithm then yields an
analytic formula for the ordered phase DOS,

AA,B��� = −
1

�
Im GAA,BB���

= Re�� � ±
U

2

� �
U

2

�	��2 −

U2

4

 , �24�

where the top sign is for the A sublattice �with a divergence
of the DOS at �=U /2� and the bottom sign is for the B
sublattice �with a divergence at �=−U /2�; the formula is
restricted to half filling where �d

A=�d
B=U /2. Note that the

two DOS on each sublattice are mirror images of each other
and that each sublattice has weight for positive and negative
frequencies, but the band that does not have the singularity
�lower band for sublattice A and upper band for sublattice B�
has shrinking spectral weight as U becomes large, because
the mobile electrons avoid the sites with the localized elec-
trons for large U. Note further that unlike the Mott insulator,
where the DOS vanishes only at the chemical potential on a
hypercubic lattice, a real gap develops here of magnitude U
at T=0. In Fig. 2, we show the DOS at zero temperature for
four values of U. Panel �a� plots the DOS on the A sublattice
and panel �b� plots the DOS on the B sublattice. One can see
that the shape of the DOS is qualitatively similar for all
cases, but the size of the gap grows with U.

What is more interesting is to examine the temperature
evolution of the DOS in these different cases. Indeed, the
system develops substantial subgap DOS that is thermally
excited within the ordered phase �the order parameter is de-
termined by the difference in localized electron filling on the
two sublattices�. In Fig. 3�a�, we plot the DOS for the

strongly correlated metal at U=0.5. The fill in of the subgap
states is quite rapid with T as we increase up to Tc=0.0336.
Similar behavior is also observed for U=1 with Tc=0.0615
which has a dip in the DOS in the normal state �Fig. 3�b��.

The Mott insulating phases also illustrate interesting be-
havior. In particular, the subgap states develop primarily
within the upper and lower Hubbard bands �although on the
hypercubic lattice, the Mott insulator has only a pseudogap
with the DOS strictly vanishing only at �=0�. We illustrate
this behavior in Figs. 4�a� and 4�b�. The transition tempera-
tures are Tc=0.0747 for U=1.5 and Tc=0.0724 for U=2.5.
Note how the subgap DOS develop closer to the Mott band
edge than they do to the CDW band edge, which implies they
should have an effect on the transport at low T.

In all cases, the DOS satisfy the three sum rules for the
first three moments to essentially machine accuracy—our ac-
tual accuracy is determined by the step size we use for the
real frequency axis in calculating the DOS and then integrat-
ing it over all frequency to obtain the numerical moments.

Now, we develop the formalism for transport in the CDW
phase. The linear response optical conductivity is determined
�via the Kubo-Greenwood formula15,16� by the imaginary
part of the analytic continuation of the current-current corre-
lation function to the real axis,

FIG. 2. �Color online� DOS at T=0 for the CDW-ordered phase
on a hypercubic lattice. Panel �a� is for the A sublattice and panel
�b� is for the B sublattice. Four cases are plotted: U=0.5 which is a
strongly correlated metal; U=1, where a dip develops in the
normal-state DOS at the chemical potential; U=1.5, which is a
near-critical Mott insulator; and U=2.5, which is a moderate-size-
gap Mott insulator. The T=0 gap in the DOS is always equal to U
in the ordered CDW phase.
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���� =
1

�
Im � j j��� , �25�

with the number current operators defined by

ĵ = i�
ijab

tij
ab�Ria − R jb�d̂ia

† d̂jb, �26�

j
 = �
abk

��k
ab

�k


da
†�k�db�k� . �27�

The procedure to determine the current-current correlation
function is a standard one so we only sketch the derivation
briefly. We start from the imaginary time formula for the
current-current correlation function,

� j j�� − ��� = �T�j���j����� , �28�

where the angle brackets denote a trace over all states
weighted by the statistical operator �density matrix� at the
given temperature and the current operators are represented
in the Heisenberg representation with respect to the equilib-
rium Hamiltonian �because this is a linear-response calcula-
tion�. We then perform a Fourier transformation to go from
imaginary time to Matsubara frequencies, and then perform
an analytic continuation from the imaginary frequency axis
to the real frequency axis.

The Fourier transform of the current-current correlation
function defined in Eq. �28� can be represented as a summa-
tion over Matsubara frequencies,

� j j�i�l� = T�
m

�m,m+l, �29�

where we introduced the shorthand notation �m,m+l
=��i�m , i�m+ i�l� for the dependence on the fermionic i�m

= i�T�2m+1� and bosonic i�l= i2�Tl Matsubara frequencies
�m and l are integers�. In the CDW phase, the graphic depic-
tion of the Bethe-Salpeter equation for the generalized polar-
ization �m,m+� is plotted in Fig. 5 where the solid oval de-
picts the current operator using the same sublattice indices as
we have used before �the current operator connects the two
sublattices�, the solid lines are Green’s functions, and the
cross hatched object is the total �reducible� charge vertex.
The current operator vertex contains the factor ��k /�k


which is an odd function of the wave vector. Since the band
structure �k and the Green’s functions are even functions of
the wave vector, any summation over momentum that con-
tains one current vertex and any number of Green’s functions
will vanish. Now, in infinite dimensions, the irreducible
charge vertex �which enters the Bethe-Salpeter equation for

FIG. 3. �Color online� DOS on the A sublattice for various T
values in the CDW-ordered phase on a hypercubic lattice with �a�
U=0.5 and �b� U=1. The DOS on the B sublattice is a mirror
reflection of these results about the plane �=0.

FIG. 4. �Color online� DOS on the A sublattice for various T
values in the CDW-ordered phase on a hypercubic lattice with �a�
U=1.5 and �b� U=2.5.

FIG. 5. Bethe-Salpeter equation for the generalized
polarization.
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the total charge vertex� is local and hence momentum inde-
pendent, so the second term in Fig. 5 vanishes, just like it did
in the homogeneous phase.17 We thereby conclude that the
optical conductivity is constructed only by the bare bubble in
Fig. 5.

Then, the full expression for the generalized polarization
�m,m+l is depicted in Fig. 6 and simplifies to

�m,m+l =
1

N
�
k

jk
2�Gkm

AAGkm+l
BB + Gkm

ABGkm+l
AB + Gkm

BAGkm+l
BA

+ Gkm
BBGkm+l

AA � , �30�

where jk=−limD→	�t* /�D��r=1
D sin kr and solid lines denote

the momentum-dependent lattice Green’s functions Gkm
ab �see

Eqs. �10�–�12��. After substituting in the expressions for the
Green’s functions, the individual contributions to �m,m+l be-
come

1

N
�
k

jk
2Gkm

AAGkm+l
BB =

1

2
�i�m + �d

B − �m
B��i�m + i�l + �d

A − �m+l
A �

�

Fz�i�m+l�

Z̄�i�m+l�
−

Fz�i�m�

Z̄�i�m�

Z̄2�i�m� − Z̄2�i�m+l�
,

1

N
�
k

jk
2Gkm

BBGkm+l
AA =

1

2
�i�m + �d

A − �m
A��i�m + i�l + �d

B − �m+l
B �

�

Fz�i�m+l�

Z̄�i�m+l�
−

Fz�i�m�

Z̄�i�m�

Z̄2�i�m� − Z̄2�i�m+l�
,

1

N
�
k

jk
2Gkm

ABGkm+l
AB =

1

N
�
k

jk
2Gkm

BAGkm+l
BA

=
1

2

Z̄�i�m+l�Fz�i�m+l� − Z̄�i�m�Fz�i�m�

Z̄2�i�m� − Z̄2�i�m+l�
.

�31�

Hence, the full expression for �m,m+l is

�m,m+l =
1

2�
Fz�i�m+l�

Z̄�i�m+l�
−

Fz�i�m�

Z̄�i�m�

Z̄2�i�m� − Z̄2�i�m+l�

���i�m + �d
B − �m

B��i�m + i�l + �d
A − �m+l

A �

+ �i�m + �d
A − �m

A��i�m + i�l + �d
B − �m+l

B ��

+ 2
Z̄�i�m+l�Fz�i�m+l� − Z̄�i�m�Fz�i�m�

Z̄2�i�m� − Z̄2�i�m+l�
� . �32�

Then, the expression for the current-current Green’s function
is obtained by substituting Eq. �32� into Eq. �29� and analyti-
cally continuing the summation over Matsubara frequencies
into contour integrations,

� j j�i�l� =
1

2�i
�

−	

+	

d�̃f��̃�����̃ − i0+,�̃ + i�l�

− ���̃ + i0+,�̃ + i�l� + ���̃ − i�l,�̃ − i0+�

− ���̃ − i�l,�̃ + i0+�� . �33�

Here, we have f��̃�=1 / �1+exp���̃�� is the Fermi distribu-
tion function. The final step is to analytically continue from
the bosonic Matsubara frequencies to the real axis �i�
→�± i0+�. This produces our final result,

� j j��� =
2

�2�i�2�
−	

+	

d�̃�f��̃� − f��̃ + ���Re����̃ − i0+,�̃

+ � + i0+� − ���̃ − i0+,�̃ + � − i0+�� . �34�

To make Eq. �34� concrete, we substitute in the analytic con-
tinuation of Eq. �32� to find the final expression for the op-
tical conductivity �we set e2=1�,

Πm,m+l =
�

abcd

=

+

FIG. 6. Individual terms for the bare polarization in the ordered
phase.
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���� =
1

4�2�
−	

+	

d�̃
�f��̃� − f��̃ + ���

�
Re� Fz

*��̃ + ��

Z̄*��̃ + ��
−

Fz��̃�

Z̄��̃�

Z̄2��̃� − �Z̄*��̃ + ���2
���̃ + �d

B − �B��̃����̃ + � + �d
A − �A*��̃ + ���

+ ��̃ + �d
A − �A��̃����̃ + � + �d

B − �B*��̃ + ���� + 2
Z̄*��̃ + ��Fz

*��̃ + �� − Z̄��̃�Fz��̃�

Z̄2��̃� − �Z̄*��̃ + ���2

−

Fz��̃ + ��

Z̄��̃ + ��
−

Fz��̃�

Z̄��̃�

Z̄2��̃� − Z̄2��̃ + ��
���̃ + �d

B − �B��̃����̃ + � + �d
A − �A��̃ + ��� + ��̃ + �d

A − �A��̃����̃ + � + �d
B − �B��̃ + ����

− 2
Z̄��̃ + ��Fz��̃ + �� − Z̄��̃�Fz��̃�

Z̄2��̃� − Z̄2��̃ + ��
� . �35�

The final formalism we need to develop is for the dc
transport properties. Starting from the expression for the op-
tical conductivity in Eq. �35�, we can calculate the dc con-
ductivity by taking the zero frequency limit,

�dc = lim
�→0

���� . �36�

The algebra is completely straightforward, but requires a
careful use of l’Hôpital’s rule for determining some of the
limits. After some lengthy algebra, we find that the final
expression of the dc conductivity becomes

�dc = 2�
−	

+	

d��−
df���

d�
����� , �37�

with the exact many-body relaxation time ���� equal to

���� =
1

4�2� 1

2�Re��� + �d
A − �A������ + �d

B − �B*�����

�Z̄����2

��Re Fz���

Re Z̄���
−

Im Fz���

Im Z̄���
�

− �Re Fz���

Re Z̄���
+

Im Fz���

Im Z̄���
��

− 2 Re�Z̄���Fz��� − 1�� . �38�

For large frequencies, the relaxation time approaches the
asymptotic value

�	 =
1

4�2

2

U2�nf
A�1 − nf

A� + nf
B�1 − nf

B��
. �39�

This is a well-known anomaly on the infinite-dimensional
hypercubic lattice18 due to the fact that the DOS never van-
ishes and at large frequencies the imaginary part of the self-
energy is exponentially small, implying very long lifetimes

for the excitations. Note that the high-frequency limit of ����
actually diverges as T→0 at half filling. This trend can be
seen to develop in Fig. 7, although we do not push the cal-
culations too low in temperature due to accuracy issues with
determining the subgap states.

Starting from Eq. �37�, we can also calculate the thermal
transport. Since the system is at half-filling, the thermopower
vanishes due to particle-hole symmetry: the relaxation time
in Eq. �38� is symmetric with respect to sublattice indices
and is an even function of frequency at half filling �Fig. 7�.
The electronic contribution to the thermal conductivity �e is
nonzero and can be found in the standard fashion. It is ex-
pressed in terms of three different transport coefficients L11,
L12=L21, and L22 as follows:19

�e =
1

T
�L22 −

L12L21

L11
� . �40�

In this notation, the dc conductivity satisfies

�dc = L11. �41�

The other transport coefficients can be calculated from the
Jonson-Mahan theorem20,21 which says that there is a simple
relation between these different transport coefficients,
namely, that they reproduce the so-called Mott-Thellung
noninteracting form,22

Lij = �
−	

+	

d��−
df���

d�
������i+j−2, �42�

where ���� is the exact many-body relaxation time defined in
Eq. �38� and plotted in Fig. 7.

III. NUMERICAL RESULTS

We begin our discussion on transport properties in the
ordered CDW phase by examining the optical conductivity.
In Fig. 8, we plot the temperature dependence of the optical
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conductivity for a dirty metal with U=0.5 �for this value of
U, the scattering length is only a few lattice spaces�. At high
temperatures we see the expected behavior for a dirty
metal—namely, there is a peak at low energy and a spread on
the order of the metallic bandwidth. The system does not
have a low energy Fermi liquid peak because it is not a
Fermi liquid. Below the critical temperature for CDW order,
the shape of the optical conductivity changes significantly.
Note how the spectral weight is shifted upward in frequency
because the system is becoming an insulator at low T. In
particular, a sharp peak develops at �=U which corresponds
to the interband transitions from the lower band at �̃
�−U /2 to the upper band at �̃�U /2. We also see two ad-
ditional peaks at lower frequencies. The higher of those
peaks corresponds to transitions from the lower band to the
subgap states above the chemical potential and from the sub-
gap states below the chemical potential to the upper band
and the lower one corresponds to the transitions between the
subgap states below and above the chemical potential. Both
of these lower energy peaks must vanish as T→0 because
the subgap states disappear continuously at T=0. Note that
the frequency �=U divides the spectra into two parts: to the
right of this point the intensity of spectra increases as T
decreases and to the left of this point the intensity decreases
as T decreases which is similar to the isosbestic23 behavior of
Mott insulators in the homogeneous phase,24 although we do
not see the same kind of isosbestic behavior in the ordered-
phase optical conductivity here.

Results for U=1 have a similar structure to those for U
=0.5, so we do not show them here.

We next plot the optical conductivity for a near critical
Mott insulator �U=1.5� in Fig. 9. Here, we see similar struc-

FIG. 7. �Color online� Exact many-body relaxation time at vari-
ous T values for the CDW-ordered phase on a hypercubic lattice
with �a� U=0.5, �b� U=1, �c� U=1.5, and �d� U=2.5. At high T in
the Mott-insulator, the relaxation time goes to zero as �4 �this is
hard to see in panel �d� because the quartic region occurs only for
small frequencies and cannot be easily seen on this linear scale
plot�.

FIG. 8. �Color online� Optical conductivity for U=0.5 and vari-
ous temperatures. Panel �a� is a linear scale and panel �b� is a
logarithmic scale.
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ture, with the peaks shifting to higher energy as T decreases,
but the overall effect is not as large as in the metal because
this system would be an insulator even if there was no CDW
order. Nevertheless, we still see the large peak develop with
an edge at �=U, and we see two low-energy peaks that have
strong temperature dependence due to the types of transitions
involving subgap states described above.

Finally, we plot results for a moderate gap Mott insulator
�U=2.5� in Fig. 10. The behavior here is essentially identical
to what we saw at smaller values of U, except the effects are
smaller, because the subgap states are very small for frequen-
cies below where the Mott gap region extends, so the overall
effects are somewhat reduced. However, all of the qualitative
behavior remains.

In order to complete our discussion of the dynamical re-
sponse, we now describe the optical sum rule. In general, the
sum rule for the optical conductivity is

�
0

	

d����� = − �K , �43�

where K is the average kinetic energy �which is always non-
positive�. In the CDW-ordered phase the average kinetic en-
ergy is equal to

K = T�
m

1

2N�
k

�k�Gmk
AB + Gmk

BA�

= T�
m

�Z̄mFzm − 1� = T�
m


m
AGm

A = T�
m


m
BGm

B

= −
1

�
� d�f���Im 
a���Ga���, a = A,B , �44�

and at T=0, when �A=U and �B=0, we immediately find

K = −
1

2
� d�����

�2

�U2

4
+ �2

. �45�

In Fig. 11, we plot the average kinetic energy both for the
CDW and homogeneous solutions for different values of U
at T=0. For small values of U �U�0.648�, we observe the
anticipated behavior that the average kinetic energy increases
faster in the ordered phase than in the homogeneous phase.
This is anticipated because the homogeneous phase has, on
average, some neighboring sites with no localized electrons,

FIG. 9. �Color online� Optical conductivity for U=1.5 and vari-
ous temperatures. Panel �a� is a linear scale and panel �b� is a
logarithmic scale.

FIG. 10. �Color online� Optical conductivity for U=2.5 and
various temperatures. Panel �a� is a linear scale and panel �b� is a
logarithmic scale.

FIG. 11. The average kinetic energy K for different values of U
at T=0. The solid line corresponds to the CDW phase and the
dotted line corresponds to the homogeneous solution.
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implying hopping is easier than in the ordered phase, where
every hop involves a change in energy by U at T=0 because
the order parameter is uniform on each sublattice. Since it is
more difficult to hop in the ordered phase, the kinetic energy
increases relative to the homogeneous phase. For large val-
ues of U, we find anomalous behavior, where the average
kinetic energy is more negative in the ordered phase. There is
no simple picture to explain how this occurs. In the homo-
geneous phase, as U increases, it becomes more difficult to
hop because the doubly occupied states are being projected
out of the system. This implies the average kinetic energy
increases in the homogeneous phase, but it does so faster
than in the ordered phase. The subtle details of how the
average kinetic energy evolves with temperature are shown
in Fig. 12. The anomalous behavior for the temperature de-
pendence of the average kinetic energy occurs for a finite
range of T when U�0.52. This is the “critical” U value
where the DOS in the normal state changes its curvature
from being negative at the chemical potential, as expected
for a conventional metal, to positive in what is sometimes
called an anomalous metal. In the region 0.52�U�0.648,
the normal state DOS starts to develop a dip at the chem-
ical potential, and for a finite temperature range, the anoma-
lous behavior in the average kinetic energy occurs only for
low temperatures. As U is increased further, we see the
anomalous behavior occur for all T. These results show
that the spectral weight in the CDW phase shows a modest
decrease for small U and a dramatic increase for large U
at T=0. This is somewhat unexpected since the behavior
is different than what is seen in say a BCS superconductor,
where the gap formation reduces spectral weight at high
frequencies, but the lost weight is restored in a zero fre-
quency Drude peak. For the CDW ordered phase, no zero
frequency delta function appears. The spectral weight loss is
small for small U, but the gain can become significant for
large U.

Next, we examine the dc transport. The temperature de-
pendences, of the dc and thermal conductivity are plotted in
Figs. 13 and 14, respectively, where we plot both the CDW
solution and the homogeneous solution extrapolated into the
CDW region. At low temperatures, due to the factor
−df��� /d�, the main contributions to the dc transport come
from the narrow region of width 4T around the chemical
potential �the so-called Fermi window�. For the Falicov-
Kimball model at half filling in the homogeneous phase �T
�Tc�, the DOS, Green’s functions and self-energies do not
depend on temperature and, as a result, the temperature de-
pendence of the dc transport is determined solely by the
shape of the relaxation time in Eq. �38� close to the chemical
potential. For small U values, the relaxation time ���� is flat
�Fig. 7�a�� and, as a result, the dc conductivity for the homo-
geneous phase is essentially a constant for low T. At U=�2,
the Mott insulator forms. For larger U values, one might
expect to see exponentially activated transport, but that does
not occur on the hypercubic lattice because the system only
possesses a pseudogap. Even though the DOS exponentially
decreases in the gap region, the lifetime of the excitations is
exponentially long, and ���� behaves like �4 for low
energies.18 This produces a quartic dependence of the dc con-

ductivity on T, and a higher power law for the thermal con-
ductivity.

In the CDW phase �T�Tc�, the CDW gap is filled by
subgap states at finite T, which lead to a less severe modifi-
cation of the exponentially activated transport at low T.
However, it is only the subgap states within the Fermi win-
dow that affect the transport, so the modification is not quite
as severe as one might have naively guessed. Note the small
wiggles in the solid lines at low T. These occur due to the

FIG. 12. Temperature dependence of the average kinetic energy
for different values of U: �a� U=0.5, �b� U=0.52, �c� U=0.645, and
�d� U=1. The solid line corresponds to the CDW phase and the
dotted line corresponds to the homogeneous solution.
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evolution of the subgap states. The T dependence of the dc
transport always shows a marked kink at Tc with the conduc-
tivities sharply suppressed as the CDW gap forms. In the
Mott insulator, the transport changes from power law in T to
exponential activation �suitably modified by the subgap
states�. The thermal conductivity displays similar features, as
shown in Fig. 14.

IV. CONCLUSIONS

In this work, we have developed the formalism to calcu-
late transport properties of CDW-ordered phases within
DMFT. Since the dc charge and heat transport and the optical
conductivity continue to have no vertex corrections, even in
the ordered phase, the calculations reduce to a careful evalu-

FIG. 13. dc conductivity for ��a� and �e�� U=0.5 �Tc�0.034�, ��b� and �f�� U=1 �Tc�0.0615�, ��c� and �g�� U=1.5 �Tc�0.075�, and ��d�
and �h�� U=2.5 �Tc�0.072� as a function of temperature. The solid line denotes the CDW ordered phase and the dashed line denotes the
homogeneous one. ��a�–�d�� Results are presented on a linear scale �left� and ��e�–�h�� logarithm of dc conductivity vs inverse temperature
�right�.
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ation of the bare Feynman diagrams with a sublattice index
introduced by the order. One can ask the question of how
relevant these results are to real CDW systems. For three-
dimensional systems, we expect the results to be quite accu-
rate, similar to what is found with DMFT approaches in the
normal state. However, we anticipate that there may be sig-
nificant deviations for CDW systems in one or two dimen-
sions due to additional quantum fluctuations and the momen-
tum dependence of the self-energy. Since many real
materials that illustrate CDW order do so in one or two di-
mensions, more work needs to be performed to understand
how their behavior differs from what we show here. In ad-
dition, phonons can play an important role in many real ma-
terials that display CDW order. Including phonons into a
microscopic theory of the ordered phase is straightforward to
do, but is beyond the scope of this work.

We find that as the system orders into a CDW state, the
DOS develops a gap with a sharp singularity in the DOS at
the band edge when T=0. The gap at T=0 is always equal to
U. As the temperature increases, but still below Tc, we see a
significant development and evolution of subgap states
within the gap region. This gap region where subgap states
develop appears to lie within the extent of the normal-state
DOS—in other words, in the Mott insulator, we do not see
subgap states develop within the region that corresponds to
the Mott gap in the normal state. We verify the accuracy of
the DOS calculations by calculating the zeroth, first, and
second moments of the local DOS on each sublattice and we
find they agree with exact results to essentially machine ac-
curacy.

The optical conductivity has a significant rearrangement
of states within the ordered phase, which can be understood

by examining the different kinds of processes that take place
within an optical transition—namely, that we move from an
occupied to an unoccupied state. Because there are many
different bands that are present at finite T, this leads to sig-
nificant structure in the optical conductivity. In particular, the
singularity in the DOS leads to a large asymmetric peak cen-
tered around U in the response function. The total spectral
weight is governed by the average kinetic energy due to the
optical sum rule. While a naive expectation would say the
average kinetic energy increases when the ordering is turned
on �i.e., it becomes less negative with a smaller magnitude�
because the ordering blocks hopping between the sublattices,
we find that is true only for small U. For small U, the kinetic
energy shows a modest increase, so some spectral weight is
lost due to the ordering. For larger U, the kinetic energy
shows a significant reduction �i.e., the magnitude increases
as the average kinetic energy becomes more negative� so the
spectral weight increases when the ordered phase is entered,
and that increase can become quite substantial as U becomes
large.

Finally, we also examined the dc transport. Since we are
at half filling, one can show the thermopower vanishes due to
particle-hole symmetry even in the presence of CDW order.
Hence, we can only examine the charge and heat conductivi-
ties. We find that the CDW order suppresses both of these,
but because of the subgap states and their complicated evo-
lution with temperature, the dc response does not obey any
simple functional form at low T. Instead, we often see sig-
nificant wiggles in the conductivities. In the Mott-insulating
phase, the conductivity should go from a power-law-like be-
havior to exponential activation. We see such a trend start to
develop, but we cannot accurately quantify this because we

FIG. 14. Electronic contribution to the thermal conductivity for ��a� and �c�� U=0.5 �Tc�0.034� and ��b� and �d�� U=2.5 �Tc�0.072� as
a function of temperature. The solid line denotes the CDW ordered phase and the dashed line denotes the homogeneous one. ��a� and �b��
Results are presented on a linear scale �left� and ��c� and �d�� logarithm of thermal conductivity vs inverse temperature �right�.
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cannot go down far enough in temperature in the CDW phase
before we run into issues with accuracy of the calculations.

This work shows that there is rich and interesting behav-
ior that occurs in the transport as CDW order sets in. In
future work, we will examine Raman scattering, where ver-
tex correction effects are present and nonresonant inelastic
x-ray scattering, where interesting phenomena are likely to
occur when the photon transfers momentum equal to the or-
dering wave vector.

Note added in proof. Recently, we learned about similar
work by Hassan and Krishnamurthy25 which also examined
spectral properties of the CDW phase of the half-filled
Falicov-Kimball model but with an emphasis on the gapless

CDW state with a semicircular or two-dimensional bare
DOS. They also examined transport properties, but only in
an approximate way because they did not include the proper
velocity factors in the transport relaxation time.
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