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Abstract. Any system that approximates an infinite lattice by a family of finite clusters (with periodic 
boundary conditions) passes through an intermediate region with enlarged (hidden) symmetry as the 
system size is increased. The hidden symmetry allows for extra degeneracies and level crossings and has 
application to exact-diagonalization studies, Monte Carlo simulations, lattice gauge theories, and 
renormalization group calculations. 
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The periodic crystal approximation [1] is the fundamental approximation for 
studying bulk properties of solid-state systems. It has been used quite successfully 
in band-structure calculations [2], Monte Carlo simulations [3], and the small- 
cluster approach to the many-body problem [4]. In the periodic crystal approxima- 
tion a crystal of M sites is modeled by a lattice of M sites with periodic boundary 
conditions (PBC). Bloch's theorem [5] then labels the quantum-mechanical wave- 
functions by one of M wavevectors in the Brillouin zone [6]. In principle, the 
thermodynamic limit (M ~ ~ )  is then taken which replaces the finite grid in 
reciprocal space by a continuum that spans the Brillouin zone (or equivalently 
replaces the finite cluster by an infinite lattice in real space). In practice, the number 
of lattice sites is chosen to be as large as possible (M = finite), and the solution of 
the quantum-mechanical problem corresponds to a finite sampling in reciprocal 
space. It should be emphasized that every calculation that samples at only a finite 
number of points in reciprocal space corresponds to a finite-cluster with periodic 
boundary conditions in real space. 

Realistic models of physical systems (that incorporate many-body interactions on 
the same footing as single-particle interactions) can be analyzed for only the 
smallest systems. Recent examples include calculations of the photoemission spectra 
[7] of nickel (M = 4), structural properties [8] of diamond and silicon (M = 8), and 
x-ray absorption spectra [9] in high-temperature superconducting oxides (M = 10). 
It is not known, in general, how large a finite system must be to capture the relevant 
physics of a real system (in the thermodynamic limit). Group theory can be used to 
address this question by identifying when extra symmetries of finite clusters (with 
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periodic boundary conditions) exist and by analyzing the representation theory of 
these enlarged groups. Group theory is a rigorous and model-independent tool that 
determines when particular matrix elements are required to be, e.g., identical or 
zero. Such analysis leads to two possible finite-size effects of the hidden symmetry 
when compared to the standard analysis based upon the space group: energy levels 
can 'stick together' and/or 'violate' the no-crossing rule. 

A finite cluster with PBCs can be viewed as a mapping of an infinite lattice onto 
M equivalence classes - each class corresponding to a different site of the cluster 
[10] (for example, any bipartite [11] lattice of translationally equivalent sublattices 
can be represented by a two-site cluster with the ~ sublattice corresponding to 
equivalence class one and the fl sublattice corresponding to equivalence class two). 
The lattice contains only M inequivalent translations since any translation that does 
not change the equivalence classes of the sites is made identical to the null 
translation (for example, the two-site cluster has two translations; the first corre- 
sponds to the null translation and carries sublattice ~--*a and sublattice fi ~f l ;  
while the second corresponds to the translation from one site to the other and 
carries sublattice a ~ ~ fl). The neighbor structure of the lattice is determined by 
the successive nearest-neighbor shell (on-site, first-nearest-neighbor, second-nearest- 
neighbor, etc.) that exhaust all M equivalence classes (the two-site cluster contains 
only on-site and, normally, first-nearest-neighbor shells). Note that each neighbor 
shell may contain members of an equivalence class more than once (if the bipartite 
lattice has Z nearest neighbors then the nearest neighbors on site one are Z atoms 
of equivalence class two). The space group is finite and consists of Mh elements, 
where h is the number of elements in the point group (the largest value for h is 48 
for cubic lattices; it is 8 for square lattices). 

In the thermodynamic limit (M ~ ~ )  the complete symmetry group of the lattice 
is the (infinite) space group (with Mh elements), which is composed of all 
translations, rotations, and reflections that (rigidly) map the infinite lattice onto 
itself and preserve its neighbor structure. In the case of a finite cluster, the complete 
symmetry group is a subgroup of SM, the permutation group of the M cluster sites, 
and is called the cluster-permutation group. The cluster-permutation group, which 
contains all operations that leave the Hamiltonian invariant, may (A) be a proper 
subgroup of the (finite) space group (i.e. it has fewer elements than the space 
group), (B) contain operations that are not elements of the (finite) space group, or 
(C) be identical to the (finite) space group. These three regimes are called, 
respectively, (A) the self-contained-cluster regime, (B) the high-symmetry regime, 
and (C) the lattice regime). Note that the whole (finite) space group need not be a 
subgroup of the cluster-permutation group in the high-symmetry regime (although 
it usually is). 

A self-contained cluster (A) is a cluster essentially identical to an isolated, 
box-boundary-conditions cluster. The addition of PBC adds no new connections 
between lattice sites, but the neighbor structure of the cluster with PBCs may 
contain multiples of the neighbor structure of the isolated cluster (thereby renor- 
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malizing parameters in the Hamiltonian in going from one to the other). In this case, 

the cluster-permutation group is identical to the symmetry group of the same isolated 
cluster. This symmetry group is a point group, not necessarily the full point group 
of the lattice; it is a proper subgroup of the space group. This isomorphism was first 
observed [10, 12] in the 2 x 2 square (sq) and the four-site tetrahedral (face-centered 
cubic, fcc) clusters (M = 4) and in the 2 x 2 • 2 simple-cubic (sc) cluster (M = 8). 

In the self-contained-cluster regime, the cluster-permutation group is a proper 
subgroup of the space group, because some space-group operations are redundant 
(i.e., there is a group homomorphism between the space group and the cluster 
permutation group with a nontrivial kernel). The redundancy implies that only a 
sub-set of  the irreducible representations of  the space group (those that represent 
the elements of the kernel by the unit matrix) are accessible to the solutions of the 
Hamiltonian. This process of rigorously eliminating irreducible representations as 
acceptable representations is well known. It occurs, for example, in systems that 
possess inversion symmetry: if the basis functions are inversion symmetric, then the 
system sustains only those representations that are even under inversion. 

For  intermediate-size clusters there are additional permutation operations that 
leave the Hamiltonian invariant. They either (nonrigidly) map the lattice onto itself 
and preserve the entire neighbor structure of the lattice, or (for short-range-interac- 
tion Hamiltonians) they preserve only the first-nearest neighbor (1NN) structure of  
the lattice [ 13]. These hidden symmetry operations may expand the cluster-permuta- 
tion group to a group that is (much) larger than the (finite) space group. 

The group theory for the cluster-permutation group in the high-symmetry regime 
(B) may be analyzed as follows. The set H of elements of  the cluster-permutation 
group G that are elements of the space group forms a subgroup of  the cluster- 
permutation group that, usually, is equal to the space group [14]. The group of 
translations T forms an Abelian invariant subgroup of H; the irreducible represen- 
tations of H are all irreducible representations of the space group. When the full 
cluster-permutation group G is considered, the class structure of H is expanded and 
modified, in general, with classes of H combining together, and/or elements of G 
outside H uniting with elements in a class of  H, to form the new class structure of  
the cluster-permutation group G. The classes that contain the set of translations 
typically contain elements that are not translations, so that the translation subgroup 
is no longer an int, ariant subgroup and representations of the cluster-permutation 
group cannot be constructed in the standard way [15]. Furthermore, every irre- 
ducible representation of H that has nonuniform characters for the set of classes of  
H that have combined to form one class of G must combine with other irreducible 
representations to form a higher-dimensional irreducible representation of  the 
cluster-permutation group. This phenomenon can be interpreted as a sticking 
together of irreducible representations of  the space group (i.e., the subgroup H) 
arising from the extra (hidden) symmetry of the cluster. 

The lattice-regime clusters appear for large enough M, assuming that the unit cell 
is chosen with enough symmetry. In this regime (C) the group properties are 
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Table I. Number of symmetry elements in the space and the cluster-permutation groups (CPG) for 
arbitrary interactions on finite-size clusters with periodic boundary conditions of the simple, body-cen- 
tered, and face-centered cubic lattices and of the two-dimensional square lattice. The symbols, A, B, and 
C denote the self-contained, high-symmetry, and lattice regimes, respectively. The cases with cluster sizes 
larger than 32 are all in the lattice regime (C). 

Cluster Space CPG Space CPG 
size group group 

cubic sc bcc fcc  square sq 

1 48 A 1 A 1 A 1 8 A 1 
2 96 A 2 A 2 - - 16 A 2 
4 192 A 24 A 8 A 24 32 A 8 
8 384 A 48 B 1152 B 384 64 B 128 

16 768 B 12 288 B 4608 B 7 962 624 128 C 128 
32 1536 C 1536 C 1536 C 1536 256 C 256 

completely determined by the space group, and the irreducible representations are 
labeled by a wavevector in the Brillouin zone and (at symmetry planes, lines and 
points) by a subindex that determines the relevant irreducible representation [16] 
under rotations and reflections. The wavevector k labels the characters of the 
Abelian invariant subgroup of translations by determining the phase change 
exp(ik, z) for a translation z (Bloch's theorem). 

The transition from (A) self-contained cluster to (B) high-symmetry cluster, to 
(C) lattice is illustrated in Tables I and II for the simplest set of cubic (sc, bcc, and 
fcc) and square (sq) lattice clusters: the set whose number of sites is a power of two 
(M = 2~). These sets can all be constructed with maximum cubic or square 
symmetry, with the exception of the M -- 2 cluster for the fcc lattice. The tables 
record the sizes of the space group and the cluster-permutation group for the 
chosen set of clusters. Table I corresponds to arbitrary Hamiltonians; Table II, to 

Table II. Number of symmetry elements in the space and the cluster-permutation groups (CPG) for 
INN-only interactions on finite-size clusters with periodic boundary conditions of the simple, body-cen- 
tered, and face-centered cubic lattices and of the two-dimensional square lattice. The symbols, A, B, and 
C denote the self-contained, high-symmetry, and lattice regimes, respectively. The cases with cluster sizes 
larger than 128 are all in the lattice regime (C). 

Cluster Space CPG Space CPG 
size group group 

cubic sc bcc fcc  square sq 

1 48 A 1 A 1 A 1 8 A 1 
2 96 A 2 A 2 - 16 A 2 
4 192 A 24 A 8 A 24 32 A 8 
8 384 A 48 B 1152 B 384 64 B 1152 

16 768 B 12 288 B 3 251 404 800 B 7 962 624 128 B 384 
32 1536 B 13 824 B 6144 C 1536 256 C 256 
64 3072 B 27648 C 3072 C 3072 512 C 512 

128 6144 C 6144 C 6144 C 6144 1024 C 1024 
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Hamiltonians with only INN-interactions. Notice that for (A) the number of 
elements in the cluster-permutation group ncp c is always smaller than in the space 
group ns; for (B) usually ncpo > ns, although it is possible to have ncpG = ns (see 
Table I, fee cluster of 8 sites); for (C) always ncpG = ns. The self-contained-cluster 
regime (A) corresponds to M ~< 8 [M ~<4] for the sc lattice [otherwise]. The 
high-symmetry regime (B) is present at intermediate values of M: for example, 
when the Hamiltonian contains only 1NN interactions the high-symmetry regime 
appears for 16~<M~<64 in the sc lattice; 8~<M~<32 in the bcc lattice; and 
8 ~< M ~< 16 in thefcc and sq lattices (see Table II). The lattice regime (C) is entered 
for larger cluster sizes. The cluster-permutation group (in the high-symmetry 
regime) has been studied for some specific clusters [17 19]. 

As an example, the transition from a self-contained cluster to the lattice regime 
can be examined in more detail for the fcc lattice. The four-site tetrahedral fcc 
cluster is a self-contained cluster (see Figure 1). The nearest neighbors of each site 
of the tetrahedron are the other three sites. The imposition of PBCs produces an fcc 
lattice (see Figure la) in which each of the four interpenetrating sc sublattices of the 
fcc lattice is assigned to a different equivalence class. The twelve nearest neighbors 
of  each site are now four atoms of each of the other three equivalence classes (see 
Figure I b). The only difference between the tetrahedral cluster with box boundary 
conditions (representing an isolated tetrahedron) and the tetrahedral cluster with 
periodic boundary conditions (representing an fcc lattice) is the 1NN interactions in 
the Hamiltonian are renormalized by a factor of four in the latter case. The space 
group is of order 192 (4 x 48) and has 20 irreducible representations: 10 with 
wavevector at the center of the Brillouin zone F {k = [0, 0, 0]}, and 10 with 
wavevector at the center X {k -- [Tr, 0, 0], k = [0, re, 0], k = [0, 0, z~]} of the square 
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Fig. 1. Four  site fcc cluster. (a) The distribution of  sites in cubic umt  cell in real space. (b) The 
labeling (equivalence class) of  the twelve nearest neighbors of  a site o f  class I; they are four sites of  class 
2, four o f  class 3, and four of  class 4. It can be seen that (i) inversion leaves the cluster invariant (identity 
operation) and (ii) so does a two-fold rotation about axes which pass through site l and join two 
opposite centers of  the square faces of  the polyhedron. 



282 J. K. FREERICKS AND L. M. FALICOV 

faces (representations at F are unchanged by any translation, at X they change sign 
for two of  the three nonzero translations). The kernel of  the group homomorphism 
(that maps the space group onto the cluster-permutation group) consists of  the 
three twofold rotations about the x-, y-, and z-axes and the inversion with all 
operations centered at lattice points (see Figure lb). The cluster-permutation group 
is isomorphic to the tetrahedral point group Ta, with 24 elements and 5 irreducible 
representations. Of the 20 representations of  the space groups, only F~(A~), 

F2(A2). F12(E), X~(T~), and X'2(T2) survive, where the space-group notation is 
that of reference 16, and the angular brackets indicate the standard [1] labeling of  
the representations of Td. 

The eight-site cluster in the fec-lattice is constructed by doubling the primitive 
unit cell of  the fee lattice and is in the high-symmetry regime (see Figure 2). The 
space group contains 384 (8 • 48) elements divided into 26 classes. The wavevectors 

in the fec Brillouin zone sampled [16] here are 

r {k = [O, O, O] }, X { k = [ ~ , O , O ] , k = [ O , ~ , O ] , k = [ O , O , ~ ] }  

and 

L {k = D/2, re/2, rd2], k = [r~/2, - ~ / 2 ,  -r~/2], k = [ - re /2 ,  ~/2, - n /2 ] ,  

k = [ - ~ / 2 ,  - ~ / 2 ,  n/2]}. 

The full cluster-permutation group G contains also 384 elements. The inversion, 
however, is an operation that is identical to the identity (see Figure 2b); there are 
therefore only 192 elements of G which are ordinary space-group operations: the 
subgroup H of translations and proper rotations. This subgroup contains the 
following 13 irreducible representations [16] (with their corresponding dimensions 

in parentheses): F~(1), F2(1), F12(2), F~s(3), F~5(3), X1(3), X2(3), X3(3 ), X4(3), 

(a)  

/ -;i. i) /; .- '" -)";::... 

Fig. 2. Eight-site fcc cluster. (a) The distribution of sites in a cubic unit cell in real space. (b) The 
labeling (equivalence class) of the twelve nearest neighbors of a site of class 1; they are two sites each 
of classes 2, 3, 4, 6, 7, and 8. Six sites in class 5 constitute the second-nearest neighbors. It can be seen 
that inversion leaves the numbering unchanged, i.e. is homomorphic to the identity operation. 
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X5(6), L1(4), L2(4), and L3(8 ). The full character table of the subgroup H is well 
known [10] and will not be repeated here. There is in addition one permutation P 
(and the corresponding operations required by closure), which involves the inter- 
change of one single pair of 2NNs (for example, the interchange of sites 1 and 5 in 
Figure 2a), that leaves the Hamiltonian invariant. This permutation is a nonrigid 
operation that, although it maps the lattice onto itself, cannot be constructed out o f  

any rotation fol lowed by a translation. The cluster-permutation group contains 20 
classes. Of the corresponding 20 irreducible representations 18 reduce, in the 
absence of the new permutation, to single, well defined representations of H, two to 
each of the following nine: F 1, F2, Fl2 , X1, X2, X5, LI,  L2, and L 3. There are, in 
addition, two six-dimensional representations that 'go beyond' (seem to 'violate') 
Bloch's theorem [20]: one that reduces to F~5 @ )(4, the other to F;5 | )(3. Put in 
different terms, the "hidden' extra symmetry has two major effects: (1) it separates 
the Hamiltonian matrix blocks of nine representations of the subgroup H of the 
space group into two irreducible blocks each (corresponding to the irreducible 
representations of the cluster-permutation group G); and (2) for the other four 
(representations of H) it causes two pairs of representations at two different 
wavevectors in the Brillouin zone to 'stick together'. 

The 16-site f ec  cluster is also in the high-symmetry regime (B). It is constructed 
out of four interpenetrating sc sublattices with each sc sublattice composed of four 
inequivalent classes. The INNs of any site are one atom each of the twelve 
inequivalent classes that comprise the other three sc sublattices. The six 2NNs are 
two atoms each of the remaining three inequivalent classes of the original sc 

sublattice. Therefore, any permutation of the four elements within a sc sublattice or 
any permutation of the four sc sublattices will map the lattice onto itself and 
thereby commute with the Hamiltonian. The cluster-permutation group contains 
(4!) 5= 7 962 624 elements, and has a similar structure to the eight-site cluster-per- 
mutation group; it is a very large group and will not be analyzed in detail here. All 
larger clusters lie in the lattice regime (C) and analysis proceeds as usual. 

The additional symmetry discussed here is the explanation for several 'mysterious' 
degeneracies found, either numerically or analytically, in cluster calculations [ 10, 12]. 
This 'sticking together' of the states was even more puzzling because it involved states 
with different translational symmetry. Even though the wavefunction can still be 
written as a Bloch state, the irreducible representation of the full group requires, in 
some cases, Bloch states of different wavevectors. Moreover, the extra symmetry may 
result in great simplifications of the numerical problems when diagonalizing matrices 
and, as has been the case in the past [21], result in problems with completely 
analytical solutions. The additional symmetry may also explain why Monte Carlo 
simulations on 4 x 4, 6 x 6, and 8 x 8 square lattice clusters [22] show that the 6 • 6 
and 8 x 8 clusters (which do not have any additional symmetry) approximate the 
thermodynamic limit much better than the 4 x 4 (which is in the B regime). 

From the practical point of view three effects make this extra symmetry particu- 
larly useful: The subgroups may be extremely large (see, for example, the group of 
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order 7 962 624 for the 16-site cluster in the fcc-lattice); the size of the cluster may 
be fairly large before this extra symmetry is lost (it survives up to the 64-site 
[4 x 4 x 4] cluster in the sc-lattice with INN-only interactions); and it is even more 
pronounced in systems with short-range-only interactions (compare Tables I and II; 
the 16-site bcc lattice cluster with INN-only interactions has a cluster-permutation 
group of order 3 241 404 800), making the property more useful for some of the 
systems of great current interest [23]. There may be a tradeoff in actual calculations 
between utilizing the full symmetry of the cluster-permutation group or just the 
symmetry of a convenient subgroup, however the solutions will reflect the effects of 
the full cluster-permutation group whether it is actually employed to reduce the 
Hamiltonian blocks or not, 

In conclusion, it should be stressed that the presence of an enlarged symmetry 
group for moderately sized clusters is a finite-size effect that can be rigorously 
analyzed by the techniques of group theory. Furthermore, any attempt to extrapo- 
late the results of a finite-cluster calculation to the thermodynamic limit must not 
possess the properties of the eigenstates that are required by the presence of these 
'hidden' symmetry operations. Finally, note that although the phenomenon exam- 
ined here is discussed in the context of exact-diagonalization studies of solid state 
systems, it will occur in any system that approximates an infinite lattice by a family 
of finite clusters and may have useful applications to Monte Carlo simulations [3], 
lattice-gauge theories [24], or real-space decimation calculations [25]. 
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