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There is much interest in how quantum systems thermalize after a sudden change, because unitary evolution
should preclude thermalization. The eigenstate thermalization hypothesis resolves this because all
observables for quantum states in a small energy window have essentially the same value; it is violated for
integrable systems due to the infinite number of conserved quantities. Here, we show that when a system is
driven by a DC electric field there are five generic behaviors: (i) monotonic or (ii) oscillatory approach to an
infinite-temperature steady state; (iii) monotonic or (iv) oscillatory approach to a nonthermal steady state;
or (v) evolution to an oscillatory state. Examining the Hubbard model (which thermalizes under a quench)
and the Falicov-Kimball model (which does not), we find both exhibit scenarios (i–iv), while only Hubbard
shows scenario (v). This shows richer behavior than in interaction quenches and integrability in the absence
of a field plays no role.

T
he classical picture for how an isolated system evolves as it is driven by a DC electric field (E) is that a current
Æj(t)æ develops which subsequently creates heat due to Joule heating at a rate given by Æj(t)æNE. As heat is
added to the system, the occupancy in momentum space becomes more and more uniform until the current

decreases to zero, the occupation of all states is equally likely, and the system has reached the infinite-temperature
limit, which is a thermal state, even though the system was driven to nonequilibrium for all earlier times. Such
behavior should occur in any interacting system (integrable or not). This then opens the question, do driven
quantum systems evolve in a similar way as they do under an interaction quench1–4? There are many similarities in
these two systems to suggest that they should. A DC field being turned on modifies the Hamiltonian at an instant
of time, and for future times, it can be described by a time-independent Hamiltonian in the scalar potential only
gauge. If the system thermalizes to the infinite-temperature state when it is field driven, then it also evolves into a
steady thermal state in the infinite-time limit.

But there are differences too, the most important being that the field-driven system has a current flowing
through it as it thermalizes, so its energy continuously evolves as opposed to the instantaneous change in an
interaction quench, and it is much more likely to show oscillatory behavior due to the possibility of Bloch
oscillations. For example, driving a noninteracting single-band system with a DC field creates an oscillating
current, and the heating varies periodically in time so that the system returns to its initial equilibrium state
after each Bloch period given by 2p/E, resulting in no net heating; in particular, it never evolves to the
infinite-temperature state. This occurs because there is no scattering in the system that could allow it to
thermalize. In this work, we describe what happens for the general case when the field-driven system is
interacting.

We consider two interacting quantum systems: the Hubbard and the Falicov-Kimball (FK) models, which have
been respectively shown to thermalize5 and not to thermalize6 under an interaction quench (the FK model has an
infinite number of conserved quantities, but is not integrable via the Bethe ansatz in one dimension). They are
initially in equilibrium and we study their long time behavior after a constant DC electric field is turned on at t 5

0. We then track the real-time transient behavior as the systems evolve toward a steady state and find that the
formation of a nonequilibrium steady state density of states (DOS) is only constrained by a ‘‘causality’’ timescale
(set by its Fourier transform in the time domain) that plays no further role in the relaxation of the system. At half-
filling, an identity relates the DOS to the imaginary part of the lesser Green’s function (defined and proven below),
so in this case, it is the real part of the lesser Green’s function, Re[G,(tave ,trel)] with tave 5 (t 1 t9)/2 the average
time and trel 5 t 2 t9 the relative time, that determines the thermalization. It vanishes for an infinite temperature
thermal state and is nonzero for nonequilibrium steady or oscillatory states. We use the evolution of this Green’s
function (and the current, the kinetic and the potential energies) as a function of time to describe the different
scenarios seen for the long-time evolution of the system.
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The equilibrium Hamiltonian describing the Hubbard7 and FK8

models is

H~{
X

ijs
Jhop

ijs c{iscjs{
X

is
msc{isciszU

X
i
c{i:ci:c{i;ci;, ð1Þ

where c{is cisð Þ are the creation (annihilation) operators for an elec-
tron at site i with spin s, ms is the chemical potential for the corres-
ponding electron (which is independent of spin for the Hubbard
model), and U is the interaction energy. The hopping integral is
nonzero only between nearest neighbors and serves as our energy

unit. We take Jhop
ij: ~Jhop

ij; ~J
.

2
ffiffiffi
d
p� �

for the Hubbard model, where

d is the spatial dimension of the lattice; for the FK model, the up spin
hopping is the same, but the down spin hopping vanishes since those
electrons are localized and do not hop. The hopping J is used as the
energy unit.

The nonequilibrium case has a spatially uniform, but time varying,
electric field, that is described by a vector-potential-only gauge,
where E(t) 5 2hA(t)/ht and we have set c~e~�h~1. The hopping

integral becomes time dependent, acquiring a phase, Jhop
ijs tð Þ?Jhop

ijs

exp {i Ri{Rj
� �

:A tð Þ
� �

with Ri the position vector for site i on the
lattice9. We start the system in equilibrium at an initial temperature,
and then instantly turn on a constant electric field, whose spatial
component is E, at time t 5 0. The field usually points in the diagonal
direction E 5 (E,E,E,…), or in the axial direction E 5 (E,0,0,…). The
FK model is solved exactly on the infinite-dimensional hypercubic
lattice, using nonequilibrium dynamical mean-field theory10,11, while
the Hubbard model is solved approximately using a strong-coupling
perturbation theory in the hopping on a three-dimensional simple
cubic lattice12.

Results
In Fig. 1, we plot the effective temperature, determined by equating
the transient energy of the nonequilibrium system at time t to the
equilibrium energy at temperature T in order to obtain the effective
temperature T(t). (Note that extraction of an effective temperature by
equating the instantaneous nonequilibrium energy to the equilib-
rium energy at a given temperature does not necessarily imply that
the system is in equilibrium at that instant, instead it is a convenient
way to keep track of what an effective temperature for the system
should be, and as the temperature approaches infinity, the system
approaches closer and closer to a true equilibrium state.) As the time

approaches infinity, there is a clear evolution toward an infinite-
temperature result for cases that thermalize and a clear evolution
to a finite temperature (indicating a nonthermal evolution, since
the system will not be in equilibrium) for those that do not. The
limiting behavior can be approached in a monotonic or oscillatory
fashion (with a dynamical phase transition in between5). Note that
while the results for the FK model, where our algorithm is numer-
ically exact, have a clearer differentiation of the different categories
than in the Hubbard model, where our results are approximate, we
cannot rule out the possibility that the nonthermal Hubbard model
states are prethermalized states that subsequently evolve to the infi-
nite-temperature limit at very long times5,13,14. But our results show
no indication of this, and such timescales are rarely relevant to any
kind of real experiment when the interaction is large enough. One
should also note that in some cases the effective temperature is nega-
tive. This arises from a transient population inversion in the system.

We begin our analysis by describing the nonequilibrium Green’s
functions which depend on two times because the system has no
time-translation invariance. The retarded Green’s function GR

ij t,t0ð Þ
and the lesser Green’s functions Gv

ij t,t0ð Þ are defined via

GR
ij t,t0ð Þ~{ih t{t0ð ÞTre{bH t?{?ð Þ ci tð Þ,c{j t0ð Þ

n o
z

	
Z ð2Þ

and

Gv

ij t,t0ð Þ~iTre{bH t?{?ð Þc{j t0ð Þci tð Þ
.

Z, ð3Þ

where h(t) is the unit step function, :,:f gz denotes the anticommu-

tator, Z~Tre{bH t?{?ð Þ is the initial (equilibrium) partition func-
tion and all operators are expressed in the Heisenberg representation
with respect to the full time-dependent Hamiltonian. The local lesser
Green’s function satisfies a simple identity given by

Gv

ii t,t0ð Þ�~{Gv

ii t0,tð Þ, ð4Þ

which follows from the definition of the lesser Green’s function in Eq.
(3) and the invariance of the trace under a cyclic reordering of its
terms. If we express this in terms of the Wigner time coordinates,
then we find that ReGv

ii tave; trelð Þ~{ReGv

ii tave;{trelð Þ and Im
Gv

ii tave; trelð Þ~Im Gv

ii tave;{trelð Þ, or the real part of the local lesser
Green’s function is an odd function of relative time and the imagin-
ary part is an even function of relative time. Next, we examine the

Figure 1 | Effective temperature as a function of time for the half-filled Falicov-Kimball and Hubbard models driven by a field (the time axis has been
shifted so that the field is turned on at tJ 5 1). The colors indicate the different scenarios detailed in the text. The parameters can be found for the

corresponding cases in the caption to Figs. 3–7. The magenta dashed line indicates the infinite temperature limit corresponding to a thermalized system.

While we cannot rule out the possibility of the non-thermal states thermalizing on longer time scales, we see no indication of this occurring in any of the

data we analyzed.
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retarded Green’s function under a particle-hole transformation.
Here we assume that the lattice is a bipartite lattice, and the hopping
is between the different sublattices only. If the chemical potential
satisfies m 5 U/2, then the Hamiltonian is invariant under the unitary
particle-hole transformation given by

c{i ? {1ð Þ ið Þ~ci and ci? {1ð Þ ið Þ~c{i , ð5Þ

where ið Þ is 1 if i is on the A sublattice and 0 if i is on the B sublattice.
In the Hubbard model, the particle-hole transformation involves
both spins, while for the Falicov-Kimball model, the transformation
involves only the conduction electrons, while the localized electrons
must be transformed via wi R 1 2 wi. Since this is a unitary trans-
formation, and the Hamiltonian is unchanged by it, we immediately
see that

{i ci tð Þc{i t0ð Þ
D E

~{i ~c{i tð Þ~ci t0ð Þ
D E

~{i c{i tð Þci t0ð Þ
D E

ð6Þ

where the first equality comes from the unitary particle-hole trans-
formation (the minus signs cancel because the two operators are at
the same site). The Hamiltonian used in evaluating the middle
expectation value is eH, and the second equality follows from the fact
the Hamiltonian is equal to its particle-hole transformed version at

half filling H~eH
 �
, which implies that we can express the expecta-

tion value entirely in terms of tilde operators or in terms of operators
without the tilde. The retarded Green’s function then satisfies

GR
ii t,t0ð Þ~{ih t{t0ð Þ ci tð Þc{i t0ð Þ

D E
z c{i t0ð Þci tð Þ
D Eh i

~{ih t{t0ð Þ c{i tð Þci t0ð Þ
D E

z c{i t0ð Þci tð Þ
D Eh i

~{ih t{t0ð Þ c{i tð Þci tð Þ
D E�

z c{i t0ð Þci tð Þ
D Eh i

~h t{t0ð Þ {Gv

i t,t0ð Þ�zGv

i t,t0ð Þ
� �

ð7Þ

where the intermediate steps involve applying particle-hole sym-
metry, taking the complex conjugate and applying the definition of
the lesser Green’s function. These results immediately show us that
ReGR

ii t,t0ð Þ~0 at half filling and Im GR
ii t,t0ð Þ~2h t{t0ð ÞIm Gv

ii t,t0ð Þ.
This result, which holds at half filling, tells us that the evolution of the
local retarded Green’s function as a function of its time arguments is
identical to the evolution of the imaginary part of the local lesser
Green’s function as a function of its time arguments.

We now examine how rapidly the local DOS approaches its
steady-state behavior. The transient local DOS of the system is

Figure 2 | Imaginary part of the local retarded Green’s function as a function of relative time for various average times. (a) the Falicov-Kimball

model and (b) the Hubbard model. The lowest curve shows the equilibrium (green) and the nonequilibrium steady state (NESS, blue) GR(trel); The upper

curves show GR(tave ,trel) for successive average times after the field is switched on superposed on the steady state result (blue). Two regions are highlighted:

(i) one in which both t and t9 have the field on (red, overlapped by the blue) and the other in which t has the field on and t9 does not (orange, mixed Green’s

function). The black dots mark the causality time between the two regions. The parameters are as follows: FK model; E 5 1.0, U 5 3.0, T 5 0.1, Hubbard

model; U 5 4!3, T 5 !3, E 5 (4!3,4!3,4!3). Note how the Green’s function becomes negligible in size when we reach the dynamic range time on the right

hand side of each panel, indicated approximately by the gray shaded region. Panels (c) and (d) show the initial equilibrium and the final steady state DOS

after the relative time is Fourier transformed to frequency.

www.nature.com/scientificreports
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Figure 3 | The oscillatory thermalization scenario. Real part of the lesser Green’s function as a function of trel for various average times,

(a) Falicov-Kimball, (b) Hubbard model; A grayscale is used with lighter shades indicating later average times. The inset in both cases shows the amplitude

of G,(trel) as a function of average time. Panels (c) and (d) show for the FK and the Hubbard models respectively, the total energy (TE, green), the

potential energy (PE, blue), kinetic energy (KE, red) and the current (black) as a function of time with the same parameters as in (a) and (b), respectively.

The parameters are FK, E 5 0.5, U 5 0.5, T 5 0.1. Hubbard, U 5 4!3, E 5 (1,1,1)x4!3, T 5 !3.

Figure 4 | The monotonic thermalization scenario. Real part of the lesser Green’s function as a function of trel for various average times,

(a) Falicov-Kimball, (b) Hubbard model; A grayscale is used with lighter shades indicating later average times. The inset in both cases shows the amplitude

of G,(trel) as a function of average time. Panels (c) and (d) show for the FK and the Hubbard models respectively, the total energy (TE, green), the

potential energy (PE, blue), kinetic energy (KE, red) and the current (black) as a function of time with the same parameters as in (a) and (b), respectively.

The parameters are FK, E 5 0.5, U 5 1.5, T 5 0.1. Hubbard, U 5 4!3, E 5 (4!3,0,0), T 5 !3.

www.nature.com/scientificreports
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Figure 5 | The oscillatory nonthermal scenario. Real part of the lesser Green’s function as a function of trel for various average times, (a) Falicov-

Kimball, (b) Hubbard model; A grayscale is used with lighter shades indicating later average times. The inset in both cases shows the amplitude of G,(trel)

as a function of average time. Panels (c) and (d) show for the FK and the Hubbard models respectively, the total energy (TE, green), the potential energy

(PE, blue), kinetic energy (KE, red) and the current (black) as a function of time with the same parameters as in (a) and (b), respectively. The parameters

are FK, E 5 2.0, U 5 1.0, T 5 0.1. Hubbard, U 5 4!3, E 5 (1,1,1)x5!3, T 5 !3.

Figure 6 | The monotonic nonthermal scenario. Real part of the lesser Green’s function as a function of trel for various average times, (a) Falicov-

Kimball, (b) Hubbard model; A grayscale is used with lighter shades indicating later average times. The inset in both cases shows the amplitude of G,(trel)

as a function of average time. Panels (c) and (d) show for the FK and the Hubbard models respectively, the total energy (TE, green), the potential energy

(PE, blue), kinetic energy (KE, red) and the current (black) as a function of time with the same parameters as in (a) and (b), respectively The parameters

are FK, E 5 2.0, U 5 3.0, T 5 0.1. Hubbard, U 5 4!3, E 5 (5!3,0,0), T 5 !3.

www.nature.com/scientificreports
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determined by the local retarded Green’s function, after Fourier
transformation with respect to the relative time: A tave;vð Þ~{ImÐ

dtrelGR tave; trelð Þexp ivtrelð Þ
�

p
� �

. The DOS in the frequency
domain typically has a finite bandwidth and no singularities, and
hence it is described by a Green function in time that has a finite
extent in trel that we denote as the dynamic range time tdyn. This is
determined primarily by the inverse of the bandwidth of the density
of states (as a function of frequency), as long as the density of states
does not have any sharp features or structures that can give rise to

long tails in the time domain. The fact that the dynamic range time is
finite is important because for a fixed tave, there always is some range
of trel such that t9 , 0 is before the field is turned on and t . 0 is after,
with the causality line determined by trel 5 2tave. When both times
have the field on, the DOS is described by the nonequilibrium steady
state DOS. When t . 0 is after and t9 , 0 before, the DOS is described
by the mixed Green’s function, interpolating between the nonequili-
brium and original equilibrium DOS. Once the causality line passes
the dynamic-range time (2tave 5 tdyn), the transient local DOS is

Figure 7 | The oscillatory nondecaying scenario. The lesser Green’s function as a function of trel for various average times in (a). A grayscale is used with lighter

shades indicating later average times. The inset shows the amplitude of G,(trel) as a function of average time. (b) shows the total energy (TE, green), the potential

energy (PE, blue), kinetic energy (KE, red) and the current (black) as a function of time. The parameters are Hubbard, U 5 4!3, E 5 (2,2,2)x4!3, T 5 !3.

Figure 8 | Imaginary part of the lesser Green’s function as a function of frequency for different average times in the Falicov-Kimball model at half
filling. The system starts in the equilibrium result given by the solid green curve before the field is turned on. As the average time increases, the system

converges to the infinite time and infinite temperature limit given by the blue dashed curve. But even before reaching that limit point, the approximation

of the lesser Green’s function by an appropriate fluctuation-dissipation theorem given by a quasi-equilibrium temperature (red curve, illustrating the

longest simulated time) agrees very well with the corresponding transient Green’s function extracted directly from the exact solution of the model (series

of gray/black curves terminating at the red curve at the longest simulated time). The parameters are T 5 0.1, U 5 1.5, and E 5 0.5, corresponding to a

monotonic, thermalized case.

www.nature.com/scientificreports
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essentially given by the steady-state result because the part of the
Green’s function corresponding to relative times longer than the
dynamic range time give essentially no contribution to the Fourier
transform. The dynamic range time is often a short time for inter-
acting systems, but is infinitely long for the noninteracting single
band case, since the steady state DOS in the presence of the field is
given by the series of delta functions describing the Wannier-Stark
ladder, which has an infinite dynamic range time. We illustrate the
generic situation in Fig. 2, which shows these scenarios for the
Falicov-Kimball and Hubbard models; for both models, the system
is in equilibrium and the field is turned on at t 5 0. Hence, the
imaginary part of the local lesser Green’s function approaches it’s
steady state rapidly, just like the retarded Green’s function does, and
the dynamic evolution of the system is primarily encoded in how the
real part of the local lesser Green’s function behaves as a function of
time (it vanishes in the infinite-temperature limit, but is nonzero in
other situations).

In Figs. 3–6, we show examples of the four scenarios that lead to
thermalized or nonequilibrium steady states in the long-time limit.
The approach to this limit (at long times) is either monotonic (over-
damped, Figs. 4 and 6), or oscillatory (underdamped, Figs. 3 and 5),
and the crossover between these two regimes has been called a none-
quilibrium dynamical phase transition5 (we primarily use the long-
time behavior of the total energy to determine the classification).
Each scenario is illustrated with four panels. The top panels in each
figure show Re G, for the Falicov-Kimball model (left) and the
Hubbard model (right), while the bottom panels in each figure show
the current, kinetic, potential, and total energies (left) for the FK
model and (right) for the Hubbard model. Because we cannot evolve
these systems out to infinite time, we cannot distinguish between a
nonthermal steady state and a transient prethermalized state that
subsequently evolves to the infinite-temperature thermalized state
if the prethermalized state is metastable for a long period of time.
However, we have no evidence for that behavior either (even though
it is often assumed to occur in the literature). Once the kinetic energy
and current are suppressed to zero, we do not expect any further
evolution of the system in time; the nonthermal states arise when the
current either vanishes before the infinite-temperature state is
reached or it oscillates equally up and down to generate no net heat-
ing. Note that the thermalized infinite-temperature cases do not have
simple equilibrium analogues, because they have a sharply modified
DOS due to the driving by the field12,15–17, so that even though they
are described by thermal distribution functions, they cannot be
described by equilibrium models without a field.

In Fig. 7, we show the final scenario, evolution to a long-term
oscillatory state that does not thermalize or become a steady state.
This always occurs for a single-band noninteracting system, and here
we found an example of this for the Hubbard model. We did not see
such behavior in the FK model, but it might be a strong-coupling
phenomenon, and the algorithm used to exactly solve the FK model
cannot be accurately extended to the regime where the interaction is
very large due to the need for too small a discretization size along the
contour.

Finally, we show an example of how a system that has a monotonic
exponential approach to the infinite-temperature limit can often be
described by a fluctuation-dissipation theorem-like picture in Fig. 8.
This is done by first extracting an effective temperature by equating
the instantaneous energy with the thermodynamic energy evaluated
at equilibrium as a function of the temperature as previously shown
in Fig. 1. Next, one takes the nonequilibrium steady state DOS (which
can be found from short time transient calculations due to its rapid
thermalization, as explained above, or can be solved for exactly using
a Floquet-like theory for the Falicov-Kimball model16,17). Then one
simply forms the approximate quasi-equilibrium lesser Green’s func-
tion by taking the product of the nonequilibrium steady state DOS
with the appropriate Fermi factor for each given average time. We

can compare this to the exact transient lesser Green’s function, found
by Fourier transforming the relevant lesser Green’s function for fixed
average time as a function of the relative time. These results are
shown in Figure 8. The agreement between these two different
approaches points to a quasi-equilibrium regime when the current
is almost zero and that can be described by an effective temperature
obtained via energy conservation. This picture is in agreement with
the general conjecture found in the context of a one-dimensional
system of fermions accelerated by an external field18. Note that the
peaks that form in the figure are just the Wannier-Stark peaks which
appear at multiples of the field amplitude, which are broadened by
the interactions.

Discussion
We have illustrated that the thermalization problem for a field driven
nonequilibrium system is complex, showing either monotonic or
oscillatory approach to the thermal state or to a nonequilibrium
steady state or evolution to an oscillating, periodic state that does
not thermalize (with a dynamic phase transition or crossover sepa-
rating the different regions). How the system thermalizes (or not)
under the quench of the interaction strength does not appear to
provide any evidence for how it will evolve when driven by a field,
as the two models examined illustrate different behavior under a
quench, but similar behavior when driven by a field. These results
show that the field-driven thermalization problem has much richer
behavior than conventional quench problems, which opens up a new
realm for analysis of nonequilibrium behavior. The classification of
different scenarios is simplified and clarified by examining the beha-
vior in the time domain rather than the more commonly studied
frequency domain. It is interesting to also study field driven systems
in other contexts, like in the response to a pulse, where the final state
can possibly thermalize at any temperature since the final Hamil-
tonian is the same as the initial Hamiltonian the system had in
equilibrium, and in the long time limit no current flows19,20.

Methods
The strong-coupling perturbation theory for the Hubbard model uses a self-
consistent second-order expansion for the self-energy, which includes an infinite
class of diagrams, but is truncated12. The exact solution for the FK model uses a
discretized version of nonequilibrium dynamical mean-field theory which was
extrapolated to the continuum limit10,11. The Kadanoff-Baym-Keldysh technique is
employed to solve for the Green’s functions. There are two Green’s functions to
determine. The retarded Green’s function GR

ij t,t0ð Þ and the lesser Green’s function

Gv

ij t,t0ð Þ defined in Eqs. (2) and (3). The corresponding momentum-dependent
Green’s functions are formed by taking the spatial Fourier transform, since the
Green’s functions depend only on the spatial difference of the position variables
(due to translational invariance of the system). These Green’s functions are cal-
culated with the numerically exact dynamical mean-field theory approach for the
Falicov-Kimball model and with the self-consistent second-order strong-coupling
expansion for the Hubbard model.

The Green’s functions can be employed to calculate the kinetic energy, potential
energy, and current in the presence of a driving field20. The bandstructure satisfies

e k~A tð Þð Þ~{
t�ffiffiffi

d
p
 �Xd

i~1
cos ki{A tð Þð Þ in the limit of d approaching infinity,

with A(t) the component of the vector potential, which is nonzero only for positive
times. The expectation value for the kinetic energy then becomes

Ekin tð Þ~
X

k
e k{A tð Þð Þ c{k tð Þck tð Þ

D E
~{i

X
k

e k{A tð Þð ÞGv

k t,tð Þ ð8Þ

which is determined from the momentum-dependent lesser Green’s function (and is
per spin, so must be multiplied by two for the Hubbard model). Similarly, if we define

the band velocity via v k{A tð Þð Þ~{
t�ffiffiffi

d
p
 �Xd

i~1
sin ki{A tð Þð Þ also in the limit of

d going to infinity, then the current becomes

j tð Þ~
X

k
v k{A tð Þð Þ c{k tð Þck tð Þ

D E
~{i

X
k

v k{A tð Þð ÞGv

k t,tð Þ ð9Þ

which is also per spin and must be multiplied by two for the Hubbard model. The
potential energy is proportional to the average double occupancy and requires the
time derivative of the Green’s function to evaluate it. It satisfies

www.nature.com/scientificreports
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Epot tð Þ~ U
N

X
i

ni: tð Þni; tð Þ
� �

~
LGv

ii t,t0ð Þ
Lt t0?tj z

3U
4

n: tð Þzn; tð Þ
� �

{
U
2

{Ekin tð Þ:
ð10Þ

The total energy is just the sum of the kinetic plus potential energies.
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