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Diabatic-ramping spectroscopy of many-body excited states
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Due to the experimental time constraints of state of the art quantum simulations, the direct preparation of the
ground state by adiabatically ramping the field of a transverse-field Ising model becomes more and more difficult
as the number of particles increase. We propose a spectroscopy protocol that intentionally creates excitations
through diabatic ramping and measures a low-noise observable as a function of time for a constant Hamiltonian
to reveal the structure of the coherent dynamics of the resulting many-body states. To simulate experimental data,
noise from counting statistics and decoherence error are added. Compressive sensing is then applied to Fourier
transform the simulated data into the frequency domain and extract the low-lying energy excitation spectrum. By
using compressive sensing, the amount of data in time needed to extract this energy spectrum is sharply reduced,
making such experiments feasible with current technology in, for example, ion trap quantum simulators.
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I. INTRODUCTION

Predicting the behavior of complex many-body quantum
materials, such as frustrated magnets, can be an intractable
problem on a digital computer [1–3]. Feynman proposed
the use of a quantum-mechanical simulator to efficiently solve
these problems [4]. While the general discussion we give
below can be applied to any quantum simulator that attempts
to perform adiabatic state preparation, but is hampered by
the experimental run time being too short to remain fully
adiabatic, for concreteness, we focus our discussion on ion trap
emulators that can model spin systems [5–11]. The success of
these trapped-ion quantum simulators stems from their long
coherence times, precise spin-state quantum control, and high
fidelity. These successes have been observed in linear Paul
traps, which have successfully performed quantum simulations
with as many as 18 ions in a one-dimensional linear crystal
[12], and the Penning trap, which employs a two-dimensional
crystal in a single plane to trap ∼300 spins [10]. Using either a
linear Paul trap or the Penning trap, it has been demonstrated
that a spin-dependent optical dipole force can be applied to
the crystal of ions to realize a tunable Ising-type spin-spin
coupling [7].

To prepare the ground state of the transverse Ising model
in trapped-ion quantum simulators, the system of spins is
started in the ground state of a strong transverse magnetic
field. The transverse magnetic field is then slowly reduced to
zero. If the transverse magnetic field is decreased adiabatically,
then the system of spins will stay in the ground state and
this technique for preparing complex ground states is called
adiabatic state preparation [13,14]. One of the experimental
complications is that as the number of ions increases and
the energy gap decreases, keeping the total experimental
duration below the coherence time can result in diabatic
transitions out of the ground state [11]. This is true even for
optimized rampings [15]. We propose a spectroscopy protocol
to probe the low-lying energy spectra of the system of spins
that takes advantage of the diabatic excitations at different
transverse magnetic field strengths, which we call diabatic-
ramping spectroscopy. The diabatic-ramping spectroscopy
measurement is made by holding the transverse magnetic

field constant to make a low-noise measurement after the
system has been excited to a coherent superposition of ground
and excited states. An alternative spectroscopic method has
recently been carried out that actively modulates the field
magnitude and looks for a system response to the modulation
frequency [12]. This method has been shown to be very
effective at zero transverse field and has been used to create
interesting quantum superposition states in a four-spin system.
The method we develop here is passive in the sense that the
system response itself contains the frequency information,
which we show in general can reveal many spectral lines at
once without requiring a scan of the modulation frequency.
These two methods are therefore complimentary, and we show
here that diabatic-ramping spectroscopy extends its parallel
state detection ability well into the finite field range.

We explore the diabatic-ramping spectroscopy by simu-
lating data for trapped ions driven near the center of mass
mode. This realizes an infinite-range transverse-field Ising
model, if we ignore all the other phonon modes. The general
transverse-field Ising model Hamiltonian for Npart. particles is
given by

Ĥ(t) = −
Npart.∑
i<j

Jij Ŝ
(z)
i Ŝ

(z)
j + B(x)(t)

Npart.∑
i

Ŝ
(x)
i , (1)

where Ŝ
(α)
i are the spin-1/2 operators in the α = x, y, z

directions for the ith ion and we set � = 1. The infinite-
range transverse-field Ising model follows when all spin-spin
couplings are the same so that Jij = J0/Npart.. The spin
operators satisfy the following commutation relations:[

Ŝ
(α)
i ,Ŝ

(β)
j

] = iεαβγ Ŝ
(γ )
i δij , (2)

where the Greek letters represent spatial directions, the Roman
letters are the lattice sites, and εαβγ is the antisymmetric tensor.
The total spin operator Ŝ

(α)
tot = ∑

i Ŝ
(α)
i simplifies the infinite-

range transverse-field Ising model from Eq. (1) into

Ĥ(t) = −J0

2

[(
Ŝ

(z)
tot

)2

Npart.
− 1

4

]
+ B(x)(t)Ŝ(x)

tot . (3)
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Here we study the ferromagnetic state of the Ising model with
positive J0.

The infinite-range transverse-field Ising model corresponds
exactly to a special case of the Lipkin-Meshkov-Glick (LMG)
model [16], when the model is written in the quasispin
formalism. The general LMG model was introduced as an
exactly solvable Hamiltonian for a many-body system (the
example of the many-body system considered is a finite system
of nuclei) to compare to various techniques and formalisms.
The LMG model has subsequently been studied numerically
and analytically [16–23]. By considering these analytic and
numerical studies of the LMG model, the infinite-range
transverse-field Ising model breaks up into submatrices, where
each submatrix block is an eigenstate of the S2

tot, and the
submatrix with S2

tot = Npart./2 includes the ground state and
the excited states of interest when J0 > 0. Also within each
submatrix, the eigenstates of the LMG model, in the quasispin
formalism, split into two groups, one being symmetric and the
other antisymmetric under an interchange of the z component
of spins. The splitting of the eigenstates into two groups in
the LMG model is known as spin-reflection parity for the
infinite-range transverse-field Ising model.

More specifically, the Hamiltonian commutes with the total
spin operator Ŝ2

tot, so the Hilbert space is reduced from 2Npart.

to Npart. + 1 states for the ferromagnetic system, where the
ground state has spin S

(z)
tot = Npart./2. The eigenstates also

have spin-reflection parity, that is, under the partial inversion
transformation Ŝ

(x)
tot → Ŝ

(x)
tot , Ŝ

(y)
tot → −Ŝ

(y)
tot , Ŝ

(z)
tot → −Ŝ

(z)
tot the

Hamiltonian and the spin commutation relations remain the
same. Due to the spin-reflection parity, the ground state is only
coupled to eigenstates with the same spin-reflection parity.
Eigenstates with the opposite spin-reflection parity become
degenerate with the eigenstates with the same spin-reflection
parity when B(x) → 0.

Figure 1 shows the energy spectrum of the infinite-range
transverse-field Ising model. Due to the avoided crossing

FIG. 1. (Color online) Example energy spectrum of the infinite-
range transverse-field Ising model as a function of the transverse
magnetic field for Npart. = 400 particles. The ground state can be
excited to eigenstates with the same spin-reflection parity (black lines
that alternate starting from the ground state). The eigenstates that
have opposite spin-reflection parity (red dashed lines that alternate in
between the opposite parity lines) do not couple to the ground state,
or any other opposite parity state.

of neighboring coupled eigenstates, a minimum energy gap
occurs within each symmetry sector. The first minimum energy
gap is between the ground state and the second excited
eigenstate at a “critical” transverse magnetic field strength
that approaches 0.5J0 as the number of particles increases. The
width of the first minimum energy gap is inversely proportional
to the cube root of the number of particles, E2 − E0 ∝ N

−1/3
part.

[24]. Following the first minimum energy gap, a second
minimum energy gap occurs between the fourth and second
excited eigenstates, and so on.

During an experiment where the transverse magnetic field
is ramped to zero, excitations are primarily created when
diabatically lowering the transverse magnetic field near the
critical transverse magnetic field strength B(x)(t) ≈ 0.5J0.
After excitation, we stop evolving the Hamiltonian at a specific
time tstop and field B(x)(tstop) in order to perform an excited
state spectroscopy measurement. The observable Op(t) in
the Heisenberg representation evolves as a function of time
with respect to Ĥ(tstop), which is now a time independent
Hamiltonian. The time evolution of the observable is given by
the energy differences between eigenstates with the same spin
parity as the ground state that have been diabatically excited,
where Ĥ(tstop)|m〉 = Em|m〉 and

Ôp(t) =
∑
mn

〈m|Ôp|n〉 exp[−i(En − Em)t]. (4)

By analyzing this time dependence, one can extract the many-
body energy differences.

The organization of the paper is as follows: In Sec. II
we outline the spectroscopy protocol and the methods used
to simulate and process the data. In Sec. III we provide
representative numerical examples to illustrate how the energy
spectra can be extracted by using signal processing. In Sec. IV
we provide our conclusions.

II. THEORETICAL FORMULATION

A. Spectroscopy protocol

The energy spectra of the infinite-range transverse-field
Ising model can be measured by creating excitations in the
quantum simulation. The diabatic excitations depend on the
rate at which the transverse magnetic field is ramped, and on
the size of the minimum energy gap between the ground state
and the first coupled excited state. The spectroscopy protocol
is as follows (and depicted schematically in Fig. 2):

(1) Diabatically decrease the magnetic field with time
constant τramp starting from a large polarizing field B0 in the x

direction:

B(x)(t) = B0e
−t/τramp , (5)

evolving the quantum state and creating excitations, as shown
in Fig. 2(a).

(2) Decrease the magnetic field until the desired value is
reached at t = tstop and then hold the field constant for a fixed
time interval tmeas., as shown in Fig. 2(a).

(3) Measure a low-noise observable of interest at each
tmeas..
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FIG. 2. (Color online) Schematic diagram of the spectroscopy
protocol. (a) The transverse magnetic field as function of time is
diabatically ramped down to a chosen value B (x)(tstop). B (x)(tstop) is
then held for a time interval of tmeas.. (b) A low-noise observable
measured during the interval tmeas.. (c) The low-noise observable as a
function of tmeas. is Fourier transformed into the frequency domain to
determine the energy differences (solid line). After applying signal
processing to the low-noise observable as a function of tmeas. the
energy differences can be determined more accurately (dashed lines).

(4) For each new tmeas., steps 1–3 are repeated for the
necessary number of time steps to perform signal processing,
as depicted in Fig. 2(b).

(5) Signal process (Fourier transform) the oscillations of
the low-noise observable as a function of time to determine
the energy differences, as shown in Fig. 2(c).

(6) Repeat the protocol at different stopping values of the
transverse magnetic field to map the energy spectra versus
transverse magnetic field.

The frequencies of these excitations are extracted from the
measured signal as a function of time by Fourier transforming
into the frequency domain. In the frequency domain the exact
signal will have peaks at the frequencies of the excitation
energies; they will be broadened if the measurement has
decoherence, noise, or a finite time evolution window. Similar

ideas have been proposed in the field of quantum information
to use signal processing techniques as a means of determining
the Hamiltonian of a system by evolving a number of different
quantum states [25].

B. Time evolution

In order to evaluate the time dependence of the observable,
we must evaluate the time evolution with respect to the time-
dependent Hamiltonian. We do this with the evolution operator,
which satisfies

i
∂

∂t
Û (t,t0) = Ĥ(t)Û (t,t0) (6)

and Û (t0,t0) = 1. Since the total spin operators have the same
commutation relations as in Eq. (2), the Hamiltonian does
not commute with itself at different times (during the ramp,
0 < t < tstop),

[Ĥ(t),Ĥ(t ′)] 	= 0, (7)

where t 	= t ′. As a result of Eq. (7), the evolution operator
must be calculated as a time-ordered product. We apply the
evolution operator Û (t,t0) = Tt exp[−i

∫ t

t0
dt ′Ĥ(t ′)] acting on

the initial quantum state |ψ(t0)〉 to determine the time evolution

|ψ(t)〉 = Û (t,t0)|ψ(t0)〉. (8)

We use the commutator-free exponential time (CFET) [26,27]
approach that utilizes a product of exponentials to determine
the evolution operator via a generalization of the Trotter
breakup [28]. The essential idea of the CFET procedure is
to construct the Trotter factor such that when the product
of Trotter factors are combined using the Baker-Campbell-
Hausdorff formula [29–31], the resulting expression is equal to
a high-order truncated Magnus expansion [32] of the evolution
operator with as high an order expansion as possible. We use
the optimized fourth-ordered CFET procedure that has an error
of order (δt)5.

The optimized fourth-order CFET, ÛCFET(t + δt,t), ap-
proximates the evolution operator with piecewise propagation
for Hamiltonians of the form Ĥ(z) + B(x)(t)Ĥ(x) with Ĥ(z) =
−J0[(Ŝ(z)

tot )
2/2Npart. − 1/8] and Ĥ(x) = Ŝ

(x)
tot as follows:

ÛCFET(t + δt,t)

= exp

{
δt1

[
−J0

2

((
Ŝ

(z)
tot

)2

Npart.
− 1

4

)
+ b1Ŝ

(x)
tot

]}

× exp

{
δt2

[
−J0

2

((
Ŝ

(z)
tot

)2

Npart.
− 1

4

)
+ b2Ŝ

(x)
tot

]}

× exp

{
δt1

[
−J0

2

((
Ŝ

(z)
tot

)2

Npart.
− 1

4

)
+ b3Ŝ

(x)
tot

]}
, (9)

with time steps

δt1 = 11
40δt, δt2 = 9

20δt. (10)

The magnetic field is evaluated at three different times in the
interval of size δt (with xi ∈ [0,1]):

x1 = 1

2
−

√
3

20
, x2 = 1

2
, x3 = 1

2
+

√
3

20
. (11)
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The b1, b2, b3 coefficients are calculated from⎛
⎝b1

b2

b3

⎞
⎠ =

⎛
⎝h1 h2 h3

h4 h5 h4

h3 h2 h1

⎞
⎠

⎛
⎝B(x)(t + x1δt)

B(x)(t + x2δt)
B(x)(t + x3δt)

⎞
⎠, (12)

where the elements of the matrix are

h1 = 37

66
− 400

957

√
5

3
, h2 = − 4

33
, h3 = 37

66
+ 400

957

√
5

3
,

(13)

h4 = − 11

162
, h5 = 92

81
.

The h coefficients were determined by taking the set of b

factors in Eq. (9), combining them using the BCH formula,
and then setting them equal to the truncated Magnus expansion
of the evolution operator over the δt time interval. This yields
the reduced numerical error without needing to evaluate any
commutators. Details can be found in Refs. [26,27].

C. Decoherence and noise

We choose to measure the time dependence of the occu-
pancy of the highest probable eigenstate of the operator S

(z)
tot

at time tstop for the observable as a function of time pexact(t)
during the fixed time interval tmeas.. The highest probable state
stays at 〈S(z)

tot 〉 = 0 as B(x)(t) approaches the minimum energy
gap. After the minimum energy gap, the highest probable state
symmetrically moves toward 〈S(z)

tot 〉 = ±Npart./2, as shown in
Fig. 3.

To simulate experimental data, we need to introduce
typical errors. The two sources of error that we intro-
duce are decoherence of the signal and counting statistics

FIG. 3. (Color online) Probabilities of the product states as a
function of the transverse magnetic field B (x) in the (a) adiabatic
limit and (b) the numerically evolved diabatic case with the ramping
rate of τrampJ0 = 2. In both cases the highest probable S

(z)
tot state starts

at S
(z)
tot = 0 and moves towards S

(z)
tot = ±200 as the B (x) approaches 0.

While the adiabatic limit shows the transition from the low to high
S

(z)
tot is smooth, the numerical results have ripples after the minimum

energy gap due to the diabaticity of the time evolution.

FIG. 4. (Color online) (a) Comparison of the exact signal (black,
top) to a signal with decoherence added in via Eq. (14) [red (bottom)
τ = 10/J0; green (middle) τ = 25/J0]. (b) Counting statistics is
added in by choosing random integers from the Poisson distribution
with a mean value of Nmeas.psignal(t), for Nmeas. = 10 000 (violet).

noise. We neglect the error due to spontaneous emission
because the complexity of adding the spontaneous emission is
beyond the scope of the basic treatment of the error we will be
adding to the exact signal. The decoherence is modeled by a
simple exponential decay of the exact signal

psignal(t) = pexact(t)e
− t

τd , (14)

where τd is the decoherence time (our goal in doing this is not
to describe any microscopic model of decoherence but rather to
produce more typical experimental data from our exact results
by using a simple exponential decay for the decoherence).
We used decoherence times of τdJ0 = 25 and 10 in Fig. 4(a).
The total time during our experimental simulations is approxi-
mately 5 ms, this is with the average Jij = 2π × 1.0 kHz [11].
The counting statistics noise is added by randomly choosing
integers from a Poisson distribution to represent the number
of counts for the low-noise observable of interest, psimulated(t),
at time t , as seen in Fig. 4(b). The Poisson distribution is

Pois(x|λ) = λx

x!
e−λ, (15)

where λ is the mean of the distribution and x = psimulated(t)
is the actual occurrence of an event. The mean value is λ =
Nmeas.psignal, where Nmeas. is the total number of measurements
made at time t . To randomly choose an integer x from a Poisson
distribution, a random number ui is chosen from a uniform
distribution (with ui ∈ [0,1]) x number of times and the ui’s
are multiplied together [33]. When the product of ui is less
than e−λ, psimulated(t) is set equal to x:

x=psimulated(t)∏
i=1

ui < e−λ. (16)

The number of total measurements Nmeas. at each time step
was determined when the signal-to-noise ratio (SNR) of the
initial probability at tstop is larger than 1:

SNR ≈ √
Nmeas.psignal(0) > 1. (17)
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D. Signal processing

The signal processing of the oscillations of the low-noise
observable is usually measured at equally spaced time steps
tn = nδt for a fixed time interval tmeas. = (Nstep − 1)δt and
is transformed into the frequency domain by applying the
discrete Fourier transform

Psimulated(fk) = 1√
Nstep

Nstep−1∑
n=0

psimulated(tn)Fk,n, (18)

where fk = k/(Nstepδt) for |k| < Nstep/2 and Fk,n is

Fk,n = ei2πkn/Nstep . (19)

The signal in the frequency domain can then be transformed
back to the time domain by the inverse discrete Fourier
transform

psimulated(tn) = 1√
Nstep

Nstep/2∑
k=− Nstep

2

Psimulated(fk)F−1
n,k . (20)

Due to the noise of the oscillations and the characteristics
of the discrete Fourier transform (as given by the Nyquist-
Shannon analysis [34,35]), the number of measurements taken
of the oscillations needs to be large to get a good estimate of
the energy differences (or frequency of the oscillations). The
number of measurements can be significantly reduced when
the signal processing algorithm called compressive sensing
[36] is used, as we discuss below.

1. Discrete Fourier transform

It is well known that Nstep equally spaced time steps of
width δt can determine the Fourier transform accurately for
frequencies less than the Nyquist frequency [34] fN ,

fN = 1

2δt
. (21)

as proved by Shannon [35]. If the Fourier transform of the
signal has frequencies fH,i , that are higher than the Nyquist
frequency fN , then spurious data are generated due to a
phenomenon called aliasing, which maps high frequencies into
the range of frequencies that is less than the Nyquist frequency
via

fN > fH,i − 2nfN = falias,i , (22)

where n is an integer that satisfies the inequality, as illustrated
in Figs. 5(a) and 5(b). Equation (22) is determined by
comparing the equally spaced time samples of a sine wave
with a high frequency fH and the aliased frequency falias

which become nearly indistinguishable when the time steps
are δt < 1/(2fH ), as demonstrated in Fig. 5(c).

The effects of introducing decoherence and noise to the
observable as a function of time, psimulated(t), produces errors
in the Fourier transformation to the frequency domain. The
decoherence error broadens the δ function peaks at the
frequencies of the excitation energies in the frequency domain,
as shown in Fig. 6. Once decoherence has contaminated the
observable as a function of time not much can be done to
reduce the effects of the broadening, unless there is only one
decoherence time and it is known or can be fit. The counting

FIG. 5. (Color online) (a) Signal (black line) that is made from
four sine waves with their respective frequencies and sampled (red
dots) at a frequency 1/δt . The first three frequencies f1, f2, f3 < fN

and the fourth frequency f4 are greater than fN . (b) The samples are
Fourier transformed and f1, f2, f3 (black line) can be identified
from the signal as a function of time (red line). However, the
fourth frequency appears in the signal as a function of time with
an aliased frequency (green or gray line), as defined in Eq. (22).
(c) Comparing the sine wave of the high frequency f4 (black line)
and the alias frequency falias (green or gray line), the two are nearly
indistinguishable with respect to the sampled points (red dots) that
were used on the original signal in (a).

statistics noise added to the observable as a function of time
is analogous to adding a linear superposition of nearly equally
weighted sine waves that oscillate at a continuum of high
frequencies to the signal, as depicted in Fig. 7(a). When the
observable as a function of time with the counting statistics
noise is Fourier transformed to the frequency domain, the
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FIG. 6. (Color online) Fourier transformation of the probability
as a function of time in Fig. 4(a) with a decoherence time of τdJ0 = 10
in the frequency domain. The probability was measured at Nstep =
2048 equally spaced time steps. The δ function peaks of the signal
have been broadened (red line) with respect to the Fourier transform
without decoherence (black lines).

linear superposition of sine waves that oscillate at a continuum
of high frequencies transform into a noise floor, since the sine
waves have similar weight in the time domain. The noise floor
then obscures the δ function peaks at the frequencies of the
excitation energies with amplitudes below the noise floor. The
simplest way to reduce the effects of the counting statistics
noise on the observable in either the frequency or time domain
is to increase the number of measurements Nmeas. taken at each
time step. To increase the amplitude of the δ function peaks
above the noise floor, the length of the time interval tmeas. must
be increased. However, when tmeas. � τd the observable as a
function of time becomes nearly 0.

If there is knowledge of the observable in the frequency
domain that can restrict the frequencies, then the Fourier
transform can be used to reduce the counting statistics noise
that is present in the observable as a function of time. Once the
observable is Fourier transformed to the frequency domain,
two filters can be applied based on the knowledge of the
observable in the frequency domain, as shown in Fig. 7(a).
If the observable in the frequency domain is known to have a δ

function peak for a range of frequencies, then a low-pass filter
is applied for a range of frequencies [−fcutoff,fcutoff], and all
frequencies outside of this range are set to 0. Alternatively, if
the noise floor can be estimated, then a thresholding filter is
applied so that frequencies with a Fourier transform coefficient
below a certain amplitude τthreshold are set to 0. The filtered
observable as a function of frequency is inverse Fourier
transformed into the time domain with a significant reduction
of the counting statistics noise, as shown in Figs. 7(b) and 7(c).

2. Compressive sensing

However, when the Fourier series has weights only at s

discrete frequencies, the low-noise observable in the frequency
domain has s number of nonzero elements. To solve for the s

nonzero elements far fewer data should be needed. There have
been significant advancements in signal processing to decrease
the number of measurements determined from the sampling
theorem when a signal has s nonzero elements, called s sparse,

FIG. 7. (Color online) (a) Fourier transform of the observable as
a function of time in Fig. 4(b) into the frequency domain (violet line).
There are two filters that can be applied in the frequency domain: a
low-pass filter and a thresholding filter. The low-pass filter sets all the
frequencies f > |fcutoff| equal to 0 [where the blue lines represent the
fcutoff applied in (b)], and the thresholding filter sets all the frequencies
that have Fourier series coefficients lower than the threshold τthreshold

equal to 0 [the amplitude of τthreshold used in (c) is shown in yellow].
(b) Low-pass filtering the signal from (a) and Fourier transforming the
resulting signal to the time domain (blue or dark gray), the counting
statistics noise is reduced when comparing the resulting signal of
Fourier transforming the low-pass filtered signal to the noiseless
observable as a function of time with decoherence (red or gray).
(c) The resulting signal (yellow or light gray) of Fourier transforming
the thresholding filtered observable as a function of frequency nearly
lies on top of the noiseless observable as a function of time with
decoherence (red or gray).

in a basis. This signal processing is called compressive sensing
and the number of measurements Mstep is limited by

Mstep � sln(Nstep). (23)

Although Mstep is greater than s, there is still a huge
decrease in the running time for an experiment. Suppose
we restrict the frequency interval to [−fc,fc] and perform
Nstep. = 10 000 measurements in time using conventional
Fourier transform techniques, then if the signal is known
to have only three discrete frequencies, compressive sensing
requires only Mstep = 200 time steps for equivalent accuracy.
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For Nmeas. = 5000 at a given time step, being taken at a
rate of 100 measurements per second, we would require
about 3 h of time to generate the data for one magnetic
field using compressive sensing. If the signal processing was
done by the fast Fourier transform algorithm, it would take
139 h to collect the data at one magnetic field, using the
same number of measurements at a given time step taken
at the same measurement rate as before. Hence, compressive
sensing makes this type of experiment feasible with current
experimental setups.

We now briefly review compressive sensing. For a more
exhaustive review, Rice University provides resources on
compressive sensing [37]. Two common techniques in com-
pressive sensing are analogous to the two filters that reduce
the counting statistics noise of the observable in the time
domain as described above. In Sec III we will use the soft
threshold algorithm (that is similar to the thresholding filter
described above) to remove counting statistics noise from the
observable as a function of time and solve for the observable
in the frequency domain. The other technique that is used in
compressive sensing is the so called match pursuit [38] that
limits the number of frequencies, which is similar to the low-
pass filter. Compressive sensing is able to extract the δ function
peaks because of the sparsity of the low-noise observable in the
frequency of the time domain, even if the signal as a function of
time is contaminated with noise. However, the δ function peaks
in the frequency domain are broadened once decoherence is
added to the low-noise observable as a function of time. If
the δ function peaks become too broad due to decoherence,
the condition of sparsity in the frequency domain is no longer
met, and the compressive sensing approach does not work as
well.

Compressive sensing solves for the s-sparse Fourier trans-
form of the observable in the frequency domain P (f ) by
minimizing the following equation:

min
{

1
2

[||p(t) − MP (f )||l2
]2 + τthreshold||P (f )||l1

}
. (24)

where p(t) is a vector of the measured observable as a function
of time with decoherence and noise and M is the inverse partial
discrete Fourier transform matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

F−1
1,1 F−1

1,2 · · · F−1
1,Nstep

F−1
2,1 F−1

2,2 · · · F−1
2,Nstep

...
...

. . .
...

F−1
Mstep,1

F−1
Mstep,2

· · · F−1
Mstep,Nstep

⎞
⎟⎟⎟⎟⎟⎠. (25)

This matrix neglects time equal to zero as well as frequency
equal to zero. We observed that by neglecting the dc frequency
and the initial time t = 0 reduced the probability of compres-
sive sensing to produce spurious δ function peaks. The lp norm
is defined as

‖P (f )‖lp =
(

N∑
k

|P (fk)|p
)1/p

, (26)

where p = 0,1,2, . . . ,∞. In Eq. (24) the first term measures
how accurate the solution P (f ) matches the observable as a
function of time p(t), and the second measures how sparse the

FIG. 8. (Color online) Block diagram to illustrate the loop in the
soft thresholding algorithm. The low-noise observable as a function
of time p(t) is Fourier transformed into the frequency domain. The
data is then passed through the soft threshold, in Eq. (27), using
τthreshold. The residue pres(t) is calculated pres(t) = p(t) − MP (f ).
P (f ) is then updated by P (f ) = Pprev(f ) − M−1pres(t). The loop is
then repeated updating P (f ) at each iteration until P (f ) converges.

solution P (f ) is. The τthreshold parameter balances between the
sparsity and accuracy of P (f ).

The solution P (f ) is found by using the sparse reconstruc-
tion by separable approximation (SpaRSa) framework [39]
that applies a soft threshold, Soft[P (f ),τthreshold],

Soft[P (f ),τthreshold] = max

{ |P (f )| − τthreshold

|P (f )| P (f ),0

}
.

(27)

The soft thresholding algorithm begins by Fourier transform-
ing the measured observable with decoherence and noise to the
frequency domain M−1p(t) = P (f ). Then the loop starts with
applying the soft thresholding to P (f ). The resulting P (f ) af-
ter the soft thresholding is transformed to the time domain
and the residual is found between the measured observable as
a function of time and P (f ), pres(t) = p(t) − MP (f ). The
residual is Fourier transformed into the frequency domain and
P (f ) is updated. This loop is then repeated updating P (f )
at each iteration until the relative changes of P (f ) between
iterations is less than ε as depicted schematically in Fig. 8.
The threshold filter used to reduce the counting statistics noise
of the observable as a function of time in Fig. 7 is analogous
to running the soft threshold. The SparSa framework allows
τthreshold to vary at each iteration of the soft threshold and directs
τthreshold so that the soft thresholding algorithm efficiently
converges to the P (f ) with the highest probability of being
correct. Although the τthreshold parameter can vary, an initial
τthreshold is needed. In computer science, the classic approach to
finding an optimal guess for τthreshold is called cross validation
[40].

Cross validation randomly assigns the low-noise observable
as a function into two data sets with equal numbers of elements.
One of the data sets is called the training set and the other
is the test set. We apply the SparSa framework onto the
training set with a trial τthreshold chosen from the interval
[0.05,1] × ||P (f )||l∞ , where ||P (f )||l∞ = max{|P (f )|}. The
resulting P (f ) is Fourier transformed to the time domain and
compared to the test set. The τthreshold with the lowest difference
between the MP (f ) and the test set is then used for the SparSa
framework applied on the complete low-noise observable.
Although compressive sensing can significantly reduce the
number of measurements, when the energy difference between
two excitable eigenstates is smaller than the difference between
fk − fk−1 then the two eigenstates are indistinguishable from
one another.
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FIG. 9. (Color online) Probability to be in the instantaneous
ground state (top) and first coupled excited state (bottom) as a function
of time for Npart. = 400. The probability to create excitations increases
as τramp in Eq. (5) is decreased, depicted here with τrampJ0 = 4 (green
or light gray), 2 (red or gray), 1 (black).

III. RESULTS

We present a numerical example to illustrate the proposed
spectroscopy protocol. We use J0 = 10 kHz as the energy unit.
We work with a system of spins of Npart. = 400 spins. The min-
imum energy gap between the first coupled excited state and
the ground state occurs at a “critical” transverse magnetic field
strength of B(x)(t)/J0 = 0.4783. For the infinite-range Ising
model the probability to create excitations from the ground
state increases as the transverse magnetic field ramping time
rate τramp is decreased, as depicted in Fig. 9. When τrampJ0 = 4
in Eq. (5) the probability to create excitations is nearly zero
after the minimum energy gap. As τramp is decreased to 2 more
excitations are created in comparison to 4. We work with a
τrampJ0 = 2, the red (gray) line in Fig. 9. This choice of the time
constant is such that one gets a reasonably large signal and the
excitations are small to properly assign the energy levels to the
excited states. The frequency accuracy is set to δf = fN/1024
and the observable is measured at 200 time steps.

The infinite-range transverse-field Ising model has two
order parameters. One of the order parameters is the average
absolute magnetization (per site) |S(z)

tot |,

∣∣S(z)
tot (t)

∣∣ = 1

N

N∑
s

∣∣∣∣N2 − s

∣∣∣∣ps(t), (28)

where ps(t) is the probability of the product state. Figure 10
shows the numerical time evolution of the average absolute
magnetization at four different transverse magnetic field
strengths. In the four examples of the average absolute
magnetization as a function of time the oscillations are
essentially determined by the energy difference of a single
excited state with the ground state. The other order parameter
is the fourth-order moment of the magnetization, or the Binder
cumulant g(t), which is

g(t) =
∑N

s

(
N
2 − s

)4
ps(t)[ ∑N

s

(
N
2 − s

)2
ps(t)

]2
. (29)

FIG. 10. (Color online) Time evolution of the average absolute
magnetization as a function of time at four different transverse
magnetic fields where (a) B (x)(t)/J0 = 0.5004, (b) B (x)(t)/J0 =
0.4505, (c) B (x)(t)/J0 = 0.3508, and (d) B (x)(t)/J0 = 0.2510. The
numerical time evolution of the average absolute magnetization is in
black and the simulated data, where the error is added to the average
absolute magnetization as a function of time due to decoherence and
counting statistics, is in red (gray). The number of time steps shown
is 200.

We show four examples at different transverse magnetic
field strengths in Fig. 11, the same transverse magnetic fields
used in Fig. 10. Near the critical transverse magnetic field, as
shown in Figs. 11(a) and 11(b), the time evolution of the Binder
cumulant as a function of time has large amplitude oscillations

FIG. 11. (Color online) Binder cumulant as a function of time
at four different transverse magnetic fields where (a) B (x)(t)/J0 =
0.5004, (b) B (x)(t)/J0 = 0.4505, (c) B (x)(t)/J0 = 0.3508, and (d)
B (x)(t)/J0 = 0.2510. The Binder cumulant is in black and the
simulated data, where the error is added to the observable as a function
of time due to decoherence and counting statistics, is in red (gray).
The number of time steps shown is 200.
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FIG. 12. (Color online) Example probability of the product state
shown at four different transverse magnetic field strengths (black
circles). The highest probable state of the product state is signified
by the red triangles for the four different transverse magnetic field
strengths. The highest probable state is found to be (a) S

(z)
tot = 0 for

B(x)/J0 = 0.5004, (b) S
(z)
tot = 86 for B(x)/J0 = 0.4505, (c) S

(z)
tot =

143 for B(x)/J0 = 0.3508, and (d) S
(z)
tot = 178 for B(x)/J0 = 0.2510.

of the superposition of multiple excited states with the ground
state. However, once the transverse magnetic field is lowered,
as shown in Figs. 11(c) and 11(d), the noise dominates the
small amplitude oscillations.

Another observable that can be used is the highest probable
eigenstates of S

(z)
tot at tstop. The highest probable eigenstates

of S
(z)
tot at tstop are shown in Fig. 12, at the four example

probabilities of the product state at B(x)(t)/J0 = 0.5004,
0.4505, 0.3508, and 0.2510 and the states S

(z)
tot = 0, 86, 143,

and 174 have the highest probability for each transverse
magnetic field, respectively. The numerical time evolution of
this observable is plotted in Fig. 13 at four different transverse
magnetic field strengths, as in Fig. 10. Figure 13(a) shows
the observable as a function of time before the critical
transverse magnetic field B(x)/J0 = 0.5004. There is a small
amplitude oscillation in the observable as a function of time
due to a low probability to be in the coupled excited state
as expected from Eq. (4). Once the transverse magnetic field
has passed the critical transverse magnetic field strength, as
depicted in Figs. 13(b) and 13(c), more excitations are created
to the coupled excited states resulting in larger amplitude
oscillations of the superposition of multiple excited states with
the ground state.

Although the infinite-range transverse-field Ising model
has the two order parameters, the observable we chose to
measure while the transverse magnetic field is held constant
is the highest probable eigenstates of S

(z)
tot at tstop due to their

generality. In general, the question of what observable to pick is
one that needs to be answered for the system being simulated.
The characteristics that we want to see in the observable is
a high probability of being observed (to limit the number of
measurements) and large amplitude oscillations (to maximize
the data being fit). Determining what observable best fits these

FIG. 13. (Color online) Highest probable product state as a func-
tion of time at (a) B (x)(t)/J0 = 0.5004, (b) B (x)(t)/J0 = 0.4505,
(c) B (x)(t)/J0 = 0.3508, and (d) B (x)(t)/J0 = 0.2510. The numerical
time evolution of the highest probable product state is in black and
the simulated data, where the error is added to the observable as a
function of time due to decoherence and counting statistics, is in red
(gray). The number of time steps shown is 200.

criteria is, in general, a difficult problem to solve. Fortunately,
one does not need the best observable to make the experiment
work, so any observable that generates sufficient data to be
signal processed will work.

A. Noiseless

The observable in Fig. 13 is Fourier transformed to the
frequency domain to determine frequencies of the oscillations.
The frequencies of the oscillations are the energy differences
of the coupled excited states, as found in Eq. (4). Due to the
finite time interval, the Fourier transform of the δ function
peaks of the observable have been broadened in the frequency
domain, as seen in Fig. 14. Using compressive sensing the
δ function peaks are recovered. Figure 14(a) has δ function
peaks at frequencies of the energy differences of the first and
second coupled excited states with the ground state. When
the transverse magnetic field is stopped immediately after
the critical transverse magnetic field strength, as shown in
Fig. 14(b), the energy difference of the lowest three coupled
excited states with the ground state are found. However, a
spurious peak appears at a frequency lower than the first
lowest-lying coupled excited state. Further decreasing the
transverse magnetic field, the energy differences of the lowest
four coupled excited states with the ground state are extracted,
as found in Figs. 14(c) and 14(d).

We can produce energy spectra as a function of the
transverse magnetic field, as shown in Fig. 15, by applying
the partial discrete Fourier transform or compressive sensing
to the time evolution of the observable at different transverse
magnetic field strengths. Excitations to the first coupled
excited states occur in the entire interval of the transverse
magnetic field plotted in Fig. 15 using both the partial discrete
Fourier transform and compressive sensing. However at higher
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FIG. 14. (Color online) Performing a Fourier transform (black line) on the noiseless numerical time evolution of the observable shown as a
black line in Fig. 13 for the four transverse magnetic fields. The Fourier transform broadens the δ function due to the finite time interval having
200 time steps. Using compressive sensing the δ function peaks are extracted (green filled circles). The δ function peaks that are found by the
compressive sensing algorithm are compared to the adiabatic energy differences of the coupled excited states with the ground state at the four
different transverse magnetic fields, where the adiabatic energies are the blue dashed lines.

transverse magnetic field strengths, the excitations to the
second coupled excited state also occur before the critical
transverse magnetic field is observed when using compressive
sensing, as depicted in Fig. 15(b). After the critical transverse
magnetic field, excitations to the higher coupled excited states
are found when applying the partial discrete Fourier transform
or compressive sensing. In Fig. 15(a) the lowest three lying
coupled excited states are found (while the fourth can be
faintly seen). However, the peaks of the lowest coupled excited
states are broadened and the third and fourth lowest-lying
coupled excited states are nearly indistinguishable to the
background noise, or ringing, which is an artifact of applying
the partial discrete Fourier transform to signal that does not
have complete oscillations. By applying compressive sensing
to the observable the lowest four lying coupled excited states
are found (at a few transverse magnetic field strengths the fifth
coupled excited state is also observed).

B. Simulated data

The simulated experimental data are produced by adding
decoherence, which is modeled by Eq. (14), and counting
statistics error, as defined in Eq. (16), to the observable as a

function of time, as depicted by red (gray) lines in Figs. 10–13.
The decoherence time we used is τdJ0 = 25.0, although the
minimum decoherence time that compressive sensing was
able to extract the δ functions peaks near the appropriate
frequencies was about τdJ0 = 1.0. We used Nmeas. = 10 000
at each time step to add the Poisson noise.

In Fig. 16 we show four examples to compare the Fourier
transform to the compressive sensing applied to the simulated
data from Fig. 13. The effects of adding the decoherence and
counting statistics error to the noiseless data creates a noise
floor that nearly obscures the δ function peaks associated with
energy differences, as depicted in Fig. 16, when the Fourier
transform is applied. The Fourier transform of the simulated
data could be refined by extracting the peaks. However, doing
this processing will result in multiple spurious peaks. The
compressive sensing is able to extract energy differences of
the lowest two coupled excited states [in Fig. 16(b) the third
coupled excited state was also found] that are near the expected
adiabatic energy differences.

The effects of the counting statistics and decoherence errors
are studied more quantitatively by calculating the average and
standard deviation of the δ function peaks produced from
processing the simulated data with the compressive sensing
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FIG. 15. (Color online) Energy spectra extracted by either apply-
ing the (a) partial discrete Fourier transform M−1 or (b) compressive
sensing on the noiseless numerical time evolution observable as a
function of the transverse magnetic field. In (a), due to applying the
noiseless numerical time evolution by the partial discrete Fourier
transform, the δ function peaks of the lowest four lying coupled
excited states have become broadened and “ringing” is obscuring the
third and fourth lowest-lying coupled excited states. Alternatively by
applying compressive sensing, the peaks (black dots) recovering the
δ function peaks, as depicted in (b). The four lowest-lying coupled
excited states essentially lie on top of the adiabatic energy difference
(red or gray lines) when the transverse magnetic field is less than
the critical transverse magnetic field. The fifth lowest lying coupled
excited state is extracted at a few of the transverse magnetic field
strengths. Spurious δ function peaks occur at transverse magnetic
fields near the critical transverse magnetic field.

algorithm at ten different transverse magnetic field strengths.
The average and standard deviation are calculated at each
transverse magnetic field by using the compressive sensing
on 100 cases with different counting statistics noise applied to
each case and having the same decoherence time τdJ0 = 25. In
the majority of the transverse magnetic field strengths in Table I
the compressive sensing was able to extract frequencies that
are within two digits of accuracy and standard deviations are
on the order of 0.001.

There are spurious δ function peaks that appear in the 100
different cases of the simulated data at the different transverse
magnetic fields. These spurious δ function peaks usually
have high frequencies with respect to the frequencies that
correspond to energy differences. The occurrence of spurious δ

function peaks at high frequencies is low so they are neglected

TABLE I. Energy differences of the infinite-range transverse-
field Ising model compared to the average and standard deviation
of the extracted observable in the frequency domain by applying
the compressive sensing algorithm to 100 different cases of the
simulated data. For each of the 100 simulated data cases the counting
statistics noise is different but the decoherence error is the same, at
ten transverse magnetic field strengths. When B (x)(t)/J0 = 0.4482,
0.3876, 0.2560 one of the average energies is not within a standard
deviation of the adiabatic energy, shown as boldface.

B (x)(t)/J0 Adiabatic (units of J0) Ave. ± STD (units of J0)

0.1698 0.1694 ± 0.0014
0.5004

0.2039 0.2057 ± 0.0029

0.3740 0.3713 ± 0.0017
0.4482

0.4920 0.4911 ± 0.0042

0.2961 0.2984 ± 0.0011
0.3976

0.5822 0.5816 ± 0.0019

0.3463 0.3471 ± 0.00089
0.3561

0.6858 0.6860 ± 0.0053

0.3918 0.3933 ± 0.0017
0.3065

0.7787 0.7769 ± 0.0026

0.4271 0.4282 ± 0.00074
0.2560

0.8503 0.8506 ± 0.0029

0.4539 0.4528 ± 0.0012
0.2055

0.9046 0.9053 ± 0.0025

0.4739 0.4744 ± 0.00076
0.1545

0.9450 0.9443 ± 0.0018

0.4875 0.4879 ± 0.00085
0.1046

0.9724 0.9723 ± 0.0020

0.4948 0.4943 ± 0.00094
0.0625 0.9870 0.9882 ± 0.0026

1.4767 1.4723 ± 0.0081

in the statistical analysis. There are spurious δ functions with
frequencies lower than the first lowest-lying coupled excited
states included in the statistical analysis due to their consistent
occurrence at three different transverse magnetic fields. The
spurious δ functions can be removed by taking additional data,
either increasing the number of measurements taken at each
time step or going further out in time.

In Fig. 17 we plot the average extracted δ function peaks
found by applying compressive sensing to the following
measurements: highest probable eigenstate of S

(z)
tot at tstop,

the average absolute magnetization, and Binder cumulant.
To introduce noise from the decoherence and the counting
statistics into the average absolute magnetization and Binder
cumulant, we use a similar technique to that used with the
highest probable eigenstate of S

(z)
tot at tstop, where we add

the noise due to decoherence and counting statistics to the
exact time evolution of the observable. It should be noted
that when the highest probable eigenstate is being used, only
measurements of the highest probable eigenstate are kept and
other eigenstates are ignored, while for both average absolute
magnetization and Binder cumulant, all measurements are
used. When the highest probable eigenstate of S

(z)
tot at tstop is

being used as the observable, the lowest two coupled excited
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FIG. 16. (Color online) Fourier transforming the simulated data (red or gray). There are discernible peaks that could be extracted and
compared to the adiabatic energy differences. By applying compressive sensing to the simulated data (solid green circles) the δ function peaks
are extracted from the Fourier transform of the simulated data. The adiabatic energy differences En − E0 are plotted as blue dashed lines to
compare to the peaks observed in the Fourier transform and the δ functions extracted by the compressive sensing algorithm when applied to
the simulated data.

FIG. 17. (Color online) Average δ function peaks from applying
compressive sensing to 100 different cases of the simulated data as a
function of the transverse magnetic field strength. The simulated data
are from the observables of the highest probable eigenstate of S

(z)
tot at

tstop (black dots), average absolute magnetization (green triangles),
and Binder cumulant (blue x’s). The lowest-lying coupled excited
states are identified when comparing to the adiabatic energy differ-
ences (red lines). There are low frequency spurious δ function peaks
that occur at various transverse magnetic fields depending on whether
the highest probable eigenstate or Binder cumulant is measured.

states can be identified at low transverse magnetic fields. When
the average absolute magnetization is used only the lowest
coupled excited state is found. Since there is only a single
δ function peak found the number of measurements can be
further reduced, this is due to the condition in Eq. (23). Finally
using the Binder cumulant as the observable, the lowest two
coupled excited states are found for transverse magnetic fields
near the critical transverse magnetic field strengths (in a couple
of cases the third coupled excited state can be identified).
However, when applying compressive sensing to the Binder
cumulant the effects of decoherence result in low frequency
spurious δ peaks.

It should be clear from this work that while a traditional
analysis gives reasonable results, employing compressive
sensing appears to greatly clean up the analysis and provide
much higher accuracy to the data. Hence, given the low
overhead for the signal processing, we feel compressive
sensing is an important tool to apply to this form of many-body
eigenstate spectroscopy.

IV. CONCLUSION

In this work we have proposed a spectroscopy protocol
that diabatically ramps the transverse magnetic field to create
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excitations. By diabatically ramping and then holding the
transverse magnetic field, the energy spectra can be extracted
by measuring a low-noise observable as a function of time
and then signal processing the data. We explored our protocol
by simulating data for the infinite-range transverse-field Ising
model. By using compressive sensing, the number of time steps
needed for the signal processing is sharply reduced and the
spectroscopy protocol becomes experimentally feasible with
current experimental setups. This occurs because compressive
sensing is robust against counting statistics errors. However,
compressive sensing is not robust against errors due to deco-
herence, which can result in spurious δ functions peaks. We
find by using compressive sensing on the noiseless numerical
time evolution of the observable that a number of lowest lying
energy states can be extracted. When counting statistics and
decoherence errors are added to the observable as a function of
time, compressive sensing can extract fewer low lying energy
states as the transverse magnetic field approaches zero. At high

transverse magnetic field, the probability to create excitations
is too low with respect to the errors added and this results
in spurious δ function peaks that are not associated with any
energy levels. We hope our protocol will be used in current
experimental simulations to extract interesting many-body
spectra.
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