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Dynamical mean-field theory of an Ising double-exchange model with diagonal disorder
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We present a simplified model for the colossal magnetoresistance in doped manganites by exactly solving a
double-exchange modeith Ising-like local spinsand quenched binary disorder within dynamical mean field
theory. We examine the magnetic properties and the electrical and thermal transport. Our solution illustrates
three different physical regime§) a weak-disorder regime, where the system acts like a renormalized double-
exchange systenwhich is insufficient to describe the behavior in the mangapités a strong-disorder
regime, where the system is described by strong-coupling physics about an insulatingngtielses the most
favorable for large magnetoresistajicand (iii ) a transition region of moderate disorder, where both double-
exchange and strong disorder effects are important. We use the thermopower as a stringent test for the
applicability of this model to the manganites and find that the model is unable to properly account for the sign
change of the thermopower seen in experiment.
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[. INTRODUCTION tortion is responsible for the anomalous transport
propertie€° The lattice distortion causes a metal-insulator

An enormous interest in the family of doped manganesdransition via a strongexponential polaronic narrowing of
oxides La_,A,MnO; (in which A stands for Ca, Sr, or Pb  the conduction-electron band. This polaronic narrowing also
has been created by the colossal magnetoresis{@d&) leads to a decrease of the Curie temperature because the
exhibited in samples with doping levels in the rah@el5 double-exchange mechanism for ferromagnetic order is re-
<x<0.4. In such a doping region, there is a characteristicluced when the bandwidth of the conduction electrons is
temperaturel, where the resistivity has a peak; the CMR narrowed.
materials display metallic behavigdefined bydp/dT>0) The polaronic mechanism has been criticized by a number
for T<T,, and insulating behaviddefined bydp/dT<0)  of authors. Varmd noticed that there exist double-exchange
for T>T, (except for LSMO atx~0.3). Hence there is a systems, such as Tmge,_,, in which the transport
metal-insulator transitiofMIT) or crossover aff,. When anomalies seen in the manganites also occur, but a Jahn-
placed in an external magnetic fiet the resistivity peak is  Teller distortion is forbidden by symmetry. Furukaa
strongly suppressed and the temperature at which the resishowed that a small-polaron picture leads to a strong sup-
tivity has a peak T,,) increases. The magnitude of the rela- pression of the ferromagnetic transition temperature and the
tive magnetoresistance can be extremely large and can atta@stimate ofT. due to double exchange was incorrectly cal-
99% or more in some samples. culated in Ref. GRef. 13 reaches a similar conclusjofur-

It is widely accepted that the transport properties of theséher difficulties arise from the fact that LSMO does not have
systems are closely related to their magnetic properties. Tha metal-insulator transitidfiat x~0.3. Furukawa claims that
temperature of the MIT is close to the Curie temperaifiye LSMO [which has a relatively high value fdr, (about 380
so one can say that these materials are metallic in the ferrd<)] is a canonical double-exchange systermate that LSMO
magnetic phase and are insulating in the paramagnetic phastoes show a doping crossover from metallic behavior at
The itinerant-electron and the local-spin states are correlatext~0.3 to insulating behavior aix~0.15). Finally, an
by the double-exchange mechanfsiwhich is one type of analysi$>*® of the longitudinal and Hall resistivities in
indirect exchange interaction between local spins via itinerLCMO and LPMO cannot be explained in the small-polaron
ant electrons Double exchange consists of a cooperativepicture for the temperature range nélgy or for high tem-
effect where the motion of an itinerant electron favors theperatures T>T)).
formation of ferromagnetic order of the local spins and, vice In the second proposed resolutirt®~2*the insulating
versa, the presence of ferromagnetic order facilitates the mdsehavior is caused by a combination of both magnetic disor-
tion of the itinerant electrons. Hence, the resistivity of ader (due to the lack of ferromagnetic alignment in the para-
double-exchange system will increase when the temperatureagnetic phaseand nonmagnetic ionic disordédue to the
is increased through the Curie point. This is in qualitativedoping of the “A” metal). The magnetic disorder arises from
agreement with the experimental data on the manganites. the “random” double-exchange factor c®2 in the elec-

Unfortunately, it is also well known that double exchangetronic hopping(where® is the angle between local spjns
alone cannot explain the quantitative features of the temperd-his is an off-diagonal disorder that can lead to a Lifshitz
ture dependence of the resistivity through the entire temperdecalizatiorf® of the charge carriers. Sherg al1®?° have
ture range observed in the mangarfitésspecially near the found that this off-diagonal disorder is insufficient to localize
MIT). There are two proposed theoretical resolutions of thighe electronic states at the Fermi level for moderate doping
problem. The first one is that a large Jahn-Teller lattice dis{which agrees with the claim that the double-exchange
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mechanism alone cannot describe the behavior of the maimplification of the quantum double-exchange process
ganite$. The nonmagnetic disorder comes from the ionic(from quantum Heisenberg spins to Ising spinsge still use
doping of theA?" ions (i.e., from randomness at the chemi- the term “double-exchange” to describe it, because it has the
cal substitution of La byA?") which leads to a “random” same generic behavior as the more complicated model. But,
local potential for the charge carriers. This substitutional disthe simplified operators in this Hamiltonian do not allow any
order is always present in the doped materials, and it ispin-flip processes. Such processes can be important at low
physically meaningful to speak only about substitutional-temperatures where the thermodynamics of the system is
disorder-averaged quantiti&sThis ionic disorder is a diag- governed by spin-wave excitations. However, since dynami-
onal disorder that can lead to an Anderson localization of theal mean-field theory cannot describe spin waves, including
charge carrier$® One-parameter scaling calculatibhshow  such effects is beyond the scope of this work. Spatial corre-
that in the presence of a suitable strength of the ionic disortations between the local spins of the fofsfs;) [which is
der, the magnetic disorder will cause the localization of eleceontained in Eq.(1)] should be important near the Curie
trons at the Fermi surface and induce a metal-insulator trarpoinf?® T,, but they are also beyond the capabilities of
sition nearT,. (However, there is experimental evideAte dynamical mean field theory.
that Anderson localization is not the cause of the metal- This paper is organized as follows: The dynamical mean-
insulator transition in Lgg/Ca 3gVN03). field theory equations for the system are presented in Sec. Il.
Zhonget al?? have used dynamical mean field theory to The binary probability distribution for the doping-induced
study the metal-insulator transition in the manganites in thelisorder and simplifications for this disorder averaging are
framework of ans-d model with classical local spins and discussed in Sec. lll. In Sec. IV, the influence of disorder on
doping-induced disordeisee also Ref. 24 They were able the magnetic propertieglecreases of ., the paramagnetic
to show that a MIT is possible for a binary-alloy distribution susceptibility, and the magnetization of the local-spin sub-
of the ionic energy levels due to a splitting of the electronicsystem are investigated. Here, we show that for strong dis-
band(correlated by the double-exchange prog¢ést® com-  order, the double-exchange mechanism of ferromagnetic or-
pletely filled and empty subbands at some critical value ofdering is replaced by a disorder-induced ferromagnetism and
disorder strength. Such a distribution was also &ed we describe three characteristic disorder regimes:the
study the Hubbard model with substitutional disorder withindouble-exchange band ferromagnetism regime where the
dynamical mean field theory. double-exchange mechanism dominatés) the disorder-
Disorder is also known to be important for a disorder-driven ferromagnetism regime where the magnetic and trans-
induced phase-separation scen&fishich was proposed to port properties are determined by strong disorder physics
explain a number of different experimental results on thefrom an insulating phase; arfdi ) a transition regime where
manganites. both mechanisms are important. The main transport proper-
In this contribution, we consider the magnetic and transties (resistivity, thermopower, and thermal conductiyiip
port properties of a simple double-exchange system with dithese three regime&long with the magnetoresistivityare
agonal disorder. The system is described by the followingliscussed in Secs. V and VI, respectively. Section VII con-

Hamiltonian tains our concluding remarks.
H=> €clcigt > tijCiTnga- (1) Il. FORMALISM FOR THE DYNAMICAL MEAN
io ljo FIELD THEORY
where thec operators are composite operators The dynamical mean field theory equations for the system
described by Eq(1) can be obtain in two waygi) a dia-
Co=3 (105, @ y Bald) y

grammatic technique far operator’ can be combined with
with s the z component of the local Ising spinSE 1/2) disorder averaging in the limitz—o (zis the coordination
described by the diagonal Pauli matrixsf)’=1, and ~numbe}, or (i) one can work directly with a local effective
a,,(al) the ordinary Fermi annihilatiofcreation operator actior? Set - The f|rst_method y_|elds a dlrect_ calculation of
for an itinerant electron with spin projectian at lattice site ~ {he dynamical mean field equations for the disorder-averaged
i. The first term in Eq(1) describes the doping-inducédi- ba_nd Green'’s function and for the.magnetlzauor_] of_ the local-
agona) disorder(the energies; are chosen from a disorder SPIN subsystem by exactly summing all nonvanishing graphs
distribution and the second term represents a simplified ver@S2— - This procedure is cumbersome, so we will use the
sion of the quantum-mechanical double-exchange mech&ffective action approach here. ,

nism for ferromagnetic ordering of local spins. This term can_ SiNce the anticommutator afoperators is not a number,
be obtained from ars-d model with local spins that are It IS convenient to begin with the origina-d model with
described by Ising spins in the limit of infinitely strong ex- Sing spins and diagonal disorder:
change interaction between itinerant and localized electrons.

This simplification of describing the local spins by Ising H=—Eh2 S_z+2 (6,_M_}0H al a;
variables conserves the main feature of double exchange: the 24 S 2 o
second term in Eq(l) only allows the transfer of itinerant 1

eIectrons with spin parallel to the Iocal_spm at every site of +2 tijaiT(raja_ _|E SizaiTa-o'aiU! 3)
the lattice[see EQq.(2)]. Even though this Hamiltonian is a o 2 75
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where we have introduced two external magnetic fields ( 1
acts on the local-spin subsystem atichicts on the itinerant-  Zes( G)ZZGB(“_E)/Z[ exr{zﬁth 284
electron subsystemThis is done to allow derivatives with
respect to the fields to be calculated properly. In the end ag +H/2— €
results, we set the two fields equal to the true external mag- +E In T
netic field. We will take the limit where the-d exchange s S
parametet becomes infinitely largel(~), because this is H/2— e
the regime where the-d Hamiltonian(3) is mapped onto the +exp{ 5 5Bh—— ﬂH + 2 InTH
double-exchange Hamiltoniai). s

The mathematical structure of the simplifisel Hamil- (8)
tonian in Eq.(3) is similar to that of the Falicov-Kimball
modef® which can be solved exactly in infinite dimensicfis. in the limit | - [in taking the limitl - in Eq. (5), we
The procedure is to first solve the atomic problem in anmust first renormalize the chemical potential< [/2— u)].
external time-dependent field and then adjust the field so thathen Eq.(7) becomes
the atomic Green’s function equals the local lattice Green’s
function. The local effective action for this atomic problem is

L1+ om(e)]
(Gao) = f deP(e) —— ©

an, T 5 oH—¢’

1
€e-p—5oH where

1 B
Se(€)=— 5 BN+ 2 | d7a5(7)

B B — + u—
a, (Nt f drf dr'al(7) o =lont 1= Ang (10
(o 0 0
is the inverse of the effective medium and

1I ,
_E agSs

J
X (7_7'5(7_7,)+A‘7(T_T,) a,(7), 4)

m(e)=tanhs [ Bh+ BH/2+ \r(€)] (11

with B=1/T andA ,(7) is the time-dependent field. The par- is the magnetization of the local spifishen the band elec-
tition function bec((r)mes trons have disorder energy and

am-‘rH/Z—E
)\,:(6):2 |nw. (12)
Zei€)=Tr f DalDa,e (), (5 oA ¢

The total magnetization is defined to be

where the trace is taken ovsf. The disorder-averaged free

energy becomes M= (S%) gis= — a(h/2) fdeP(e)m( €). (13

Fei=— TN Zei(€) ) gis= _TJ deP(€)InZgt(€). (6) Note that the expression in E(L1) for the magnetization
contains a hyperbolic tangent, just like in the mean-field
theory of an Ising ferromagnet. Thereforez(e) can be

Here,P(e) is a probability distribution function for théan- identified as an internal molecular field acting on the local

dom) atomic energieg; and the angle brackets. . . )4 de- spins.l EquJatéon(le).ang(%) shkc‘)w that thi$ moI(:Clil]Iar.fi_eId is
note the disorder averaging. completely determined by the properties of the itinerant-

The disorder-averaged local band Green's functior® electron subsystem. Hence, the magnetic and transport prop-

(Gne)dis is determined by a functional derivative with respectert es of the double-exchange system are correlated. .
to the atomic field. In Fourier space, we have In infinite dimensions, the inverse of the effective medium

an,, local self-energy.,, =3 ,(iw,), and the local Green’s
function (G, qis @re related by

IF o

<gn0'>diS: ﬁ ﬁA_n(r ’ (7) <gng->(;sl: ang-_ Eng- . (14)

The self-consistency relation equates the atomic Green’s
whereA ,,=A ,(iw,) is the Fourier transform of ,(7) and  function with the local Green’s function of the lattice. The

w,=(2n+1)7T is the fermionic Matsubara frequency. latter can be calculated from the local self-energy by sum-
Evaluating the functional integral in E¢), we obtain the ming over all momentum. Since the self-energy is indepen-
following result forZg(e€): dent of momentum, we find
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1 . o dxD%(x) where dm(e)/dh is defined by the following integral
(Gnaodais= Zk gg(k,lwn):fxm, equation
(15) dm(e) 1 1., 1 1

where DYx) is the density of states of the noninteracting “dh 2P 2 ; a,—e1-A,
itinerant electrons. We choose to examine the infinite-
coordination Bethe lattice, where P(e') dm(e')

X f de’ , (24)

1 an— €’ dh
DO%(x)= V(2t*)Z=x2, (16)
2mt*? with
with 2t* =1 chosen to be the energy unit. The integral in Eq. 1 1
(15) can be computed exactly yielding Anzzt*zf deP(e)( . (25)
a —

iwn+ﬂ_2na+ \/(iwn+ﬂ_2na)z_4t*2

(Gnoddis= op*2 - op*2 We note that an integral equation for a two-particle correla-
17) tion function is expected for disordered systems described by
the Falicov-Kimball modef®
ReplacingS ., by an,—(Gno)gie and solving for the Green’s
function gives Iil. BINARY PROBABILITY DISTRIBUTION
t*2(Gno)dis=1 @n+ w—an,, (18) An analysis of the electronic properties of the manganites
showg€??*that a binary distribution for doping-induced dis-
and . . )
order can be approximately suitable for the doped materials.
t*2 This distribution is written in a symmetric form &s
= —-_—— 1
Sno= s [ (19

P(e)=(1-x)8(€+ 3 A)+x8(e— 3 A), (26)
Substituting Eq.(18) into Eqg. (9), we obtain the following
final equation fora,,, : wherex is the fraction of the sites having an additional local
potential A (disorder strengthdue to the ionic dopingthe
$[1+om(e)] symmetric form requires a renormalization of the chemical
. (200 potential u— u—(1—x)A/2]. It is seen from Eq(26) that
this choice for the distribution behaves electronically as a

This equation is simpler than the corresponding system ofoherent superposition of its end-point compouffds.

anUZiwn-I—,u,—t*zf deP(e) .
—o an,t 30H—€

equations analyzed by Zhore al??> However, we believe If the chemical substitution of the ions also causes the
that our approach captures the main features of this systerdppearance of holes in the band, then there is a correlation
as we described in Sec. I. between the electron density and the concentration of dopant

The chemical potentiak is adjusted to give the correct Sites
filling for the itinerant electrons:
n
1 % 1-—x=—, (27)
n=-—2 f daorf(w)IM(Gy(w—u))gs '
wherewv is the number of electronic states per lattice site. In

1 P the system we consider, double occupation by itinerant elec-
= > j dof(e)ima(o—pw), (21)  trons is excluded s@=1. Therefore, we have-1x=n in
wthe o Joe the probability distribution of Eq(26). This constraint is
where important to allow a MIT.
The basic dynamical-mean-field equations are simplified
1 for the binary distribution. In particular, E§20) becomes
flo)=————+ (22)
expB(o—pu)+1 .
is the Fermi-Dirac function and,(w) is the solution of Eq. A, =iwn+p— lt*z (1=nfi+om;4)]
(20) (evaluated on the real-frequency axis 2 an,+30H—3A
Using Eq.(20), we can also evaluate both the magnetiza-
tion mand the paramagnetic susceptibilityof the local-spin . n[1l+om(— 3A)] 28
subsystem: a+ LoH+2A '
dm dm(e)
X=3n =f deP(e) ah , (23)  where m(_A/2) andm(—A/2) depend on the compl_ete set
h=H=m=0 h=H=m=0 {a,,}. Aside from the factors df1+om(=*A/2)]/2, this re-

174409-4



DYNAMICAL MEAN-FIELD THEORY OF AN ISING ... PHYSICAL REVIEW B 64 174409

T e — magnetism to the mobility of the itinerant electrons, the criti-
cal value of the disorder depends on the spin polarization of
the system and on the total electron density. This is depicted
in the inset to Fig. 1, where the critical value of the disorder,
required for the metal-insulator transition, is plotted as a
function of the total electron density. Two curves are shown:
(i) the critical disorder strengthA{f) needed for the transi-
tion in the high-temperature paramagnetic phdseT,,
where there is no spin polarizatidghottom curve; and (ii)
the critical disorder strengthﬁ(CF) in the fully polarized fer-
‘ i romagnetic phase at=0 (top curve. Since the ferromag-
' [ l ! netic order makes the bandwidth larger, the critical value of
0.0 1= ""I A disorder needed for the MIT increases as one enters the fer-
5 10 05 0.0 05 10 15 romagnetic phase. If the disorder is large enough, it is always
© an insulatoreven in the ferromagnetic phasebut there is a
FIG. 1. Density of states as a function of frequency for differentregime, where the system can be an insulator in the paramag-
disorder strengthd (in the paramagnetic phgsglotted at the Cu-  netic phase, and a metal in the ferromagnetic plaséeast
rie temperaturd .(A) for a given strength of disorder. Vertical lines it is metallic for the majorityf spin-ug electrons, it would be
indicate the location of the chemical potential. Note that the densitynsulating for the minorityfspin-downr electrons. This is the
of states is plotted on an absolute energy scale, so the chemicatgime that is relevant for the CMR materials.
potential is not shifted to lie ab=0. The inset displays the depen- In the limit whereA — «, the band is always split, and the
dence of the critical values of disorder in the paramagriefi€T upper subband is pushed to infinite energy and can be ne-

=T)=Al]and ferromagnetifA ¢, (T=0)= AF] phases as a func- glected. From Eq(28) we have
tion of the electron fillingn.

0.5 T>To(A) < 9
n=08

0.4

0.3

0.2

Density of states, D(w)

[
0.1

sult is identical to that of an annealed binary alloy problem,
as first solvetf by Brandt and Mielsch.

The main feature of the probability distributi¢®6) [with
1-—x=n] is that the chemical potential is located in the gapfor H=0. The magnetization vanishes, because the internal
for any electron densityin the paramagnetic phasehen  molecular field\g vanishes whem\ —» as seen from Eq.
the conduction band is split by strong disorder-A.. In-  (12). Hence, there is no ferromagnetic order, and the inverse
deed, whemA=0, the local band Green’s function has the of the effective medium satisfies;(w)=a,(w)=a(w).
form Since

Ima(w—u)=32t*>n—w?, w?<2t*?n, (30

Go(0)= ——lor+ p= (o W= 20T o).

(29 at*2

This shows that the bandwidth of the pure double-exchange

system is equal tot# y(1+m)/2 for the (majority) spin-up  for this case, the lower band is completely occupied and the
electrons and # /(1—m)/2 for the (minority) spin-down  chemical potential lies in the gap for ail

electrons. AtT=0 (wherem=1), there are no spin-down  For finite A, the same conclusion is obtained for the high-
electrongthe spin-down electron bandwidth is zgrand the  temperature paramagnetic phase. This follows directly from
spin-up electrons act like free electrons with the full value ofthe numerical calculations, but can be understood from the
4t* =W for the bandwidth. This ferromagnetic ordering pro- fact that the total spectral weight in the lower band does not
motes the motion of the electrons. Increasing the temperaturghange until the gap closes. The ferromagnetic transition
destroys the ferromagnetism; the bandwidth for the spin-upemperature generically increases from zero though. Figure 1
electrons is decreased and the bandwidth for spin-down eleshows the location of the chemical potentialTatwith ver-
trons is increased so that they are both equalttoy4/2 in tical lines forA =0, A =0.4, andA = 0.6 (note that in the last
the high-temperature paramagnetic phdse. the paramag- case the chemical potential lies in the pseudggé&or A
netic phase the bandwidth and density of states are indeper-0.8 andA=1.0 (A.=0.6581 ain=0.8), the chemical po-
dent of temperatur&. tential lies in the gap.

Figure 1 shows the influence of disorder on the This situation is similar to what takes place in the static
conduction-electron density of states in the paramagnetitiolstein model, which is solved exactly in infinite
phase ah=0.8. When the strength of the disorder is small,dimensions®3° In this model, bipolaron formation leads to
the band is only slightly distorted from the semicircular the opening of a gap when the electron-phonon interaction is
shape. As the disorder increases, a pseudogap first appeatsong enough, and the chemical potential lies in the gap for
and then a true gap develops when the disorder is larger thaall n. It differs from the Mott-Hubbard transition which oc-

a critical value. Because the double-exchange couples ferr@urs only at half-filling.

fdwlma(w Mm)=n, (31
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FIG. 2. Curie temperature as a function of disorder stredgth
and electron fillingn: (a) shows results for constant electron filling,
while (b) shows results for constant disorder strength.

IV. MAGNETIC PROPERTIES

PHYSICAL REVIEW B64 174409

ent disorder strengths. The value Tf for the pure double-
exchange systerfthe curveA=0 in Fig. Ab)] essentially
coincides with that obtained by Furukawa for double ex-
change with classical local spif$One needs to choose the
electronic bandwidth to be quite narrow(on the order of
0.5-1 eV forT. ranging from 315-630 K at~0.5). These
estimates ofT. for the pure double-exchange system are
comparable with some materialdke LSMO where T,
~380 K), and are much smaller than those predicted in
Ref.6. Nevertheless, if we take a more reasonable value for
the bandwidth W~2 eV), then it is clear that this simpli-
fied model of double exchange alone cannot explain the val-
ues of T, for the manganites.

Figure 2 shows that disorder suppresses the ferromagnetic
transition temperature. The physics of this is clear. Carrier
motion promotes the double-exchange ferromagnetic order,
whereas disorder reduces the electron motion, and thereby it
reduces the ability of the double-exchange process to pro-
duce ferromagnetism—the net effect is to reddge The
calculated disorder dependence Bf agrees qualitatively
with that found for the combined double-exchange—Holstein
model and with Narimanov and Varma'’s calculatfdmvith a
Gaussian disorder probability distribution.

Figure 2 shows also that three disorder regimes can be
distinguished for our model. The first regim@ouble-
exchange band ferromagnetisia the regime wherd . de-
pends only weakly on disorder and corresponds to the flat
regions of the curves in Fig(& [ A<0.5]. We find thatT. is
suppressed most strongly at €A <1.0[see Fig. 23)]; i.e.,
in the vicinity of the critical values of disorder where a gap
in the density of states is created. We call this regime the
transition regime, where the double-exchange ferromag-
netism process is changing from a band process to a
disorder-driven process. In this range &f two crossovers
occur:(i) the metallic conductivity is replaced by a thermally
activated(insulating conductivity, and(ii) double-exchange
ferromagnetism is replaced by a ferromagnetism that is
caused by virtual electron transfers from the filled lower sub-
band to the empty upper subbatahd vice versa Indeed,

The magnetism of the binary-disorder double-exchangehe double-exchange mechanism for the ferromagnetic order-

system is determined by the uniforfierromagnetit magne-
tization

m=(1—-n)m(z A)+nm(— 3 A), (32
and by the uniform(ferromagnetit susceptibility

dm(3 A) dm(—3A4)
ah " an

x=(1—n) (33

The algebraic equations fordm(A/2)/dh and dm
(—A/2)/dh are taken ah=H=m=0 in Eq. (24) with the

binary probability distribution for the disorder. The determi-

ing of the local spins is caused by real electron transfers,
which are possible only at small disorder. For strong disorder
(A>1), when the itinerant electrons are localized, the ferro-
magnetic ordering is caused by virtual transfers to neighbor-
ing sites(that have an additional local potenti®) and back.

(All sites without this additional potential are filled so hop-
ping onto those sites is impossibléience, the Curie tem-
perature is inversely proportional to at strong disordefthe

1/A behavior is clearly seen in Fig(a for A>1.5].

Usually, virtual electron transfers lead to a Heisenberg
type of ferromagnetic ordering, i.e., the magnetic energy
contains a co® dependence, not the c®s2 dependence of
double exchange. Therefore, the crossover from double-

nant of this system of equations equals zero at the ferromagexchange band ferromagnetism to disorder-driven ferromag-

netic Curie temperature..

netism(with a Heisenberg type of magnetic energyust be

Figure 2 showga) the disorder dependence of the Curie seen in the changing of the behavior of magnetic quantities

temperature for different electron densities ghgthe elec-

(for example, the paramagnetic susceptibility and magnetiza-

tron density dependence of the Curie temperature for differtion) as the disorder strength increases.
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FIG. 3. Magnetization of the local spims as a function of the FIG. 4. Magnetization of the local sping), as a function of the
external magnetic fieldd for different disorder strengthd. The external magnetic fieldd for different relative temperatures
inset shows the disorder dependencenofat H=0.005 andH =TI/T.: (1) 7=0.4,(2) 7=0.8,(3) 7=1.0,(4) 7=1.1,(5) 7=1.2,

=0.01 for the double-exchange modsblid lines and for the Ising  (6) 7=1.3, and(7) 7=1.4.

model in the mean-field approximatigdotted lines.
PP ¢ > for the magnetization of an Ising modér a Heisenberg

In particular, an increase of the disorder strength change@Odel withS=1/2). Dotted lines in the inset show the field-

the temperature dependence of the uniform susceptibility. Inl"duced magnetization evaluated from Eg) whereT (A)

deed, the pure double-exchange systei=Q) reveals is equal to the Curie temperature of the disordered double-

L ; : » exchange model at a giveh. Hence, the disorder depen-
Curie-type behavior fory at high temperaturesy(-1/T), dence of the magnetization at fixed magnetic field also shows

L5, 1S Cure lenwerare i sau o et A e emhethecrossover fom double.exchange band feromagnetsm
1 ' L : disorder-induced ferromagnetism at strong disorder.
X changes, so tha_t It _mtersects the temperature axis at a From Fig. 3 we see that the most favorable conditions for
finite temperature, yielding a nonzero value fof and @ 5 |arge field-induced magnetization are strong disorder and
Curie-Weiss law fory. This feature of double exchange was strong magnetic fields. Figure 4 shows the field dependence
noted in the pioneering work by Anderson and Hasegawagf m for different relative temperatures=T/T, and fixed
(see also Ref. 30 (It should be noted that this aspect of disorder. The largest absolute value foris observed at
double exchange is still not completely understood. See, fosmall 7 (7=0.4) but the relative increase af (whenH is
example, Ref. 40 where a high-temperature expansion is enadso increasedis weak. The strongest growth of at weak
ployed) fields is seen near the Curie temperature. ®tT, (7
Numerical calculation of the uniform susceptibility, Eq. =1.0) this growth is maximal, but even at=1.4 theH
(33), at strong disorder shows thgt obeys a Curie-Weiss dependence o is linear. Note that such behavior of the
law with a nonzero Curie temperature in this case. Thus, théeld-induced magnetization is in %ood agreement with the
crossover to a disordered-induced mechanism of ferromagexperimental data on the manganités.
netic ordering leads to a change in the temperature depen- Our analysis of the magnetic properties has shown the
dence ofy. emergence of three different regimél: a double-exchange
In Fig. 3 we plot the magnetizatiom as a function of band ferromagnetism reginfer weak-disorder regime(ii)
external magnetic fiel#i at T=T, for a number of different 2 disorder-driven double exchange ferromagnetism regime

disorder strengths. The field-induced magnetization at fixedC! Strong-disorder regime and (iii) a transition regime
magnetic field depends on disorder and the inset to Fig. here the properties crossover from metal to insulator and

shows that the magnetizatigsolid lineg initially decreases rpmddogb_le-exfchange batf‘d feTrrr](_)malgne_t]:_c t(_)rdennrg]; to
as the disorder strength increases until one reaches the regigﬁor er-dariven terromagnetism. This classification scheme
| be more sharply defined as we examine the transport

where the conduction band has a well-developed pseudog ties in Sec. V
and begins to split4.=0.6581 forn=0.8). As the disorder roperties in Sec. v.
increases fur?her, the magnetlz_atlon starts to increase and it V. TRANSPORT PROPERTIES
can be described by the following mean-field equation

In this section, we consider the electrical and thermal

m=tanhB(mT,(A)+ 3 H), (34)  transport properties of the double-exchange system in zero
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external magnetic field. The transport is determined from the =~ 4 -~

following set of equation8! The electrical conductivityr
=1/p is

g—= Llll (35)
the thermopower is

ke 1Ly, k
S=-— -2 B_gg VKL

R 36
el Tl el (26

and the thermal conductivityof the electronic systejrsat-

isfies
(kB 21 L2,
k=\—| FiLla— 7[>
e/ T Lqg

where the transport coefficients; are defined by

Lij= 7700; J’idgvz(s)DO(g)Jldw< - dg(cj)))

(37

X(0=p) 2A (8,0 p). (38)
Here the spectral function is given by
1
Aa(s,w)z—glm G,(e,w), (39

oo is the unit of conductivityG, (e, ) is given in Eq.(15)
anduv(e) is the current vertex which is equal to

A3 with z— oo,

(40)
for the Bethe lattic
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Resistivity, p(T)
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FIG. 5. Temperature dependence of the resistivifyr different
disorder strengtha: (a) A=0, (b) A=0.5, (c) A=0.75, and(d)
A=1.0. The curves labeled by 1 correspond to an electron filling of

Figure 5 shows the temperature dependence of the resis=0.6; 2 denotes=0.7; and 3 denotes=0.8.

tivity for different electron fillings in the three different dis-

order regimes(In this and the following figures, the resistiv- in Eq. (42) is contained in the expression for the self-energy

ity is plotted in units ofpg=1/0). In Fig. 5a), the weak-

in Ref. 44 for the pure double-exchange system with classi-

disorder regime, the transport properties are determined bgal local spins and a Lorentzian density of stet@s use a

the double-exchange band mechanism. From E).and

semicircular density of states herd@his factor plays an es-

(28), one obtains the following expression for the electronicsential role in the low-temperature behavior of the resistivity

self-energy

1/1—om

Tol0ti0="5 7 om

X{o+u* J(o+w)?—2t*2(1+om)},
(41
at A=0. Therefore,

Ims 10— — =129 B 2

m2 (w+id)= 2\ 15 om t*“(1+om)—(w+un)°,

(42)

for (o+p)?<2t*2(1+om) and Im3 (0+id)=0
otherwise.

Note that the factor
1—om 43
1+om (43

[Fig. 5(@]. It provides a decrease in the resistivity when the
magnetization increases. Indeed, in the limit-1 or T
—0, we have

(44)

AT(s,w)=5(w+,u,—8), Al(s,w)=0,

and the conduction-electron subsystem becomes a free-
electron gas of spin-up electrons with a conductivity that is a
delta function at zero frequenéwhose strength is the Drude
weigh.

On the other hand, in the high-temperature paramagnetic
phasem=0, and the correlated bandwidth is narrowed by a
factor of 2 due to paramagnetic spin disorder. In this case,
the expression for the self-energy exactly coincides with the
one obtained in Ref. 7 for the pure double-exchange system.
Since the density of states is independent of temperature
here, all of the temperature dependence of the resistivity
arises from the Fermi fact¢r-df(w)/dw] [see Eq(38)]. If
one makes the assumption that the chemical potential is also
temperature-independent, so that the derivative of the Fermi
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factor depends only weakly on temperature, then one woulc 80 -1 11+ L1111 111

concludé??® that the resistivity in the paramagnetic phase 1 0.09 e flr
(due to double exchange onlys essentially a constant. 1 oos E 5 i
However, more accurate calculations, that take into accoun 1 n=08  ; n-08 i
the temperature dependence of the chemical potential, shov 4, | =007 F 7 ; N
that the pure double-exchange system becomes a bad met 1 oosk E L
with dp/dT>0 [see, for example, Ref. 7 where the bad- = ] -
metal behavior was shown in a double-exchange system witt& =~ | 005 wbnornio 4T

0 10 20 30 40 50

weak electron-phonon interaction in their Figag. = 40 ] Residual resistivity, py i

The sharp decrease of the resistivityTat T, for all n is % |
caused by the rapid increase of the magnetizatiomhis D L
discontinuity in the slopelp/dT at T=T, is a consequence S:J -

of the dynamical mean-field approach. Incorporation of spa-
tial spin fluctuation® will smooth out the temperature de- 20
pendence of the resistivity in the vicinity df,, but this is
beyond dynamical mean field theory.

As disorder is added to the system, the properties are
initially changed little. When the disorder becomes large 0 T T T T T T T T
enoughA ~ 0.4, then we start to feel a more direct influence 0.0 0.2 0.4 0.6 0.8 1.0
of the disorder as it produces a pseudogap in the density o Disorder strength, A
states and we enter the transition regime of moderate disor-
der. In this regime, the slope of the resistivity can become FIG. 6. Resistivity atT=0 (dotted ling and atT=T, (solid
negativedp/dT aboveT, as shown in Figs. ®) and 5c). line) versus disorder strength. Inset is a plot of the Curie tempera-
The valueA=0.4 is the boundary value that separates thdure T¢ versus the residual resistivify, = p(T=0). Note how the
weak-disorder and the moderate-disorder regimes rfor two resistivity curves cross at a critical value of disorder, which
=0.8. As the disorder is increased further, the metallic Con_determines_ the beginn_ing of the transition region from the moderate
ductivity is gradually replaced by a thermally activated con-t© strong-disorder regimes.
ductivity (this starts atA~AE). As one enters the strong-
disorder regime, there is a MIT a.. Here the system tivity at a critical disorder strength. Note that Anderson lo-
displays insulating behavior everywhere, except just belovealization is the cause of the MIT in Ref. 19.
the Curie point, where the rapid increase in the magnetiza- The inset to Fig. 6 shows the Curie temperature as a func-
tion can cause the resistance to drop over a small temperatutien of the residual resistivity(T=0). This plot was ob-
range before it turns around and increases again. This occutgined by combining thé dependences gf(T=0) andT,
in the transition from the paramagnetic insulator to the fer{see Fig. 2 It is clearly seen that the suppressionTgfdue
romagnetic insulator because the charge gap in the ferromagp disorder is accompanied by the increase of the residual
netic insulator is smaller than the charge gap in the paramagesistivity. We find that our functional dependenceTgfon
netic insulator. Those sharp cusps seen in Fig) Svill  ,(T=0) is smoother than that found in Ref. 19 and agrees
generically be smoothed out by spatial fluctuations. better with experiment*®

We can analyze the transition from moderate to strong Now we examine the thermal properties of our system
disorder more quantitatively. We focus on two characteristigncluding the thermopowe®(T) and the electronic thermal
resistivities: the resistivity al; and the resistivity al=0  conductivity «<(T) which are shown in Fig. 7. The behavior
(residual resistivity. For weak disorder the residual resistiv- of these two quantities are quite different from each other—
ity is much smaller than the resistivity &t . When we reach  while the thermal conductivity always vanishesTas 0, the
the moderate disorder regime, the residual resistivity starts tthhermopower will either vanish or diverge depending on
increase rapidly, eventually overtaking the resistivitfatn ~ whether the system is metallic or insulating Bs>0. The
the strong-disorder regime. We denote the boundary betweeRermal conductivity behaves as expected with a sharp in-
the moderate and strong-disorder regimes by the value &frease al, due to the opening of conduction channels as the
disorder wherep(T=0)=p(T=T.). This occurs atA  magnetization grows, and a linear decrease to zero at low
=0.892 forn=0.8 as shown in Fig. 6. This transition occurs temperatures and weak disorder. With increasing disorder,
when the density of states has developed a strong pseudogaRe low-temperature behavior of the thermal conductivity
but has not yet become an insulatohf(=0.931 forn  slightly changes: it can be defined by the relatiorT)
=0.8). The range of disorder between these two limits,~T'"«4) wherea(A)=0 atA=0 anda(A)>0. Note that
(O.892<A<AE=0.931 forn=0.8) is the transitional region the thermal conductivity vanishes at low temperatures even
between the moderate-disorder and the strong-disordén the metal, because the heat current vanishes.
regimes. The thermopower behaves quite a bit differently. It too

This analysis is in qualitative agreement with the calcula-shows a strong effect &t (in this case a sharp decregase
tions that use a Lorentzian density of stfemd especially but the low temperature behavior is most interesting. For
with calculationd® that show a divergence of tie=0 resis- weak disordermetallic phases the thermopower vanishes
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dergo Anderson localizatioH: if the chemical potential is
in the region of localized states, the3{T) also diverges
asT—0.

The slope of the thermopowelS/dT has a discontinuity
at T,, but S(T) does not change sign in our model. The
predictiorf® that S(T) alters its sign afT=T, in double-
exchange systems was founded on two principl@sthe
itinerant-electron subsystem is a Fermi liquid afid the
derivative of the chemical potentidlu/dT changes sign at
T=T.. While we find that the derivativedlu/dT does
change sign aff=T, in agreement with other$;*° the
itinerant-electron subsystem is not a Fermi liquid in our
model, because the imaginary part of the self-energy does
not vanish asT—0 at the Fermi energy. Hence, the reason-
ing that led to the prediction of a sign change cannot be
applied here.

The high-temperature behavior of the thermopower for
0.00 0.03 0.06 0.09 0.12 strong disorder is similar to that &(T) in a small-polaron
Temperature, T modef?® where the conductivity is thermally activated and
S(T)~In[c/(1—c)]; with ¢ the small-polaron concentration
andc=<1. Indeed, the thermopower has a weak temperature
dependence for strong disordesee Fig. 7a)] in the para-
magnetic phase ant>T,.. Furthermore, for fixed tempera-
ture, we find thaS(T) decreases when the electron filling is
decreased to=0.5. At n=0.5 the thermopower is equal to
zero at all temperatures as in the small-polaron theory. Below
n=0.5, we find that the thermopower changes sign. Hence
we only find a sign change of the thermopower when the
electron filling is varied.

-
n
o

_
o
[=)

[e]
o

o0
o

-A=0.60
-A=070
-A=0.80
-A=0.90
-A=0.97
-A=1.00

Thermopower, S(T)
i
o

n
[=]
o ;R wWwN =

VI. MAGNETORESISTANCE

Thermal conductivity, x(T)

The most interesting property of the manganites is the fact
that the resistance changes so dramatically in a magnetic
field. This makes them useful as possible magnetic field sen-
sors for the magnetic storage community. We find similar
magnetoresistance effects in our model, especially when we
0.00 0.03 0.06 0.09 0.12 are close to the Curie point. The origin of the magnetoresis-

Temperature, T tance lies in the sensitivity of the resistivity to the magneti-
zation, and the ease with whiah can be tuned by a mag-
netic field. Typically, the field increases), which then
reduces the resistivity. Experimentalfythere is a strong

T0 b in the density of hcorrelation between the field-induced changeg iandm.
asT—0, but once a gap opens In the density of states, the |, o 4er (o calculate the magnetoresistance, we must first

thermopower diverges a0 since the chemical potential s,ye for the conductivity in the presence of an external mag-
lies in the gap and the !nsulatlng phase _has nonzero ENtroRYtic field. If we perform a simple shift in the definition of
as T—0. Peltier's coefficientP=TYT), is approximately the inverse effective medium,,—a,,+Ho/2 and replace
given by a straight line for strong disordek ¢ 1.0) and low 0 integration variable in EC{ES) b);ra)—ﬂz)‘l‘ Ho/2, then
temperaturgwhere the magnetization has saturateet1), e only modification is that the derivative of the Fermi fac-
e, P=a+bT, @=0.17 uV. Hence, the thermopower , r_f(«)/dw] now has an expliciH dependence and the
S(T) can be approximately represented by spectral functionA, in Eq. (30) depends orH through the
magnetizatiorm. The direct dependence pf on H via the
factor[ —df(w)/dw] always yields a small positive magne-
toresistance that is caused by the Zeeman interaction with the
external magnetic field; it can be neglected in weak fields.
for low temperature and strong disorder. This relation is typi- Figure 8 shows the temperature dependence of the resis-
cal of what is seen in intrinsic semiconduct8fs\ote that at tivity for different magnetic fields and two disorder regimes:
low temperatures the thermal conductivity and the ther{a) moderate disorder an¢b) strong disorder. The field-
mopower behave similarly for electronic systems that uninduced modifications to the magnetization suppress the re-

FIG. 7. Temperature dependenceg@&fthe thermopower antb)
the electronic thermal conductivity for different values of disorder.

a
S(M=7+b (45)
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FIG. 8. Temperature dependence of the resistip(ty) for dif- ] Disorder strength, A
ferent magnetic field$: (1) H=0.0, (2) H=0.005,(3) H=0.01, 0.0

(4) H=0.015, and5) H=0.02.

sistivity. This effect is strongest in the vicinity of the Curie
point, because the spin susceptibility is large there; hence the
field changes the magnetization most strongly there, sharply
reducing the peak. The peak positionpiil’) shifts to higher
temperature with increasing and there is a critical value of

H above which the MIT disappeafse., dp/dT>0 for all
temperatures This picture qualitatively agrees with the ex-

perimental data on manganite¥

The magnetic-field dependence of the resistivity at differ-
ent relative temperatures=T/ T, (Fig. 9 also indicates the
close correlation between the field-induced changgsand
m. Indeed, the comparison of Figs. 4 and 9 shows that the
magnitude of the resistivity correlates with the change in the

11

0.00 0.01 0.02
Magnetic field, H

Magnetoresistance, dp/p

Resistivity, p(T)

0.00 0.05 0.10 0.15 0.20

FIG. 10. (a) Magnetoresistancép/p as a function of the exter-
nal magnetic fieldH and (b) magnetoresistance as a function of
m? for different disorder strengths. The inset shows the disorder
dependence obp/p for H=0.005. The line styles irfa) are the
same as ir(b).

magnetization: the suppression of the resistivity is large
aroundT . where the largest growth aof is seen(see Fig. 4

but is weak far below and abovi.. Our calculation of the

H dependence op is in good qualitative agreement with
experiment(see Fig. 7 in Ref. 14

- We define the magnitude of the relative magnetoresistance

0.005

0.010
Magnetic field, H

as

% _p(T.O—p(TH)

p (7.0 (48

FIG. 9. Resistivityp(T) as a function of external magnetic . o ) N
field H for different relative temperatures=T/T,: (1) 7=0.4, In this definition,dp/p is positive and cannot exceed 100%.

(2) 7=0.8, (3) 7=1.0, (4) 7=1.1, (5) r=1.2, (6) 7=1.3, and  Figure 10 shows the magnetoresistancépa function ofH

(7) =1.4.

and(b) as a function ofn? for different disorder strengths at
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T=T.. It is seen from the comparison of Fig. 3 and Fig. probability distribution for the disorder which greatly simpli-
10(a) that the field dependence of the magnetization is dified the analysis and allowed us to examine directly the MIT.
rectly reflected in the field dependence of the magnetoresisfhe manganites are too complicated a system to be described
tance. TheA dependence ofp/p at fixedH is shown in the completely by this simple model. Nevertheless, we still ar-
inset to the Fig. 1&). The comparison of this inset with the rive at some useful conclusion§) this simplified double
inset to Fig. 3 shows that disorder dependencespdp and  exchange alone cannot explain the metal-insulator transition
m at fixedH are also similar. In the weak-disorder regime, in manganitesin the best case, it can be applicable to LSMO
Splp is slightly decreased. Although the double-exchangeat x=0.3 which has a relatively high Curie temperature and
mechanism of ferromagnetic ordering becomes weaker idlisplays bad-metal behavior in the paramagnetic phaisg
this regime, it is still active. In the moderate-disorder regime this simplified double exchange plus disorder cannot explain
strong-coupling-induced ferromagnetisisiscussed in Sec. the temperature dependence of the thermopo®(di) be-
IV) replaces the double exchange, and the magnetization beause it does not yield a change of sign in the paramagnetic
gins to increase with increasing disorder. This leads to amhase. An explanation of the large peakS(T) (in the fer-
increase of the magnetoresistance for both the moderatgemagnetic phageis beyond dynamical mean field theory,
disorder and strong-disorder regimes. &&1.0, Sp/p can  because it does not include magnon dtagii ) the effect of
attain values near 70% in a weak fieldlét=0.01. diagonal disordefinduced by chemical substitutipis im-
Figure 1@Qb) shows that the magnetoresistance can be exportant, and can influence the properties of the material if the
pressed by a scaling law disorder strength is large enough to be close to the MIT; and
(iv) we identified three disorder regimes which display dif-
ﬁ —Cn? 47 ferent characteristic behavior. The weak-disorder regime has
p ' little effect on the system and just renormalizes the double-
exchange band mechanism of ferromagnetic ordering. The
moderate-disorder regime, corresponds to the transition re-
gion between weak and strong disorder. The interacting den-

where the scaling consta@tis independent of only for the
pure double-exchange systemy£€0). The relation(47) is

approximately satisfied for finite disordecQ\ < 1.0 (at least
for m?<0.01), but the coefficienT is rather high, about 4,
for A=1.0 (n=0.8). versus its value of 1.9 for weak-to-

sity of states develops a pseudogap that promotes behavior
similar to thermal activation. The double-exchange mecha-
nism is gradually replaced by a strong-coupling ferromag-

moderafce-%isorder (0A<0.6). Note that Furukawa's petism(see Sec. IYwhich has a mean-field-like magnetism.
calculatior?” performed for the pure-double exchange system s regime, the Curie temperature is sharply decreased

with classical local spins gives the value of 4 fowhenn 514 the temperature dependence of the resistivity reveals a
is also equal to 0)8 The difference between our estimate of \y1 5t T=T,. The strong-disorder regime, is characterized

C and Furukawa’s arises from the different density of statesyy 5 gap in the interacting density of states at high tempera-
Note that Kubo and Ohateobtain C=1 for the quantum yre and the residual resistivity exceeds the resistivity at
double-exchange system. The scaling cons@rdlso de-  _ 1 Ferromagnetic ordering of local spifisith small val-
pends on band fillingC decreases with decreasing electron o4 ofT,~1/A) occurs due to strong-coupling physics. This

filing. In particular,C=1.7 (A=0) andC=2.5 (Af ,1'0) regime is most favorable to obtain a large magnetoresistance.
for n=0.67. Thus, we can conclude that the band filling near

n=0.8 and relatively strong disordeA{0.9) are the most
favorable conditions for a large magnetoresistance.
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