
PHYSICAL REVIEW A 92, 053612 (2015)

Feshbach modulation spectroscopy of the Fermi-Hubbard model
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In the vicinity of a Feshbach resonance, a system of ultracold atoms in an optical lattice undergoes rich physical
transformations which involve molecule formation and hopping of molecules on the lattice and thus goes beyond
a single-band Hubbard model description. We explore theoretically the response of this system to a harmonic
modulation of the magnetic field, and thus of the scattering length, across the Feshbach resonance. In the regime
in which the single-band Hubbard model is still valid, we provide results for the doublon production as a function
of the various parameters, such as frequency, amplitude, etc., that characterize the field modulation, as well as
the lattice depth. The method may uncover a route towards the efficient creation of ultracold molecules and also
provide an alternative to conventional lattice-depth-modulation spectroscopy.
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I. INTRODUCTION

The field of ultracold atoms in optical lattices has been
opening up new possibilities which include a controlled
experimental realization of the fermionic Hubbard model [1,2].
Further challenges and opportunities arise with the idea of
creating and manipulating molecules in an optical lattice.
Molecules in an optical lattice allow a much wider range of
model Hamiltonians and physical phenomena to be emulated
and studied than is possible with atoms. For example, spin
models can be created by manipulating the internal structure
of the molecule, and the interaction strength can be long
ranged [3], e.g., by creating dipolar molecules. However, it
is more difficult to cool molecules down to low temperatures
via laser cooling due to their more complex level structure,
which includes rotational and vibrational degrees of freedom
(with some unique exceptions [4]). The cooling of individual
atoms to a very low temperature followed by the formation
of so-called preformed molecules in the optical lattice is
thus a promising alternative [5–7]. In this paper, we explore
theoretically the possibilities of achieving this by temporally
modulating the magnetic field around a Feshbach resonance—
we will refer to this as Feshbach modulation.

Near a Feshbach resonance, bound states of these preformed
molecules occur. Depending on the value of the magnetic
field, molecules form and hop from one lattice site to the
other; these processes are governed by the complex Fermi
resonance Hamiltonian (FRH) [8]. This Hamiltonian and the
physical phenomena it supports are so complex that there
has only been limited theory work performed on it, and a
wide range of its rich behavior has not yet been explored
thoroughly via experiment. Needless to say, it is crucial to
understand the FRH physics in order to control and optimize
the molecule-formation process, especially if one wants to
find regimes where the formation might be more efficient
than performing a simple field sweep across the Feshbach
resonance. Experimentally, such an understanding of the FRH
may be facilitated by Feshbach-modulation spectroscopy,
which would be a study of the response of the system to
a magnetic field which is periodically temporally modulated
across a Feshbach resonance as a function of the frequency
and the amplitude of the modulation.

The theoretical challenge, therefore, is to calculate the
response of the FRH to such a time-varying magnetic field.
The FRH is, however, rather difficult to treat theoretically.
So in this work, we focus primarily on Feshbach-modulation
spectroscopy in the off-resonance limit of the model, which is
described by the simpler Fermi Hubbard model (FHM) (one
could consider bosonic analogs as well, but for concreteness
we discuss only the Fermi case here).

In case of the single-band Hubbard model, the so-called
lattice modulation spectroscopy has proved to be useful for
studying the nonequilibrium dynamics of the model, and
for experimentally determining the value of the atom-atom
interaction, given by U . In lattice-modulation spectroscopy,
the intensity of the laser defining the optical lattice is varied
harmonically. As a result, the optical lattice depth is modulated,
which causes the hopping amplitude and the interaction
strength to both change as a function of time, allowing the Mott
gap to be measured directly in the experiment. Experimentally,
this technique has been applied in a number of different situa-
tions, while numerous theoretical descriptions have also been
given [2,9–26]. One of the motivations of this work exploring
Feshbach-modulation spectroscopy is that the latter does not
involve modulating both terms in the Hamiltonian. The reasons
why this might be of interest is that it would both provide
more precise control and allow the system to evolve in a more
continuous fashion. For conventional lattice-modulation spec-
troscopy evolves the hopping to regimes where it becomes very
small, essentially “turning off” the hopping of the particles,
resulting in what is a more “kicked” driving of the system.
If one can keep the hopping fixed in magnitude and modulate
only the interaction, as one can by using Feshbach modulation,
then this will correspond to a smoothly driven system, rather
than a kicked one, which could have experimental advantages.
Furthermore, lattice-modulation spectroscopy does not modify
the sign of the interaction strength and is thus fundamentally
limited when more general physics issues such as the molecule
formation are to be studied.

The effects of a modulated magnetic field near a Feshbach
resonance leading to a modulation of the scattering length have
previously been investigated in a number of different contexts,
both experimentally [27–30] and theoretically [31–36]. The
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experimental efforts have been primarily focused on molecule
formation in the simpler case when there is no optical lattice.
In this regime, modulating the field at a frequency close to
that corresponding to the binding energy for the molecules
can both enhance their formation and also be used to measure
their binding energy [28–30]. Theoretically, the effects were
first explored for describing “Feshbach-resonance manage-
ment” [31,32], which controlled “breathers” and solitons in
trapped bosonic systems. Next, they were invoked to show
how many-body effects and the periodic driving could push
the tunneling to vanish [33], also in bosonic systems. More
recently, they have been used to illustrate how one can obtain
correlated hopping in bosonic systems when the amplitude
of the magnetic-field oscillation is small and the frequency
large compared to the interaction scales [34–36]. Relatively
recent experiments on bosonic systems in an optical lattice [37]
examined driven collective excitations. Here, we focus on the
Fermi version of the Hubbard model and examine situations
where the driving is pushed close enough to the Feshbach
resonance that nonlinear effects become very important.

We thus consider the response of the system to a harmonic
modulation of the magnetic field

B(t) = B̄ + χ[0,tmod](t)�B sin ωt (1)

near the Feshbach resonance, where

χI (t) =
{

1 if t ∈ I

0 otherwise (2)

is the characteristic function of the modulation interval. For
the specific numerical calculations we have carried out, we
consider a system of fermionic 40K atoms subject to the
ab Feshbach resonance [38] in an optical lattice with a laser
wavelength of 1064 nm. We use strong-coupling-expansion
techniques to calculate the doublon production as a function
of the various parameters, B̄, �B, and ω in Eq. (1), as well as
the lattice depth, and analyze the results to uncover the factors
that favor doublon formation and also permit the method to be
of value as a spectroscopic tool.

The rest of this paper is organized as follows: In Sec. II,
we present the model and the methods of calculation we use.
In Sec. III, we present and discuss our results for the doublon
production. Section IV contains our concluding discussion.

II. MODEL

As mentioned earlier, providing theoretical calculations for
the full FRH in the presence of a time-dependent magnetic
field (as described above) is currently beyond our reach. We
treat instead the (Fermi) Hubbard model [39] which should be
a reasonable approximation to the FRH in the early stages of
the preformed molecule-formation process:

H(t) = −J (t)
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) + U (t)

∑
i

ni↑ni↓

+
∑
iσ

εiniσ . (3)

The time dependence of the lattice hopping and interac-
tion reads J (t) = J0 = const. and U (t) = g(t)

∫ |w(�r )|4d3r ,
where w(�r ) is the maximally localized Wannier function [40].
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FIG. 1. (Color online) ab Feshbach resonances of the system 40K
for different lattice depths. The upper panel (a) shows the dependence
of the interaction on the magnetic field and the lower panel (b) shows
the resulting normalized hopping j = J0/U (B).

The time-dependent coupling constant g(t) = 4π�
2a(t)/m is

determined by the mass m of the 40K atoms and the s-wave
scattering length

a(t) = abg

(
1 − �

B(t) − B∞

)
, (4)

where abg = 174a0 is the background scattering, B∞ =
202.1G is the position of the Feshbach resonance, where the
scattering length diverges, and � = 8.0G is its width.

For simplicity, we consider a translationally invariant
lattice in three dimensions at half filling in the Mott-insulating
phase and study the behavior of the double occupancy. With a
higher double occupancy, molecule formation is more likely to
occur in the later stages of the driving of the full FRH system.
Computationally, we employ a strong-coupling approach
which works well at finite temperatures larger than the hopping
and has already successfully modelled conventional lattice-
modulation spectroscopy [25,26,41]. In order to ensure the
accuracy of the approach, we constrain the studied parameter
range to a maximum value jmax := max{J0/U (t)}t∈R
≈ 1/24.

For each lattice depth, the Feshbach resonance has a
different effect on the hopping relative to the interaction,
i.e., on j (t) := J0/U (t), which we refer to as the normalized
hopping. Also, the magnetic-field dependence of the hopping
strength in units of the interaction, j (B) := J0/U (B), plays
a key role in the Feshbach spectroscopy of the Hubbard
model. Figure 1(b) shows this map for several lattice depths.
Figure 1(a) shows the corresponding interaction strength. We
limit our consideration to the interval [0,jmax] indicated by
the horizontal dashed line in Fig. 1(b). In addition, we assume
that the amplitude �B of the magnetic field is realistically
smaller than 5 G for the necessary modulation frequency
of a couple of kHz (which is near the magnitude of the
average particle-particle interaction), since these numbers are
experimentally reasonable. We also require the interaction to
be significantly lower than the noninteracting band gap which
is also displayed in Fig. 1(a) at lattice depth V = 10ER . This,
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FIG. 2. (Color online) Doublon production at different values of Bmax. Each panel represents different values of V and Bmin. In panels (a),
(c), (d), and (e), Bmin is chosen such that jmax = 1/24. The initial temperature is kBT = 0.1U0.

together with the requirement that the normalized hopping
j , while small, should be large enough for the effects due
to changes in it arising from changes in B to be measurable,
constrains the considered parameter range to the right branches
displayed in Fig. 1(b). Thus we consider magnetic-field values
within the interval (B∞ + �,220G] and lattice depths equal
to or larger than 10ER (for smaller lattice depths, the band gap
to the second band would be too small).

In experiments, the upper bound for the normalized hopping
need not apply. However, in the vicinity of the resonance, the
strong dependence of the normalized hopping on the field also
results in a stronger dependence on the inhomogeneities of the
magnetic field. It is therefore reasonable to keep the value of j

below a certain threshold in experiments to reduce the effects
of inhomogeneity.

In addition to the mean value of the magnetic field, other
important parameters to be considered are the amplitude
�B and the frequency ω of the field modulation. If the
physical response of the system is sensitive to these values,
this may help to determine unknown model properties (such
as the lattice depth in the experiments) more precisely than
is possible in lattice-modulation spectroscopy. In order to
explore such possibilities, we investigate the frequency
dependence of the doublon production rate for fixed windows
of magnetic-field modulation.

The field modulation in Eq. (1) is parametrized by the
magnetic-field amplitude �B, the average field value B̄, the
length of the modulation time interval tmod, and the modulation
frequency ω. �B and B̄ can alteratively be expressed in terms
of the minimum and maximum values of the field strength,
Bmin = B̄ − �B and Bmax = B̄ + �B. These values also de-
termine the minimum and maximum values of the normalized
hopping j (B) = J0/U (B). In order to translate Bmin and Bmax

into jmin and jmax, respectively, one uses Fig. 1(b).

III. RESULTS

We consider three field modulation intervals [Bmin,Bmax]
first, and compare the behavior for two lattice depths. Depend-

ing on the frequency, the field is modulated over a time interval
[0,tmax], with

tmax(ω) =
⌊

t̃max

(
2π

ω

)−1
⌋

2π

ω
, (5)

and t̃maxU0/� = 29, resulting in 2 to 6 field-modulation cycles
for �ω/U0 = 0.5, . . . ,1.5, where U0 := U (B̄). Note that 
· · · �
denotes the floor operator which is equal to the closest integer
to its argument which is not larger than its argument. As a
physical observable, we study the excitation from the lower
to the upper Hubbard band which is measured by the double
occupancy per site:

D(t) = 〈n↑n↓〉(t), (6)

and study the increase in this quantity, which we measure as

�D := U0

h

∫ t̃max+2

t̃max+2−h/U0

dt D(t) − D(t0). (7)

That is, the end value has been averaged over one oscillation
period of a resonantly excited Hubbard system and compared
to the initial value D(t0).

Figures 2(a) and 2(b) shows the resulting frequency
dependence of �D for three different values of Bmax, while
we keep the minimum field value constant at Bmin = 212.9G.
Figures 2(a) and 2(b) correspond to lattice depths V = 10ER

and V = 11ER , respectively. Since the normalized hopping
jmax is smaller for a deeper lattice, fewer doublons are
produced for V = 11ER than for V = 10ER . However, the
relative behavior of the curves as a function of Bmax is
qualitatively the same for the two lattice depths.

Hence we discuss the dependence of the resonance curves
on Bmin in more detail. Figure 2 shows several resonance curves
for two slightly different values of Bmin in Figs. 2(b) and 2(c),
respectively. It shows that even the qualitative behavior of the
Feshbach modulation can be quite sensitive to the details of the
model. In Fig. 2(c), the shape and the strength of the different
resonances are approximately the same. For the slightly larger
value of Bmin shown in Fig. 2(b), the resonance curves
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change drastically as a function of Bmax. The reason for this
qualitatively different behavior is that in the case of Fig. 2(c) a
larger fraction of the steep portion of the normalized hopping
j as a function of B (see Fig. 1) is sampled in the modulation
procedure than in the case of Fig. 2(b). An effect which both
the the cases of Figs. 2(b) and 2(c) have in common is that the
maximum in doublon production is shifted towards smaller
frequencies for larger values of Bmax. The reason for this may
be the lower time-averaged value of the interaction strength for
larger values of Bmax in units of the respective values for U0 =
U (B̄). For example, in the simplified case Bmin = B∞ + �,
the time-averaged value of the interaction Utavg can be approx-
imately written as Utavg/U0 = 1 − (Ubg/2U0)b2, where Ubg is
the interaction associated with the background scattering abg

and b = (Bmax − Bmin)/2�. A similar relation can be derived
for the more realistic Bmin > B∞ + �. However, since the
width of the resonance is almost independent of Bmax in both
Figs. 2(b) and 2(c), this reasoning cannot be the whole story.

Furthermore, we can also compare the resonance curves
for several lattice depths at a fixed maximum value jmax of
the normalized hopping. This corresponds to adjusting Bmin

appropriately for each lattice depth such that the same value of
jmax is obtained. In this case, we choose jmax = 1/24, which
is also the upper bound we introduced previously in order
to ensure the convergence of the strong-coupling method.
Figures 2(a), 2(c), 2(d), and 2(e) show data for different lattice
depths at this constant maximum value of j . We again find that
the dependence on Bmax may depend very much on the lattice
depth. While for the shallow lattice, V = 10ER , increasing the
modulation amplitude yields a stronger signal, we observe the
opposite effect in a deeper lattice, V = 15ER . This striking
difference is due to the increasing nonlinearity of j (B) as V

increases. For a shallow lattice, j (B) still exhibits a nearly
linear behavior, so the peak strength is proportional to the
amplitude. In a deep lattice, j (B) is strongly nonlinear and
the system is rather kicked than driven. An increased amplitude
decreases the kick strength in a deep lattice, because j is
close to jmax for shorter time spans during the modulation.
As the lattice gets deeper, a second-order peak appears at
�ω = U0/2, which is approximately as strong as the first-order
peak for strong modulation amplitudes. The lattice depths
between V = 10ER and V = 15ER interpolate between these
two behaviors. In the very deep lattice, for V = 15ER , the
strongest doublon production can be achieved with a rather
small amplitude corresponding to Bmax = 212G, or �B ≈
0.73G. Indeed, the doublon production in the Hubbard model
is the precursor toward molecule formation in the FRH model.
Unfortunately, our numerical techniques will not allow us to
go farther with the calculation to examine those effects.

Finally, in order to compare different lattice depths, we fix
the values of Bmin and Bmax in such a way that the normalized
hopping oscillates between the same values jmin = 1/48 and
jmax = 1/24. The resulting resonance curves at different lattice
depths are shown in Fig. 3. In contrast to the scenarios
discussed in Fig. 2, the curves are now essentially identical.
This underlines the central role of the normalized hopping
in interpreting both Feshbach- and lattice-depth-modulation
spectroscopy. However, we also observe a tendency towards a
stronger doublon production for deeper lattices. As can be seen
in the left inset of Fig. 3, this is not related to the initial number

0.5 1 1.5
h
_ ω/U

0

0

0.01

0.02

0.03

0.04

ΔD

0 1 2 3 4 5
t [h/U

0
]

0
1
2
3
4
5

D
(t

) 
x 

0.
01

B
min

B
maxB

j
min

j
max

j

V=10E
R

V=11E
R

V=12E
R

V=15E
R

time traces h
_ ω=U

0

V=15E
R

V=10E
R

V=11E
R

V=12E
R

translation functions

V increases

linear

FIG. 3. (Color online) Magnetic modulation with the nor-
malized hopping j oscillating within the interval [jmin,jmax],
with jmax = 1/24 and jmin = jmax/2 for different lattice
depths. The corresponding magnetic field intervals IB =
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of doubly occupied sites, which is essentially identical for each
lattice depth. Rather, the tendency is due to the shape of the
translation function between magnetic field and renormalized
hopping, as shown in the right inset of Fig. 3. As the lattice
depth is increased, the convexity of the translation function
is decreased and the latter approaches a linear behavior. This
gives rise to an increase in the doublon production, and shows
one of the advantages of being able to modulate the interaction
independently of the hopping.

IV. CONCLUSIONS

In this work, we have explored Feshbach-modulation
spectroscopy, where tuning and temporally modulating a
magnetic field near a Feshbach resonance allows for the system
to have a time-dependent interaction, with a constant hopping
(the normalized hopping, of course is time dependent), as
an alternative to conventional lattice-depth-modulation spec-
troscopy. This changes the behavior of the driving of the system
from a more kicked drive in the conventional approach to a
smoother evolution. We find that, in some cases, the signal
can have strong resonant effects that require fine tuning of
the magnetic field, and hence have the potential to produce
higher-precision measurements. In addition, we find that the
“two-photon” peak at a frequency equal to half the average
interaction strength is often enhanced in these systems, making
it easier to study nonlinear excitation effects. Finally, we
conjecture that even more interesting behavior will occur when
the Feshbach-modulation spectroscopy is pushed through the
Feshbach resonance itself and allows for complete molecule
formation. The many mutually coupled degrees of freedom
in the FRH [8] promise a rich variety of physical effects
which will be interesting to investigate both experimentally
and theoretically. In particular, it will be interesting to explore
the channels that lead to molecule formation spectroscopically.

053612-4



FESHBACH MODULATION SPECTROSCOPY OF THE . . . PHYSICAL REVIEW A 92, 053612 (2015)

We do not yet have the ability to model and calculate
the behavior of such spectroscopy, but experiments could
potentially investigate such effects in the near future.
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