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Conserving approximations are applied to the attractive Holstein and Hubbard models (on an

infinite-dimensional hypercubic lattice).

All effects of nonconstant density of states and vertex
corrections are taken into account in the weak-coupling regime.

Infinite summation of certain

classes of diagrams turns out to be a quantitatively less accurate approximation than truncation of
the conserving approximations to a finite order, but the infinite summation approximations do show
the correct qualitative behavior of generating a peak in the transition temperature as the interaction

strength increases.

I. INTRODUCTION

It is generally believed that the theoretical aspects of
conventional superconductors are well understood and
that quantitative predictions agree with experiment.!»?
The reason why low-temperature superconductors can
be described accurately for all physical values of the
electron-phonon coupling is due to Migdal’s theorem:3
the ratio of the electron mass to the ion-core mass pro-
vides the small parameter that guarantees rapid conver-
gence of the theory. Eliashberg? generalized Migdal’s
theorem to the superconducting state and provided the
framework for quantitative calculations of the supercon-
ducting properties of real materials.'»?

A more precise way of stating Migdal’s theorem is to
say that only the electrons that lie in an energy shell
of width Qpepye about the Fermi surface are affected
by phonon scattering, and the only important scatter-
ing events involve the virtual emission and reabsorption
of phonons in an ordered fashion, where the last emit-
ted phonon is the first abscrbed phonon, and so on.
Migdal-Eliashberg (ME) theory neglects vertex correc-
tions (which involve crossings of the phonon lines) and is
an accurate approximation for small phonon frequencies.
The remaining unanswered question is how large does the
phonon frequency have to be before the effects of vertex
corrections are observable?

There are many materials that are hypothesized to
be electron-phonon-mediated superconductors, but have
large phonon frequencies. Ba; ,K,BiOj; is a charge-
density-wave (CDW) insulator at zero doping (z = 0),
but becomes a superconductor (SC) away from half
filling® (z > 0.37). The maximum phonon frequency
i Qpax = 80 meV for the optical oxygen modes,® while
the bandwidth” is W = 4 eV, so the ratio of the phonon
energy scale to the electronic energy scale is Qupax/W =
0.02. Are vertex corrections important for this material?

Alkali-metal-doped Cgo. is another superconducting
material that is hypothesized to have an electron-phonon
pairing mechanism. There are very high-frequency
phonons that correspond to distorting the Cgo cage®
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(@ =~ 0.2 V), while the electronic bandwidth is quite
narrow? (W = 1.0 V), resulting in Quay/W = 0.2.
Clearly, vertex corrections must play an important role in
phonon-mediated pairing mechanisms in these materials.

The effect of vertex corrections on superconducting
properties, in particular, on the superconducting tran-
sition temperature, has been studied in the past.'0712
Grabowski and Sham® showed that vertex corrections
lower T, for the repulsive electron gas, with T, — 0 for
some critical value of the plasma frequency. The electron-
phonon interaction has also been examined,'*'? and, in
general, vertex corrections also cause T, to drop. Is this
always the effect of vertex corrections, or can vertex cor~
rections sometimes cause an enhancement to T,.7

In this contribution the effects of vertex corrections
are examined in a systematic fashion via weak-coupling
conserving approximations for the attractive Holstein'?
and Hubbard!* models. The effects of Coulomb repulsion
are explicitly neglected here. A detailed comparison of
these perturbation schemes can be made to exact results
for these models in the infinite-dimensional limit to de-
termine which weak-coupling approximation is the most
accurate. '

The Holstein model consists of conduction electrons
that interact with localized (Einstein) phonons:
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where c;f(, (¢jo) creates (destroys) an electron at site j
with spin o, nj, = 'c;oc_.;,,. is the electron number op-
erator, and z; (p;) is the phonon coordinate (momen-
tum) at site j. The hopping matrix elements connect
the nearest neighbors of a hypercubic lattice in d dimen-
sions. The unit of energy is chosen to be the rescaled
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matrix element t*. The phonon has a mass M (chosen
to be M = 1), a frequency , and 2 spring constant
k& = MQ? associated with it. The electron-phonon cou-
pling constant (deformation potential) is denoted by g;
the effective electron-electron interaction strength is then
the bipolaron binding energy

=__9 _._g . ,
U= MQ2 T Kk @)

The chemical potential is denoted by u and particle-hole
symmetry occurs for u = 0.

In the instantaneous limit where U remains finite and
g and Q are large compared to the bandwidth (g,Q —
00, U = finite}, the Holstein model maps onto the attrac-
tive Hubbard model'4

H=—
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+ UZ(";‘T — 1)(njy — 3) (3)

J

with U defined by Eq. (2).

The weak-coupling theory is based upon the conserv-
ing approximations of Baym and Kadanoff:'® the free en-
ergy functional ® is approximated by a series expansion
of skeleton diagrams of the dressed Green’s function G;
the self-energy X(iw,) is determined by functional dif-
ferentiation L(iw,) = 6®/dG(iwy,) at each Matsubara
frequency w, = (2n + 1)7T; and the irreducible vertex
functions I'(iwy,,iw,) (in the relevant channels) are de-
termined by a second functional differentiation.

Independently, van Dongen®® and Martin-Rodero and
Flores'” showed that the free energy must be expanded
to order U? to determine the correct transition tempera-
ture in the limit U] — 0 for the Hubbard model at half
filling. The vertex corrections reduced the Hartree-Fock
transition temperature by a factor of order 3, but the
gap ratio 2A(0)/kpT, =~ 3.53 was unchanged (to lowest
order).

In addition to reproducing the weak-coupling limit
properly, one hopes that the conserving approximations
will also be able to reproduce the peak in the transition
temperature as a function of interaction strength that
occurs as the system crosses over from a weak-coupling
regime (where pair formation and condensation both oc-
cur at T,) to a strong-coupling regime (where preformed
pairs order at a lower temperature).18:19 It will turn out
that this feature is not easily reproduced by a truncated
conserving approximadtion.

The infinite-dimensional limit of Metzner and
Vollhardt?® is taken (d — oo), in which the electronic
nzany-body problem becomes a local (impurity) prob-
lem that retains its complicated dynamics in time. The
large-dimensional limit is quite useful because both the
Holstein?' and Hubbard?? 2* models can be solved ex-
actly using the quantum Monte Carlo (QMC) techniques
of Hirsch and Fye.?® These exact solutions have many

of the qualitative features of the many-body problem in
finite dimensions. They also provide a unique testing
ground for various weak-coupling theories, since the ap-
proximate theory can be compared directly to the exact
solution in the thermodynamic limit.

In the infinite-dimensional limit, the hopping integral
is scaled to zero in such a fashion that the free-electron
kinetic energy remains finite while the self-energy for the
single-particle Green'’s function and the irreducible vertex
functions have no momentum dependence and are func-
tionals of the local Green’s function.?%:26:27 This limit
retains the strong-correlation effects that arise from try-
ing to simultaneously minimize both the kinetic energy
and the potential energy.

The many-bedy problem is solved by mapping it onto
an auxiliary impurity problem?®2® in a time-dependent
field that mimics the hopping of an electron onto a site
at time 7 and off the site at a time 7/. The action for
the impurity problem is found by integrating out all of
the degrees of freedom of the other lattice sites in a path-
integral formalism.3® The result is an effective action

B B
Seg = Z/o dT/O dr'ch ()G (r — T')ea(7')
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where Gj' is the “bare” Green’s function that contains
all of the dynamical information of the other sites of the
lattice. The interacting Green’s function, defined to be

8 ) e PHT c(1)ct
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is determined by Dyson’s equation

Gl = @7 (iw,) = Gy H(iwy,) — B(iwy)- (6)

A self-consistency relation is required in order to de-
termine the bare Green’s function Gy. This is achieved
by mapping the impurity problem onto the infinite-
dimensional Iattice, thereby equating the full Green’s
function for the impurity problem with the local Green’s
function for the lattice

Gjjliwn) = D Gk, iwn)
k .
k

= Fooliwn + 1t — B(iwy)]. (7

Here F,(2) is the scaled complementary error function
of a complex argument3°
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The dynamics of the (local) impurity problem is
identical to the dynamics of the Anderson impurity
model?6:28730:22 and is determined by employing a weak-
coupling conserving approximation for the local problem
and satisfying the self-consistency relation in Eq. (7).

It is important to note that, since one does not a pri-

I

ori know the bare Green’s function Gg' in Eq. (4), one
must iterate to determine a self-consistent solution for
the Green’s function of the infinite-dimensional lattice.

" This is done by performing self-consistent perturbation

theery for the self-energy X[G] within a conserving ap-
proximation, and then determining the new local Green’s
function from the approximate self-energy and Eq. (7).
'This process is iterated until convergence is achieved [the
maximum variation of each (F(iw,) is less than one part
in 108 which typically takes between 5 and 30 iterations].

Static two-particle properties are also easily calculated

" since the irreducible vertex function is local.3! The static

susceptibility for CDW order is given by

1 — 5q. N 1 g p 7 ! . !
@ =gy T ST [t [ oo () = (o () (7]
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at each ordering wave vector q. Dyson’s equation for the
two-particle Green’s function becomes?2:31

Ton (@) = Ko (Dran — T ) Ko (DT Kpn (@) 5
4

Xrmn (q.) =

(10)

with TSPW the (local) irreducible vertex function in the
CDW channel.

The bare CDW susceptibility X2 (q) in Eq. (10) is de-
fined in terms of the single-particle Green’s function

2(q) = —% ZGn(k)Gn(k +q)

2
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and all of the wave-vector dependence is included in
the scalar?®3? X(q) = Z;l=1 cosq;/d. The mapping
q — X (q) is 2 many-to-one mapping that determines an
equivalence class of wave vectors in the Brillouin zone.
“General” wave vectors are all mapped to X = 0 since
cosg; can be thought of as a random number between
—1 and 1 for “general” points in the Brillouin zone.
Furthermore, all possible values of X (-1 < X < 1)
can be labeled by a wave vector that lies on the diago-
nal of the first Brillouin zone extending from the zone
center (X = 1) to the zone corner (X = —1). The
presence of incommensurate order in the attractive Hol-
stein model is restricted to a very narrow region of pa-
rameter space?3® so only the “antiferromagnetic” point
X = —1 is considered for CDW order. The integral for
X9.(X) in Eq. (11) can then be performed analytically?®

(11)

(X = —1) = =G, /(iwn + p— Tp). The irreducible
vertex function TSSOV is calculated perturbatively from
the dressed Green’s functions in a conserving approxima-
tion (see below).

A similar procedure is used for the singlet s-wave SC
channel. The corresponding definitions are as follows:
The static susceptibility in the superconducting channel
is defined to be

. B
x*°(q) = ﬁ Z, ,e‘q'(RJ"R’,‘)TA dr

R;~R:
B
XA d’TI(CjT(’I')CJ‘J,(T)CLJr(T,)CZT(T,)>

=T Y 5NQ, iwm, iwn) = Tfon%(q) . (12)

for superconducting pairs that carry momentum gq;
Dyson’s equation becomes

Smin — T ZX /()T Xpn (), (13)

Xoww (@) =

with T'S$ the corresponding irreducible vertex function
for the SC channel; the bare pair field susceptibility be-
comes B )

%' (a) ——ZG (k)G—n-1(~k +q)
fm/ zwn+u n

X(a)y
Jioxw ] (4

with the special value ¥ (X = 1) = —ImQ,,/Tm(iw, —
%) for the SC pair that carries no net momentum; and

< F.o, ['Lw—n—l +p—X_,1—
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finally the irreducible vertex function is also determined
in the conserving formalism (see below).

At this point the transition temperature of the infinite-
dimensional Holstein model is found by calculating the
temperature at which the relevant susceptibility diverges
(CDW or SC). o ‘

Section II contains the comparison of QMC exact so-
lutions to ME theory and the second-order conserving
approximation for the Holstein model. Analytical ex-
pressions for the change in T, due to vertex corrections
are given for the SC.channel. Section III includes the
application of conserving approximations to the attrac-
tive Hubbard model at half filling. Truncated conserv-
ing approximations through fourth order are compared
to the different Auctuation-exchange approximations and
the exact QMC solutions. Conclusions are presented in
Sec. IV.

II. HOLSTEIN MODEL

There are two different types of approximations that
are generally made for the electron-phonon interaction:
the first method is a truncated conserving approximation
that includes all vertex corrections to a finite order and
is valid for all values of the phonon frequency;5:21,33:12
the second method is ME theory in which vertex correc-
tions are neglected, but the phonon propagator is dressed
to all orders.>%:3* These two methods are compared and
contrasted in Figs. 1 and 2. Figure 1(a) shows the self-
energy for a conserving approximation through second

1
’
I

(a)
2 +£’:277+ 28+;‘;%}3

(b)
~ir =29+ &%

(c)

MW = A 2WOM

FIG. 1. Dyson equations for the self-energy of the Hol-
stein model. The thick solid lines denote the dressed (elec-
tronic) Green’s function and the thin wavy lines denote the
phonon propagator. The self-energy (expanded out to second
order in a conserving approximation) is depicted in (a) and
includes the Hartree and Fock contributions, the second-order
dressing of the phonon line and the lowest-order vertex cor-
rection. The self-consistent equation for the self-energy in
Migdal-Eliashberg theory is shown in (b). The thick wavy line
is the dressed phonon propagator which satisfies the Dyson
equation in {c).

order. The self-energy includes, respectively, the Hartree
term {which is a constant and can be reabsorbed into
the chemical potential), the Fock term, the second-order

_ term that dresses the phonon propagator, and the lowest-

order vertex correction. Figure 1(b) displays the corre-
sponding self-consistent equations for ME theory: the
self-energy includes the Hartree term (which can once
again be reabsorbed into the chemical potential) and the
Fock term (which is calculated with the dressed phonon
propagator®*). The dressed phonon propagator satisfies
Dyson’s equation [Fig. 1(c)].

To be more explicit, the self-energy for the second-
order conserving approximation is

£.(cons) = —g*>T Z D, .G,

+g4T2 Z[—2Dn—r + Dr—»s]

™8

XDp—rGrGoGrris (15)

which includes the Fock diagram contribution and the
two second-order contributions in Fig. 1(a). The bare

‘phonon propagator D; = D(iv) in Eq. (15) is given by

1

P T )

- (16)
for each (bosonic) Matsubara frequency v; = 2lxT. On
the other hand, in ME theory, the self-energy satisfies

(®)

23T

2 Yol 4 ﬁ:@ 2}{ i
T TTE
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FIG. 2. The irreducible vertex functions in the CDW and
SC channels. The CDW irreducible vertex function for ME
theory is shown in (a}. Note that the phonon propagator
is bare in (a). The SC irreducible vertex function for ME
theory appears in (b). Note that the phonon propagator is
dressed here. The CDW irreducible vertex function for the
second-order conserving approximation is shown in (c). Note
that the vertex corrections (exchange diagrams) modify the
interaction to lowest order in the CDW channel. The SC ir-
reducible vertex function for the second-order conserving ap-
proximation is shown in (d). The vertex corrections first enter
at second order in the SC channel.
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G, simple in the ME theory: the irreducible vertex in the
— a2 r
Zn(ME) =g T‘Z M2 +02_ ) +10,_, T CDW channel satisfies [see Fig. 2(a))
! ooV (ME) =2U ; (18)
—_ 2 y . .
I =29 TZGH’"G" ? (17) and the irreducible vertex function in the SC channel
" satisfies [see Fig. 2(b)]
with II; the phonon self-energy (evaluated in the limit 1
where vertex corrections are neglected). SC (ME) = —g? : - : . - -(19)
The self-consistency step involves determining a new " M +vz_ ) + Mo

local Green’s function G,, from the integral relation in
Eq. (7) with the approximate self-energy of Eq. (15) or The phonon propagator ir. the CDW vertex is the bare
Eq. (17). This process is repeated until the maximum  propagator to avoid a double counting of diagrams.

deviation in the local Green’s function is less than one The irreducible vertex functions acquire more struc-
part in 108. ture in the second-order conserving approximation. In

Once the Green’s functions and self-energies have been =~ the CDW chanuel [see Fig. 2(c)] one must include both
determined, the irreducible vertex functions can be cal- direct and exchange diagrams as well as the vertex cor-

culated for the CDW or SC channels. The vertices are rections. The result is
J

. . a2
ISoW (cons) = 2U — 2UT Y [GoGmenir + GrGimin—s] [—‘8‘—]

@+,
02 2 Q2 02 02
—ng—_———_—z + V"zn_n' - 2U T 2".: Ger—n+1‘ Qz + V,.zn_n Q2 + 1/12n__,n - ’Qz + 1’1,,2,'_1.]
. 02 2
+U TZ’; Ger+n—r Q2 + an_r Q2 i l'v/"’gl—_r- . (20)

Note that the vertex corrections (arising from the first-order exchange diagrams) modify the interaction in the CDW
channel so that it properly interpolates between the zero-frequency limit T®PW — 2T/ and the infinite-frequency limit
ICPW 5 UU. At an intermediate phonon frequency, the CDW interaction strength has a complicated temperature
dependence. In the SC channel [see Fig. 2(d)] one finds

sc Q2 2 . o2 Q2 Q? o’
Fm@ﬁ:U@TEI+UTZQ&WWW+%%PW+%%"m+ﬁq‘m+%%J
2 Q2 Q2 (21)
~rS 6.6 "~ e e 21
21-: T L B2 ST

{

As the transition temperature (to a CDW-ordered only contribution of the irreducible vertex function to the

state or a SC-ordered state) is approached from above, eigenvalue of the scattering matrix comes from the even
the susceptibility (in the relevant channel) diverges.  Matsubara frequency component [Ty n + I'—r—1,n]/2.

Therefore, one can determine the transition temperature In order to judge the accuracy of these approximate

by finding the temperature where the scattering matrix methods for the electronic self-energy and the irreducible

(in the relevant channel) vertex functions, it is necessary to compare them to the

' Tym = —TTmn® (22) exact results. The best way to do this would be to di-
" rectly compare the perturbative results to the exact QMC

has unit eigenvalue.?® In general, the eigenvector corre- results. Unfortunately, there are no available QMC data

sponding to the maximum eigenvalue of the scattering to do this. However, it has been well established that
matrix is symmetric with respect to a change in sign of  the iterated perturbation theory (IPT) of Georges and
the Matsubara frequency (for the SC channel or for the  Kotliar3® yields accurate results for the electronic self-
CDW channel at half filling). energy of the Hubbard model (by direct comparison with

At half filling the Holstein model interaction is particle-  the QMC results®*) as long as the system is at half fill-
hole symmetric, so the Green’s functions and self-energies  ing. The IPT is identical to the second-order conserving

are purely imaginary and the vertices are real. The self- approximation, except that the perturbation theory is
energy can be expressed by ¥(iw,) = iw,Z(iw,), with  strictly truncated to second order in U.

Z(iwy,) the renormalization function for the self-energy. A comparison of the approximations to the IPT results
At half filling, both x2,(X = —1) and x%(X = 1) are  for the electronic self-energy and a comparison of the

also even functions of the Matsubara frequency, so the  approximations for one column of the irreducible vertex
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function in the CDW channel are made in Figs. 3 and 4
for two different interaction strengths at half filling. The
phonon frequency is set to be approximately one-eighth
of the effective bandwidth (2/t* = 0.5) as was done in
_the QMC solutions.?! The energy cutoff is set to include
256 positive Matsubara frequencies for the perturbative
approximations.

At weak coupling (g = 0.4, Fig. 3), the second-order
conserving approximation clearly provides a more ac-
curate approximation to the electron self-energy (under
the assumption that the IPT is accurate). One expects
the exact irreducible vertex function to be a frequency-
dependent interaction, so the second-order conserving

1 T T T T
3 (a)
>\ -
3 ——— ME
W .
] —-=— 2nd
It
- o IPT
|
=
3 _
N
0 1 2 3 4 5
" Matsubara Frequency iw,
o
> 0 1 T 1]
s
& (b)
=
3
J -o5 ME
= \
3 \ ~-—=-2nd
|- \
+ \
= \
E -1k \ .
= S
3 N :
3
L. —-1.5 1 I 1
= 0 1 2 3 4

Mctsuboro Frequency iw,

FIG. 3. Comparison of the ME theory (solid line) to
the second-order conserving approximation (dashed line) for
the Holstein model at half filling with phonon frequency
) = 0.5t*, ipteraction strength g = 0.4t*, and tfem-
perature T = t*/16. This example is generic_for the
weak-coupling limit. In (a) the self-energy renormalization
function Z(iwn) — 1 is plotted against the Matsubara fre-
quency and compared to the IPT (solid dots). In (b) the
symmetric combination of the first column of the irreducible
vertex function in the CDW channel is shown. Note that the
second-order conserving approximation is clearly superior to
ME theory in the limit of weak coupling.

approximation is probably more accurate here too [the
CDW vertex for the ME theory has no frequency depen-
dence as shown in Eq. (18)].

An underestimation of the self-energy causes an over-
estimation of the transition temperature and vice versa.
Similarly, an underestimation of the magnitude of the ir-
reducible vertex will cause an underestimation of T, (and
vice versa). Since the ME theory overestimates the self-
energy and overestimates the CDW vertex (because there
is no weakening of the CDW vertex at small frequency
transfers), it is difficult to predict whether or not ME
theory will overestimate T,. In the same fashion we do
not know whether or not the second-order conserving ap-

*

1.5 r - . -
o4
2
~
~
3{:
& 'r
Y
}
[}
T oost
P
[~
3
S
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o ,
0 1 2 3 4 5
Matsubara Frequency iw,
o~
E 0 T Y T
i_
= (b)
T -05 + .
3
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s
E 11 .
3] \ -——==2nd
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X s \ ]
= Tl \
£ \
© T~
3 2 —— T = r—a-
e
=
8
) - 1 | 1
-2.5
— 0 1 2 3 4

Matsubara Frequency iw,

FIG. 4. Comparison of the ME theory (solid line) to
the second-order conserving approximation (dashed line) for
the Holstein model at half filling with phonon frequency
Q = 0.5t*, interaction strength g = 0.5¢*, and temperature
T = t*/9. This example is generic for the transition region
to the strong-coupling limit. The self-energy renormalization
function (a) and the irreducible vertex function in the CDW
channel (b) are both pictured. In (a) the self-energy is com-
pared to the IPT (solid dots). Note that in the limit where
the strong-coupling effects begin to manifest themselves, the
ME theory is becoming a more accurate approximation, or,
put in other words, the total effect of vertex corrections is
reduced as the interaction strength increases.
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proximation will overestimate T, since the magnitude of
the exact vertex is not known.

As the coupling strength is increased to the point
where a double-well structure began to develop in the
effective phonon potential of the QMC simulations?!
(g = 0.5, Fig. 4) one can see strong-coupling effects be-
coming more important. Surprisingly, ME theory is be-
coming a more accurate approximation to the self-energy
here. Stated in other words, as the coupling strength
increases, the effect of vertex corrections is reduced.'!
Unfortunately, the self-consistent equations for the ME
theory become unstable to an iterative solution as the
coupling strength is increased further.

At half filling, the Holstein model always has a transi-

tion to a CDW-ordered phase at q = (m,7,7,...) (X =
—1). The transition temperature to this commensurate

CDW is plotted in Fig. 5 as a function of the interaction :

strength. The second-order conserving approximation is
compared to ME theory and the QMC simulations.2! The
conserving approximation is much more accurate at weak
coupling!®17:12 (ME theory predicts a transition temper-
ature that is an order of magnitude higher than the QMC
and conserving approximation results at the lowest value
of the coupling considered) because the inclusion of the
first-order exchange diagrams produces the correct inter-
action and the inclusion of the second-order terms pro-
duces the correct prefactor. However, ME theory does
display the proper qualitative behavior of developing a
peak in T, as the interaction strength increases. This
feature is not reproduced by the truncated conserving
approximation.

As the system is doped away from half filling, the

0.2

— i ST

(0]

s ——ME

3015 ~~~2nd

> . o

)

= e MC

[

<))

© o1k -
o O

o

W

2 .

L 005 |- -
*

3

>

= 1

0 02 o0& 05 05 1
interaction strength g/(t*+q)

FIG. 5. Transition temperature to the CDW-ordered state
at half filling in the Holstein model at an intermediate phonon
frequency (2 = 0.5¢*). The ME theory (solid line) is com-
pared to the second-order conserving approximation (dashed
line) and the QMC results (solid dots). Note that the vertex
corrections are very important in the CDW channel and that
only the second-order conserving approximation produces the
correct result in the weak-coupling limit. ME theory does,
however, display the correct qualitative behavior of develop-
ing a peak in T; as a function of interaction strength.

CDW instability remains locked at the commensurate
point (X = —1) until it gives way to a SC instability (in-
commensurate order may appear in a very narrow region
of phase space near the CDW-SC phase boundary?!:33
but is neglected here). In Fig. 6, the phase diagram of
the Holstein model is plotted for two values of the inter-
action strength (g = 0.4, g = 0.5). The weak-coupling
QMC data {g = 0.4) are reproduced most accurately by
the second-order conserving approximation, as expected
from the comparison of the self-energy and the vertices
in Fig. 3. The SC transiticn is reproduced remarkably
well, because the underestimation of the self-energy [Fig.
3(a)] must be compensated by an underestimation of the
SC vertex. The critical concentration for the CDW-SC
phase boundary is also more accurately determined by

. the conserving approximation. Note that the difference

between the SC transition temperature calculated with
ME theory and with the second-order conserving approx-
imation explicitly shows the lowest-order effect of vertex
corrections. The vertex corrections lower T, by about a
factor of 2 at the phase bow ndary, but are reduced as the
doping increases.

At the stronger coupling strength (g = 0.5) ME theory

_reproduces the CDW transition temperature very accu-

0.2 —T T T L
ME
0.15 - =~ 2nd R
e MC (CDW)
A MC (SC)

0.05

0 _ - I
1 0.8 0.6 0.4 0.2 0

Electron concentration p,

FIG. 6. Phase diagram of the Holstein model with
Q = 0.5¢" at two different coupling strengths (g = 0.4,0.5).
The solid dots are the QMC solutions with CDW order, and
the open triangles are the QMC results with SC order. The
kinks in the solid (ME) and dashed (second-order conserv-

- ing approximation) lines occur at the CDW-SC phase bound-

aries. In the weak-coupling limit (¢ = 0.4) the second-order
conserving approximation is superior to the ME theory and
is quite accurate for the SC transition. The difference be-
tween the ME results and the second-order conserving ap-
proximation shows explicitly the lowest-order effects of ver-
tex corrections upon the SC transition temperature. The
effect of vertex corrections is reduced as the filling is re-
duced. ME theory is quantitatively more accurate in deter-
mining 7, for the stronger coupling strength (g = 0.5) but the
second-order conserving approximation is superior in deter-
mining the CDW-SC phase boundary. Clearly both approx-
imations are failing at such a large value of the interaction
strength.
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rately at half filling, but not the doping dependence of
Te. It does manage to reproduce the transition temper-
ature in the SC sector quite well, but the second-order
conserving approximation is superior at determining the
CDW-SC phase boundary. Clearly both approximation
methods are inadequate at this large a value of the cou-
pling strength.

Up to this point we have concentrated on one value of
the phonon frequency and have compared the numerical
solution of the self-consistent perturbation theory with
the numerically exact QMC solutions. In the limit of
weak coupling ([U| -+ 0), the transition temperature ap-
proaches zero (T. — 0) and the leading behavior of T can
be determined analytically.}817:12:33 We will concentrate
on the SC channel only, because the analytical techniques
are not as accurate for the CDW channel.

In the limit T' — 0, the self-energy satisfies

%i_gno[iwn + o —S(wy)] =g+ w,Z , (23)
where the renormalized chemical potential is
— R T . — _ 2
a=p 1lqulyrt)ReE(zw,,) p—Up.+0U?), (24)

and the renormalization function is

Z = Z(0) .
_ ®  oply+p)Fo(-y+p) Q
=140 [ dy 2 CETE
+0(U?) . (25)

Here p(y) = exp(—y?)/+/7 is the noninteracting density

of states (DOS) in infinite dimensions. The irreducible

vertex in the SC channel [Eq. (21)] becomes

92
Q22

m—n

rse = [U|[1+2|UJL] + UL, + O(U?) ,

(26)

with I; and I; two smooth temperature-dependent inte-
grals that can be approximated by their zero-temperature
limit:

1 ooA* ) y2
= —— d 2 (; —
h=—gf Rl ng— o), ()

1 [ .. Q4
The bare susceptibility becomes
_ImFo (lwnZ + i)

Xn (X =1)= +oU?, (29)

wpZ

for the electron pairs that carry no net momentum.

In the square-well approximation,3®? the smooth tem-
perature dependence of the SC vertex is replaced by a
sharp cutoff at a characteristic frequency w,,

QZ

. O(we — |wm[)B(we — |wnl) , (30)

with #(z) the unit step function. The scattering matrix
[in Eq. (22)] then becomes

Trmn = —T[0(we ~ |wm|)8(we — |wa)U(1 + 2]U|I1)

ImFoo(iwnZ + )

_rr2
UL wnZ

< (31)

The SC transition temperature is now determined by
solving the matrix eigenvalue equation Zn Ton®n = Om-

The eigenvector ¢, can be chosen to be of the form
¢m = 14 ab(w;— |wm]) in the square-well approximation,
so that the matrix eigenvalue equation is reduced to two
coupled algebraic equations

a= —&(E%M(l +2IUL)(1+a)R,
1= _&’g,ﬂfzz(azz +5), (32)

with R and S defined by

B = .__21_ ImF‘x’(i(d,"Z;}. p) P,
; B= pn) [w?l;wc Wn ’ (33)
__ T & WnFe(iwnZ+p)
5= p(/.l,) Z Wy ) (34)

n=—0o

The infinite summation over Matsubara frequencies
can be performed in the standard fashion? to yield

S:l‘/‘ d—qp(y_{_ﬁ)tanh y

2 —5o v (e 27T,
=hozn
+/ gy_(tmhy*1+ ply + B) +p(—yv+u)) ,
o ¥ 2p(1)

(35)

while the truncated summation can be expressed in an
integral form'®

1 © dy . -
R=5- / —ImF,,(iyZ +
mo1) Ju. ¥ (Y “)_
— 5 3/ dyply+p) +pl-y+p), 1 Y
TJo ¥ 2p(x) Zw,
(36)

if the transition temperature is much less than the cutoff
frequency (Te € w,).

The coupled algebraic equations [in Eq. (32)] are then
solved by

z
S = L+ UICh - RS + (1 +2UIL)(E - S) ,

(37
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to order |U|. The limiting form of the transition temper-
ature is now found by substituting Egs. (35) and (36) for
R and S into Eq. (37) and solving for T.. The result is

1
T. = exp (—“ W’,‘) fphononfelectron.fDOSfvertex ’ (38)

which includes the interaction term and the constant
prefactors. The constant terms arise from the phonon
self-energy, the electron self-energy, the nonconstant
DOS, and the vertex corrections.

The phonon self-energy correction is

D0

1
non = ———=R dyF?
fpho on eXP[ WP(#) e‘/_oo YL o

—exp[f/ dwpw)erf(w+\/_u}, (39)

(i + m]

and is independent of the phonon frequency. This correc-
tion factor is normally included in the definition of the
electron-phonon interaction strength A,

A= oift - Ere [~ ari+ ], o)

of the ME theory formalism.
The electron self-energy factor satisfies

oo . 0
electron = - dye™Y h(2 —_—,
felectron expl: /(; Ye cosh(2py) (Q+y)2]

(41)

which approaches the standard ME theory result of

felectron — et
Hubbard model result of fojectron — 1 as £ — oco.
The nonconstant DOS factor is

*d
.fDOS = l exp/ —g [tanhy -1
2 o Y

We

te v cosh(2py) (1 - %tan_l —y—>] , (42)

which depends on the square-well cutoff frequency w.. In
the limit w. — 0, fpos approaches the ME theory result
of 1.14w,., whereas in the limit w, — oo, fpos approaches
the Hubbard model result3?

lim fpos = 0.85exp|2 ~ d—ye_y2 sinh?
We—0o0 bos : P 0 y ﬂy

= 0.85 exp [\/7? /0 * dyey’erf(y)] . ‘(43)

Note that, once the phonon energy scale is larger than
the electronic energy scale, it is the band structure (not
w.) that determines the DOS prefactor.

Finally, the vertex correction factor becomes

as @ — 0 and approaches the standard

/ dyFZ (iy + p)
—o0

Q2 1 Q? \
X“—*—Qeryz( +sor e +y2>] : (44)

which approaches 1 as @ — 0. In the high-frequency
limit, the vertex corrections cancel the phonon self-
energy corrections and yield

Frertex = €xXp [_L_R'e
mp(1)

lim f phononf vertex
2—o00 .

~ex 1 % dwp(w)
B P[ V2 |oo w ()

which reproduces van Dongen’s result'® finononfvertex =
exp[—+/2In(14+/2)] at half filling (¢ = 0). In the infinite-
frequency limit (attractive Hubbard model), the vertex
corrections always reduce T,.

The effects of vertex corrections upon the supercon-
ducting transition temperature in the weak-coupling
limit are displayed in Fig. 7(a). The vertex correc-
tion factor, fiertex = Tc(vertex)/T.(no vertex), is plot-
ted against the phonon frequency for eight different elec-
tron concentrations. At half filling, the vertex corrections
sharply reduce T, so that T, calculated with vertex cor-
rections is a factor of 2 lower than T calculated without
vertex corrections at © = 0.13¢* (or, since the effective
electronic bandwidth is approximately W = 4¢*, when
Q/W = 0.03). Therefore, vertex corrections should play

erf(w + \/5;1,)] , (48)

-an important role in Ba;._.K,BiO3 where Q/W = 0.02.

As the system is doped away from half filling the ef-
fect of the vertex corrections is reduced (as was already
seen in Fig. 6), until a critical electron concentration
{pec = 0.2) is reached where the vertex corrections ini-
tially cause an enhancement to T.. This enhancement
occurs because the electironic Green'’s functions have a
larger real part than imaginary part, which causes the
integrand in Eq. (44) to change sign for small y. This en-
hancement will not be seen in standard ME theory with a
constant DOS, because the Green’s functions are chosen
to be purely imaginary in that case. As the phonon fre-
quency is increased to a large enough value, the vertex
corrections will once again reduce T, because they al-
ways cause a reduction in the limit Q — oo [see Eq. (45)].

The square-well cutoff frequency w, should vanish as
the phonon frequency vanishes, and should become infi-
nite as the phonon frequency becomes infinite. The cutoff
frequency is chosen to be three-fifths of the phonon fre-
quency (w, = 0.692), so that the proper limiting behavior
is attained®!%:16 as @ — 0 and Q@ — oo. The prefactor to
the SC transition temperature in Eq. (38) is plotted in
Fig. 7(b) for eight different electron concentrations. Note
that there is an optimal phonon frequency where the SC
response is maximal, which shifts from a low frequency
at half filling to higher frequencies as the electron con-
centration is reduced. The optimal phonon frequency is
usually smaller than the effective bandwidth (W = 4¢*).

In general, one must expand the free energy through
second order'®'" to properly determine T, in the limit
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|U| = 0. The miracle of ME theory is that a first-order
calculation with dressed phonons properly determines T,
in the limit Q — 0. In the CDW channel, the vertex
corrections modify both the interaction strength and the
prefactor, while in the SC channel, only the prefactor is
modified. It is this robustness of the SC channe! to the
effects of vertex corrections that explains the success of
ME theory for low-temperature superconductors.

T, (vertex)/T (no vertex)

6 o0z 04 08 08 1
Phonon frequency Q] /(t*+(al)

2 T T U

(b)

15k SN

0.3

T, exp(1/p(u)iul)

CE I

0 1 -1 1 1

o 02 04 06 08 1
Phonon frequency |Q|/("+]Q[)

FIG. 7. Plot of the lowest-order effect of vertex correc-
tions on the SC transition temperature in the weak-coupling
limit. In (a) the renmormalization factor for the transition
temperature calculated with vertex corrections divided by
the transition temperature calculated without vertex cor-
rections is plotted as a function of the phonon frequency.
Eight different values of the electron density are plotted
(pe = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,1.0). Note that the vertex
. corrections always reduce 7. in the high-phonon-frequency
limit, but that vertex corrections initially enhance T. at low
electron density {pe < 0.2). At half filling (where the Green’s
functions are purely imaginary) vertex corrections will reduce
T. by a factor of 2 when /W = 0.03. In (b) the prefactor of
the weak-coupling Tc formula is plotted against the phonon
frequency for the same eight values of the electron density.
The cutoff frequency has been chosen to satisfy w. = 0.6%.
Note that there is always an optimal phonon frequency where
the SC response will be the largest, and that this optimal
phonon frequency increases as the electron concentration de-
creases. ’

III. HUBBARD MODEL

The Hubbard model in Eq. (3) is the infinite-frequency
limit (2 — o0) of the Holstein model. The Hubbard
mode] has an electron-electron interaction that only oc-
curs between electrons with opposite spins. This happens
because of the cancellation of the direct and exchange
diagrams which causes all electron-electron interactions
between like-spin particles to vanish. The perturbation
theory becomes much simpler in the Hubbard model case,
because of this reduction of diagrams, and can be per-
formed to higher order. Here the truncated conserving
approximation will be carried out to fourth order, and
will be compared to the fuctuation-exchange (FLEX)
approximation® to determine the best way to approx-
imate the Hubbard model in the infinite-dimensional
limit. Previous work has concentrated on second-order
conserving approximations,3%37 third-order conserving
approximations,’? or the FLEX approximation.3?

One expects that a truncated approximation will be su-
perior to an infinite summation of random-phase approx-
imation (RPA) bubbles and particle-hole and particle-
particle ladders because the many-body problem re-
duces to a self-consistently embedded Anderson impurity
model, and the analysis of Yamada3® has shown that the
total fourth-order corrections to the self energy are an
order of magnitude smaller and opposite in sign to the
fourth-order contribution of the FLEX approximation.
The irreducible vertex functions should have similar ef-
fects, but have not yet been analyzed in detail.

The diagrammatic expansion for self-energy (ir a con-
serving approximation) of the Hubbard model is given
in Fig. 8. The first line includes the first-order Hartree
contribution (which is a constant that can be absorbed
into a renormalized chemical potential), the second-
order contribution, and the third-order particle-hole and
particle-particle ladders. The second line contains the
fourth-order contributions from the RPA bubbles and
the particle-hole and particle-particle ladders. The third
and fourth lines include all of the remaining fourth-order
diagrams (the inclusion of the second-order self-energy
into the dressed Green’s function of the second-order di-
agram produces another fourth-order contribution to the
self-energy, but this is automatically included in the self-
consistency step of the conserving approximation). The
FLEX approximation consists of the summation of all
RPA bubbles, particle-hole ladders, and particle-particle
ladders. The self-energy has already been determined
on the real axis by Menge and Miiller-Hartmann.3® The
FLEX approximation for the self-energy includes all con-
tributions through third order in U (the first line of
Fig. 8) but only a partial contribution of the fourth-
order and higher-order terms (the second line of Fig. 8
plus the higher-order terms). An explicit formula for
the electronic self-energy of the Hubbard model through
fourth order is given in the Appendix. The correspond-
ing formula for the FLEX approximation has been given
before.15:38

The irreducible vertex functions are too cumbersome
to represent diagrammatically, but an explicit formula
for the CDW vertex is given in the Appendix. The cor-
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FIG. 8. Self-energy diagrams for the Hubbard model
through fourth order. The thick solid lines denote the dressed
electronic Green’s functions, and the thin dotted lines are the
Coulomb interaction. The first two lines contain all of the
FLEX contributions truncated to fourth order. The last two
lines are the remaining fourth-order diagrams. At half filling
the odd-order contributions to X vanish, and each of the three
fourth-order contributions on the same line yields the same
contribution to 3.

responding formula for the FLEX approximation has al-
ready been given.’® An additional simplification is usu-
ally made for the FLEX approximation that neglects a
large class of diagrams for the irreducible vertices (the so-
called Aslamazov-Larkin diagrams,*®) thereby including
only those contributions to the irreducible vertex func-
tion that can be represented by functions of the bare
particle-hole or bare particle-particle susceptibilities.'®
This simplified FLEX approximation will be denoted
FLEX*.

Since the Hubbard model interaction is particle-hole
symmetric, the half-filled band corresponds to p = 0,
and the Green’s functions are purely imaginary. The
odd-order contributions to the self-energy all vanish and
each of the fourth-order contributions on a given line in
Fig. 8 is identical®® (see the Appendix). Furthermore,
it can be shown that the most complicated contributions
to the irreducible vertex function in the CDW channel
are odd under a change in the sign of the Matsubara fre-
quency, and can be neglected in calculating the maximum
eigenvalue of the scattering matrix, because only the even
component of the irreducible vertex function enters (see
the Appendix for details).

Note that, since the self-energy is an odd function of U
at half filling, but the irreducible vertex function contains
both even and odd powers of U, the only difference be-
tween a truncated conserving approximation of order 2n
and of order 2n+ 1 is that the irreducible vertex function
is larger for the odd-order approximation. Therefore, we
expect that an even-order approximation will underesti-
mate the transition temperature (in weak coupling) and
an odd-order approximation will overestimate 7%,.

A comparison of the different approximation schemes

is given in Figs. 9 and 10 for two different values of

U. The second-order, third-order, and FLEX approxi-
mations all employ an energy cutoff of 256 positive Mat-
subara frequencies; the fourth-order approximation uses
64 positive Matsubara frequencies. In Fig. 9(a) the self-
energy renormalization function is plotted for the three
different approximations at U = —t* and compared to
the highly accurate IPT.3° Note that the fourth-order
approximation virtually reproduces the IPT results, but
that the FLEX approximation grossly overestimates the
self-energy even though the coupling strength is not too
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FIG. 9. Comparison of the different conserving approxima-
tions for the Hubbard model at half filling in the limit of weak
coupling (U = —t*,T = £"/20). The second-order (dashed
line), third-order (dotted line), and fourth-order (solid line)
conserving approximations are compared to the full FLEX
(chain dotted line) and the simplified FLEX" (chain triple
dotted line). In (a) the self-energy renormalization function
is plotted against Matsubara frequency and compared to the
IPT (solid dots). In (b) the even component of the first col-
umn of the irreducible vertex function in the CDW chan-
nel is plotted. Clearly the fourth-order approximation is the
best approximation in this limit. The FLEX approximation
grossly overestimates the self-energy. The simplified FLEX*
compensates for this by overestimating the vertex to produce

a more accurate value for T%.
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large. In Fig. 9(b) the even component of one row of
the irreducible vertex function for the CDW channel is
compared for U = —t*. All of the truncated conserving
approximations are in reasonable agreement with each
other; the FLEX approximation has the smallest magni-
tude at low Matsubara frequency. The simplified FLEX*
grossly overestimates the magnitude of the vertex (in fact
the FLEX* approximation produces the wrong qualita-
tive behavior of the vertex). In general, the transition
temperature calculated with the simplified FLEX* will
be a more accurate approximation to the exact T, than
that calculated with the full FLEX, because the overesti-
mation of the self-energy will be compensated for by the
overestimation of the vertex in FLEX*. These results are
similar to what White** found for the repulsive Anderson
impurity model.

As the coupling strength is increased to U = —-2¢*, the
FLEX approximation becomes a more accurate approx-
imation for the self-energy than the truncated conserv-
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FIG. 10. Same as Fig. 9, but with a stronger value of
the coupling (U = —2¢*,T = t*/8). In this limit the FLEX
approximation is superior for the self-energy, but the vertex
does not appear to be reproduced accurately by any approx-
imation.

ing approximations [see Fig. 10(a)]. Clearly, the trun-
cated conserving approximation must be performed to a
high order to accurately reproduce the self-energy in the
strongly correlated regime. The irreducible vertex func-
tion in the CDW channel is plotted in Fig. 10(b). The
different approximations no longer agree well with each
other, indicating that the perturbation theory is breaking
down.

The transition temperature for the CDW transition
at half filling in the attractive Hubbard model is plot-
ted in Fig. 11 as a function of U. The truncated con-
serving approximations are doing quite well in the weak-
coupling regime. The odd-order approximation overes-
timates 7., while the even-order approximations under-
estimate T.. The even-order approximations tend to be
more accurate over a wider range of U than the odd-
order approximation, but neither approximation prop-

“erly reproduces the turnover in T, as a function of U as

seen in the QMC simulations.?? Note also that all trun-

‘cated approximations agree in the limit I/’ — 0, but that

a first-order (RPA) calculation will be off by a factor
of 3 in the weak-coupling limit.}¢17'2 The FLEX ap-
proximation does have the correct qualitative behavior
of developing a peak in T, as a function of U but the
peak position and peak height are off by about an or-
der of magnitude. The simplified FLEX* is, in general,
a more accurate approximation than the full FLEX, but
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Interaction strength’ |U]/("+|U})

FIG. 11. Tranpsition temperature to the CDW-ordered
state in the Hubbard model at half filling. The second-order
(solid line), third-order (dotted line), and fourth-order (solid
line) conserving approximations are compared to the full
FLEX (chain dotted line), the simplified FLEX" (chain triple
dotted line), and the QMC results (solid dots). Note that
the odd-order approximations overestimate T., the even-order
approximations underestimate T, and that one has to go to
very high order to reproduce the peak in the transition tem-
perature as a function of the interaction strength. The FLEX
approximation displays the correct qualitative behavior of de-
veloping a peak, but is off by an order of magnitude in the
peak position and height. The simplified FLEX" yields a
quantitatively more accurate approximation, but is poorer in
the limit of weak coupling because it does not include all of
the third-order contributions properly.
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becomes unstable if U is increased too far. The FLEX*

does not agree as well with the QMC calculations (or with |

the other approximations) in the weak-coupling limit be-
cause the irreducible vertex function does not include all
of the third-order contributions.

The reason why the truncated (even-order) conserving
approximations do not approximate the self-energy (or
the vertex) too accurately at moderate coupling, but are
good approximations for the transition temperature at
moderate coupling, is most likely due to a cancellation
of the effect of an underestimation of the self-energy by
an underestimation of the vertex in the calculation of
T.. This probably explains why the T, curves do not
turn over for the truncated approximations as well: the
turnover must be arising from self-energy effects that are
being underestimated here.

In summary, the truncated approximations tend to
give better numerical agreement than an approximation
that tries to sum an infinite series of diagrams (such as
the FLEX). One must go to very high order to see a peak
develop in T, as a function of U and to have good quan-
titative agreement with the QMC results. It will be in-
teresting to see if the removal of the infinite summation
of diagrams in the comserving approximation produces
an even better agreement with the QMC results (as was
found for the Anderson impurity model®®). The approx-
imation will no longer be a conserving one, and will need
to be generalized to move off half filling, but should be
even more accurate. The Huctuation-exchange approxi-
mation seems to be a poor approximation, and should not
be tried for the Holstein model; rather one should con-

centrate on generalizing Yamada’s analysis for instanta- -

neous interactions to one for retarded interactions to see
whether or not one can improve upon the accuracy in
that case too.

*

IV. CONCLUSIONS

Vertex corrections can be systematically incorporated
into a weak-coupling theory of electron-phonon interac-
tions. Expansions must be performed to second order in
the effective electron-electron interaction in order to pro-
duce the correct behavior in the weak-coupling limit.16:17
The miracle of Migdal-Eliashberg theory®* is that a first-
order calculation suffices (with dressed phonon propaga-
tors) in the small-phonon-frequency limit. Vertex correc-
tions enter to lowest order in the CDW channel, modify-
ing the interaction strength. They enter to higher order
in the SC channel, and merely modify the prefactor of
the weak-coupling 7. equation. This robustness of the
SC channel to the effects of vertex corrections explains
its remarkable success for low-temperature superconduc-
tors. Nevertheless, the effect of vertex corrections should
be strong enough to be observable in materials such as
Ba;_.K.BiO; and the doped fullerenes. It is possible
that the effects of vertex corrections can even be detected
in certain low-temperature superconductors such as Pb.

In general, vertex corrections will reduce the transition
temperature; however there is a small parameter regime
at low electron density where the vertex corrections actu-
ally cause an enhancement to the superconducting tran-

sition temperature. This occurs because the real parts
of the Green's functions are larger than the imaginary
parts for small imaginary frequency and low electron con-
centration. At high enough phonon frequency, or large
enough electron density, the vertex corrections will lower
T..

Truncated comnserving approximations appear to be
better approximations than infinite summation schemes
such as the fluctuation-exchange approximation.'® The

~ electronic self-energy, the irreducible vertex functions,

and the transition temperatures all appear to be better
approximated by a truncated conserving approximation.
The qualitative feature of the development of a peak in
the transition temperature as a function of the interac-
tion strength is, however, not reproduced by a truncated
conserving approximation. Perhaps a completely trun-
cated approximation (that is no longer conserving) will
do even better at approximating properties of interact-
ing electronic systems in infinite dimensions. Yamada3?
and White*! found this to be so for the Anderson im-
purity model, and those techniques have been applied
in infinite dimensions®®%* {o second order in U. What
is needed is a way to generalize Yamada’'s work off half
filling for both the self-energy and the irreducible vertex
functions. Work in this direction is currently in progress.

In conclusion, a weak-coupling conserving approxima-
tion has been carried out for the attractive Holstein and
Hubbard models that includes all effects of vertex correc-
tions and nonconstant density of states. Agreement with
the exact solutions is found to be excellent at weak cou-
pling, but the qualitative feature of developing a peak in
T. as a function of the ineraction strength is not repro-
duced. From this standpoint, a weak-coupling theory is
much more difficult to control than a strong-coupling the-
ory (perturbation theory in the kinetic energy). Analytic
expressions for T¢ in the 5C channel have been explicitly

" derived, and they indicate that vertex corrections may

be observable for some classes of low-temperature super-
conductors. Future work will include an examination of
the ordered phase, a study of the effects of Coulomb re-
pulsion, and a real materials calculation to look for the
effects of vertex corrections in low temperature supercon-
ductors. '

Note added in proof. After completion of this work
I learned about a similar study applying the local ap-
proximation to the electron-phonon problem in two di-
mensions by H. R. Krishnamurthy, D. M. Newns, P. C.
Pattnaik, C. C. Tsuei, and C. C. Chi, Phys. Rev. B 49,
3520 (1994).
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APPENDIX

The explicit formulas for the electronic self-energy
through fourth order and for the irreducible vertex func-
tion in the CDW channel are given here. The diagram-
matic expansion for the self-energy is shown in Fig. 8.
The first two lines include the contributions from the
FLEX approximation (truncated at fourth order) while
the last two lines include the extra fourth-order contri-
butions. The self-energy is then expanded as

S(iwn) = Ty = ZEVEX(4) + 2/ (4) (A1)

with EELEX(AI) the contributions to the self-energy in-
cluded in the FLEX approximation'® (but truncated to
fourth order) and X7 (4) the additional contributions to
fourth order. The truncated FLEX contributions are'® |

TR (4) = TU N Gua[Uxd" + UPXE™ + 200
3

+TU Y G a[UP™? — U], (A2)
1

through fourth order. Here the bare particle-hole and
particle-particle susceptibilities are

Xph(iV,) = th = ‘TZGrGr—H ,
' v (A3)
XPP(in) = xP =T GoGororqi -

The additional fourth-order contributions to the self-
energy are

2’ (4) T2U42Gn—lGn—-l+l' n+l’Xp Xph+2T2U4ZG—-n 1+IG—-n 111" n+l’prX}2,n+1 [E%L

14

w

—T3U4ZGn 1G+Gr1Gryiirr r+l’xp T3U4ZG 1Gnt0GrGr 140 Grt X 11

il

+T3U42Gn 1Gn—vGr Gr+lGr+l'Xﬁ—r-z v

ril!

TG
(A4)

At half filling the Green’s functions are purely imaginary and satisfy G_,,_; = —G,. Therefore, the particle-hole
and particle-particle susceptibilities in Eq. (A3) are equal. It is easy to show that the two third-order contributions
to LFLEX(4) vanish in this case, and that the three fourth-order contributions are equal. Similarly, the three terms
that mvolve a double summation in Eq. (A4) are equal, and so are the three triple-summation terms as shown by

Yamada.3®

The irreducible vertex function in the CDW channel can also be determined. The vertex function is broken up into
its FLEX contributions and its additional fourth-order contributions

I\CDW — I\FLEX (4) + Pmn(4)

The FLEX contributions through fourth order are!®
ThaX(4) = U + USxo_o[2 + Ui + 207002 ] -

Uz m+n+1[

(A5)

— UxPpgr + UEE2 1]

—ZTU"’ZG Gromar[UEr_, + 3U%x202 | — 2TU=‘ZG Grnin—[UxEE . + 30322 ]

—2TU? Z GrGrmonir[=2UxP i + U2 0]

and the additional fourth—order contributions are

mn(4) = 2TU4§:G Gn—m—i-r{x'fn-rxpl-’f-r-}»l + m—n

+TU4§:G Gm+n-r[2x:’,,_,x”+,,+1 + Xmr

+4T2U4ZG GsGnr+4Gnm1.[0

(A6)

¢4
+ m—n n+r+1]

h
n—r)

+ 77.—1“]

—2T2U4ZG G Gm+n-—1[ n+r—sxph + Gm+1‘—8 n’-‘—r]

_‘2T2U4 z G G G—m+r+an-—m+l[

‘T2U4 z G G Gn——m+an——m+J

+ n—rl

- Gm+n-—er+n—-s]X$h 8

__2T2U4ZG G.Gmir—sCGrir—s[Xripr1 + Xohpr1) — T2U4ZG GuGrmirGmonteXihat1

m+r s

2T‘~‘U4Z G.G,|

n—r+sXm+r+1 + Gn+f-—

m-—r+tXm->|-r+1]

4T3U4ZG G:Re[G, G,.+,_tG_,,,+,.+,Gn+, )

“rst

+T3U4ZG GsGiGrpstGrys—t[G m—r+t+G +r— t]

. Tst

(A7)
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Note that the simplified FLEX* approximation does
not include any of the terms that involve explicit sum-
mations over Matsubara frequency [the second and third
lines in Eq. (A6)].

By making the transformations t - r+s—1t, r — s,
and 8 — 7 in the triple-summation terms in Eq. (A7) and
using the symmetry at half filling G_,,_; = —G,,, one can
demonstrate that the triple-summation terms are odd un-

der n = —n — 1, and do not contribute to the eigenvalue
of the scattering matrix if the eigenvector is even under
n — —n — 1. Therefore, the triple-summation terms in
Eq. (A7) may be neglected (this result has been explic-
itly tested by calculating the eigenvalue of the scattering
matrix with and without the triple-summation terms and
there was no effect on the eigenvalue at half filling).
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