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Segregation and charge-density-wave order in the spinless Falicov-Kimball model
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The spinless Falicov-Kimball model is solved exactly in the limit of infinite dimensions on both the hyper-
cubic and Bethe lattices. The competition between segregation, which is present for largeU, and charge-
density-wave order, which is prevalent at moderateU, is examined in detail. We find a rich phase diagram that
displays both of these phases. The model also shows nonanalytic behavior in the charge-density-wave transi-
tion temperature whenU is large enough to generate a correlation-induced gap in the single-particle density of
states.
n
to

I
th
of

y
at
ob
e

s
on

sit
d
b
gt
ct
tr

le

i
-
s
-
e
o
th
dt
n
in

riv

ates
rom
cy
ter-

ed

in-
is
een
-
se

e-

es
the
our

the

-
es

ion-

n
er

c-
I. INTRODUCTION

The Falicov-Kimball model1 is the simplest fermionic
model for crystallization,2 where the system has a phase tra
sition from a disordered~liquid! phase at high temperature
an ordered~solid! phase as the temperature is lowered.
similarly can be viewed as a binary alloy problem where
presence of an ion indicates anA species and the absence
an ion is aB species.

In this model itinerant~spinless! electrons interact with
static ions through an on-site Coulomb interaction. Man
body effects enter via the statistical mechanics associ
with annealed averaging. It is the simplest many-body pr
lem that can be solved exactly in the limit of larg
dimensions.3

Brandt and Mielsch4 presented the first solution of thi
problem using dynamical mean-field theory. Their soluti
illustrated how a period-two charge-density-wave phase
stabilized at low temperatures. Freericks5 later showed that
the model also illustrated incommensurate charge-den
wave order and phase separation. That work concentrate
the case where the ions were half filled on a hypercu
lattice. Segregation was favored at large interaction stren
and incommensurate order disappeared when the intera
strength became larger than the order of the hopping ma
element.

Recent work6,7 has shown that the segregation princip8

holds in the infinite-dimensional limit—asT is lowered the
system undergoes a phase transition that separates it
electron-rich and ion-rich regions~when the interaction en
ergy becomes infinite!. This result, coupled with the rigorou
proof of segregation in one dimension9 and approximate re
sults in two dimensions,10,11 provides compelling evidenc
for segregation to hold in all dimensions. We offer no pro
of that statement here. Instead, we just want to comment
such a result is in the same spirit as the Brandt-Schmi12

and Lieb-Kennedy2 result that when the electron and io
concentrations are equal to one-half, the system orders
period-two ordered phase for all dimensions~and has a
finite-temperature phase transition ford>2). This tendency
toward phase separation could be the mechanism that d
PRB 610163-1829/2000/61~20!/13438~7!/$15.00
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strongly correlated systems like the cuprates or the nickel
towards charge-stripe formation, where the stripes arise f
a minimization of the free energy when both the tenden
toward phase separation and the long-range Coulomb in
action are taken into account.13 Further results about the
Falicov-Kimball model can be found in a recently complet
review.14

In this contribution we examine what happens to the sp
less Falicov-Kimball model as the interaction strength
made finite and the system engages in a competition betw
phase separation~segregation! and charge-density-wave or
der. We find a number of interesting results for the pha
diagrams that differ from what occurred in the infinit
interaction-strength limit.7

This paper is organized as follows: Section II describ
the formalism, Sec. III presents the results for both the Be
lattice and the hypercubic lattice, and Sec. IV presents
conclusions.

II. FORMALISM

The spinless Falicov-Kimball model is represented by
following Hamiltonian:

H52
t*

2Ad
(
^ i , j &

ci
†cj1E(

i
wi1U(

i
ci

†ciwi , ~1!

whereci
† (ci) creates~destroys! a conduction electron at lat

tice sitei andwi50 or 1 is a classical variable that measur
the number of ions at lattice sitei. The hopping matrix con-
nects nearest neighborsi andj and has magnitudet* /(2Ad),
which scales inversely as the square root of the dimens
ality d. We chooset* 51 to be our energy scale.E is the site
energy for the ions andU is the on-site Coulomb interactio
between electrons and ions. For simplicity we will consid
the case of positiveU, since negativeU can be mapped onto
this case with a particle-hole transformation.2

In the thermodynamic limit, the local lattice Green’s fun
tion is defined to be
13 438 ©2000 The American Physical Society
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Gn5G~ ivn!52E
0

b

dteivnt
Tr^e2b(H2mN)Ttc~t!c†~0!&

Tr^e2b(H2mN)&
,

~2!

where ivn5 ipT(2n11) is the fermionic Matsubara fre
quency,b51/T is the inverse temperature,N is a number of
conduction electrons, andTt denotest-ordering. A chemical
potential m is used to set the electron concentrationre
5^c†c& and the site energyE is adjusted to yield the ion
concentrationr i5^w&. The angle brackets in Eq.~2! denote
the sum over ionic configurations. The local Green’s fun
tion is determined by mapping onto an atomic problem i
time-dependent field, with the following action:

Sat5E
0

b

dtE
0

b

dt8c†~t!G0
21~t2t8!c~t8!

1UE
0

b

dtc†~t!c~t!w1Ew, ~3!

wherew50,1 is the ion number for the atomic site andG0
21

is the mean-field or effective-medium Green’s functio
which is determined self-consistently~as described below!.
The atomic Green’s function, with the action in Eq.~3!, is
computed to be

Gn5
12r i

G0
21~ ivn!

1
r i

G0
21~ ivn!2U

, ~4!

and the local lattice Green’s function satisfies

Gn5E
2`

`

de
r~e!

ivn1m2Sn2e
, ~5!

where r(e) is the noninteracting density of states for t
infinite lattice andSn5S( ivn) is the self-energy. The self
consistency relation is that the self-energySn in Eq. ~5! must
coincide with the self-energy of the atomic problem, i.e.,

S~ ivn!5G0
21~ ivn!2Gn

21 . ~6!

Equations~4!, ~5!, and ~6! constitute the dynamical mean
field theory for homogeneous phases. In the limitd→` Eq.
~6! is an exact equation for the lattice problem.

These equations must be solved numerically for the g
eral case~an analytic simplification7 occurs on the Bethe
lattice whenU5`). We use Jarrell’s iterative algorithm15 to
solve this problem:~i! begin with the self-energy set equal
zero Sn50; ~ii ! use Eq.~5! to determine the local Green’
function; ~iii ! solve for the effective medium by employin
Eq. ~6!; ~iv! find the new local Green’s function from Eq
~4!; ~v! extract a new self-energy from Eq.~6!; and ~vi! re-
peat steps~ii !–~v! until the self-energy does not change fro
one iteration to the next. We use a relative error of one p
in 107 as our convergence criterion. These equations rap
converge in most cases, but occasionally require dampin
oscillations to force them to converge, rather than ente
periodic limit cycle. These equations can also be solved
the real axis, where the Matsubara frequency is replaced
the real frequency (ivn→v1 id).

At high temperatures the system is in a homogene
phase, with a uniform charge density. AsT is lowered, the
-
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system can undergo a phase transition to a charge de
wave. The temperature below which the homogenous ph
is unstable is found by calculating the divergence of the
evant susceptibility. The detailed formulas for these susc
tibilities have appeared elsewhere4,5,16 and will not be re-
peated here. We do not consider incommensurate~or other
higher-period! order in this contribution. Incommensurate o
der is easily handled in the hypercubic lattice4,5 since the
transitions are second order and a susceptibility can be
culated for each possible ordering wave vector, but it is pr
lematic on the Bethe lattice, where it appears that high
order periodic phases always have first-order ph
transitions17 ~these higher-period phases on the Bethe lat
have a one-dimensional ordering ‘‘wave vector,’’ as the on
possible order corresponds to a charge density that va
from one level to another on the tree; explicit solutions
ABC ordering have been worked out elsewhere!. We inves-
tigate two different possibilities here:~i! the two-sublattice
chessboard charge-density-wave phase, which has diffe
electron and ion charge densities on the two sublattices
the bipartite lattice, and~ii ! the segregated phase, where t
system separates into two uniform phases with different e
tron and ion densities. The former is the (p,p,p, . . . ) sus-
ceptibility and the latter is the uniform susceptibility.

We also need to calculate the Helmholz free energy
these systems in order to perform a Maxwell construction
track the first-order phase transition to the segregated p
~the transition to the chessboard phase is always continuo!.
This free energy can be expressed either as a summation
Matsubara frequencies, as first shown by Brandt a
Mielsch,4 or it can be expressed as an integral over the
teracting density of states, as first shown by Ramirez, F
cov, and Kimball.1 We choose the former form, since there
no analytic form for the interacting density of states whenU
is finite. Hence, the free energy becomes

F~re ,r i !52T ln 21Tr i ln r i1T~12r i !ln~12r i !

1m~re2 1
2 !1

Ur i

2
1TE der~e!

3(
n

lnF G0~ ivn!ivn

~ ivn1m2Sn2e!Gn
G

2Tr i(
n

ln@12UG0~ ivn!#. ~7!

One must be careful in evaluating this expression, since
integrand, which involves the summation of a logarithm ov
the Matsubara frequencies, can require a large frequency
off to converge. The asymptotic behavior of the tails of t
summations with the logarithms behave like 1/n2 if one com-
bines the positive and negative Matsubara frequencies in
common summand. The cutoff must be chosen large eno
when U is large but finite, to include contributions arisin
from the two pieces of the density of states~one centered
around zero, and the other centered aroundU).

The Maxwell construction for the phase-separated~segre-
gated! state consists of taking a weighted average of the f
energy in two homogeneous phases with densi
(re

(1) ,r i
(1)) and (re

(2) ,r i
(2)) subject to the system having th

correctaverageelectron and ion concentration. In equation
we take
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Fseg~re ,r i !5aF~re
(1) ,r i

(1)!1~12a!F~re
(2) ,r i

(2)!, ~8!

where

re5are
(1)1~12a!re

(2) , ~9!

r i5ar i
(1)1~12a!r i

(2) . ~10!

The electron concentrations are determined by setting a c
mon chemical potential between the two phases and
constraint of Eq. ~9!. Of the six parameters
(a, m, re

(1) , re
(2) , r i

(1) , andr i
(2)) needed to specify the seg

regated phase, only two are independent variables. We
the ion concentrationsr i

(1) andr i
(2) as our independent vari

ables. Our minimization procedure is identical to the o
used in the infinite-U case:7 ~i! we first choose a coarse gri
for both r i

(1) andr i
(2) and compute the average free ener

for all points on that grid, and locate the minimum;~ii ! the
ion densityr i

(1) is fixed at this coarse minimum, andr i
(2) is

varied over a fine grid to find the new minimum;~iii ! the ion
densityr i

(2) is fixed at this new minimum, andr i
(1) is varied

over a fine grid to find the new minimum; and~iv! both ion
densities are varied over a final fine grid centered at
approximate minimum to complete the minimization proc
dure. We find that the minima rarely change in step~iv!,
which illustrates the convergence of this method. This m
tistep convergence procedure is much more efficient t
just minimizing over the fine grid from the start.

III. RESULTS

We perform calculations for two different lattices—th
infinite-coordination-number Bethe lattice wherer(e)
5A42e2/(2p) and the infinite-dimensional hypercubic la
tice wherer(e)5exp(2e2)/Ap. In general, computations fo
the Bethe lattice are simpler than for the hypercubic latti
because many of the integrals over the density of states
be performed analytically. But we find that there is litt
difference between the results for the two lattices, as can
seen in the results presented below.

We begin by showing the transition temperatures to
chessboard~two-sublattice! charge density wave and th
spinodal-decomposition temperature for segregation, as
termined by finding the temperature where the relevant s
ceptibility diverges. Figure 1 displays the results for the c
wherer i50.2 on the Bethe lattice for two different values
U. In the weak-coupling regime, there is no competition b
tween the chessboard phase and segregation, because th
regions do not overlap, but whenU is made larger, one ca
see an overlap between these regions. It may appear then
there are regions in the weak-coupling regime where the
mogenous phase is stable all the way down toT50, but we
believe that this will not be the case in general. As seen
the work on the hypercubic lattice atr i50.5, the region that
appeared to be a homogeneous phase turned out to be
that displayed incommensurate order.5 We expect a similar
result to take place here, but due to the difficulty in calcul
ing incommensurate order on the Bethe lattice~which is typi-
cally a first-order transition! we have not investigated tha
question here.

Furthermore, a kink appears in theTc(re) curve for the
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chessboard phase. This kink occurs at the fillingre51
2r i , which is a special filling for the spinless Falicov
Kimball model. WhenU is large enough, this is the filling
where the system undergoes a metal-insulator transition~in
this case withr i50.2 the critical value ofU is approximately
1.86!. The interacting density of states for the electrons g
erates a gap, and increasing the electron filling from j
below 12r i to just above 12r i results in a large shift in the
electronic chemical potential as it moves from the lower
the upper band.18 What is remarkable is that this meta
insulator transition illustrates itself via a kink in the ches
board phase transition temperature. A similar result can
seen in the Hubbard model, but was not pointed out in
original paper.19 BeyondU53 the antiferromagnetic transi
tion temperature curves display the same kink at half filli
as seen in the Falicov-Kimball model, and the presence
such kinks appears to be another way to infer that the sys
has a gap in the single-particle density of states, which d
not require performing calculations on the real axis~which
are much more difficult for quantum Monte Carlo simul
tions!.

In Fig. 2 we show the spinodal-decomposition tempe
ture for segregation on the Bethe lattice for bothr i50.5 and

FIG. 1. Phase diagrams to the chessboard charge-density-
phase and the spinodal-decomposition temperature for the se
gated phase on the Bethe lattice withr i50.2. ~a! is the caseU
51 where the chessboard phase and the segregated phase d
compete with each other.~b! is the case withU54 where there is
an overlap of the spinodal phase lines, indicating a competi
between segregation and charge-density-wave formation, and w
a well-developed kink can be seen in the chessboard phase diag
which occurs due to a correlation-induced gap in the single-part
density of states, as described in the text.
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r i50.2. Notice how the two pieces of the phase diagr
move towards each other to meet atre512r i . We also
include the result forU5` which has a mirror symmetry
about the linere5(12r i)/2. That symmetry is absent fo
finite U and develops slowly asU increases. There are n
states at finite energy withre.12r i when U5` so only
one branch is included in the spinodal-decomposition te
perature.

The transition temperature to the chessboard phase o
Bethe lattice is shown in Fig. 3 for the same casesr i50.5
andr i50.2. Here we separate the figures into those at w
coupling ~a! and ~c!, where there is no kink in the phas
diagram, and those at strong coupling~b! and ~d!, where a
kink is present because of the gap in the single-particle d
sity of states~for r i50.5 this occurs atU52). The chess-
board phase is stable only in a narrow window aroundre
512r i when U is large, but migrates towardsre50.5 for
smaller values ofU. The competition between segregatio
and the chessboard phase is the strongest whenre'12r i
andU is around two times of the bandwidth. Notice how t
case withr i50.5 displays an additional reflection symmet
about re50.5. This particle-hole symmetry disappears a
the phase diagrams possess a strong asymmetry wher i
Þ0.5.

Figures 4 and 5 display the identical results as Figs. 2
3, respectively, but this time plotted for the hypercubic l
tice rather than the Bethe lattice. It is remarkable how sim
the results are for these two lattices~with the exception of an
overall scale factor!. The kinks in the chessboard phase d

FIG. 2. Spinodal decomposition temperature for the segreg
phase on the Bethe lattice as a function ofU: ~a! the caser i50.5
and ~b! the caser i50.2. The chain-dashed line corresponds toU
5` where only the lower branch is relevant.
-

the
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gram appear to be sharper on the hypercubic lattice, but
erwise the results are nearly identical with each other. Du
the similarity of the results for the Bethe and hypercub
lattices, we have chosen to concentrate only on the com
tationally simpler Bethe lattice for the free-energy analy
~we have verified the similarity of the free-energy pha
diagrams for the hypercubic and Bethe lattices for a f
cases!.

A Maxwell construction is needed to calculate the pha

ed

FIG. 3. Phase diagram for the chessboard~cb! charge-density-
wave phase on the Bethe lattice:~a! r i50.5 and smallU, where the
curve is smooth;~b! r i50.5 and largeU, where the curve develop
a kink at re50.5; ~c! r i50.2 and smallU, where the curve is
smooth; and~d! r i50.2 and largeU, where the curve develops
kink at re50.8.

FIG. 4. Spinodal decomposition temperature for the hypercu
lattice as a function ofU: ~a! the caser i50.5 and~b! the caser i

50.2. The chain-dashed line corresponds toU5` where only the
lower branch is relevant. Note the similarity with Fig. 2.
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diagram when the system phase separates. Just like the
where U5`, we find that the phase diagram has spec
homogeneous densities (re* ,r i* ) where the first-order phas
transition~binodal,Tb) and the spinodal-decomposition tem
perature~spinodal,Ts) coincide. The point corresponds to
critical temperatureTc5Ts, max) where for a givenU both
the first-order transition temperature and the spinod
decomposition temperature share a maximum. At this p
both of the electron densities approach the homogene
density (re

(1)→re* and re
(2)→re* ) as the temperature ap

proaches the transition temperature from below~and likewise
for r i). Obviously the transition is continuous at this poin
In the general case, we find only one of the two pairs te
towards the homogeneous values of the fillings asTb is ap-
proached, and the phase transition is discontinuous~in this
case we finda approaches either 0 or 1 asTb is approached!.
The phase diagrams are complicated three-dimensi
curves inr i , re , andT space. We project those curves on
different planes in order to summarize our results.

Figure 6 contains the projection of the segregation ph
diagram onto there-r i plane for the Bethe lattice. The dia
monds indicate the values of the electron and ion concen
tions at the maximum of the spinodal-decomposition te
perature for a given value ofU. These maxima are
monotonic in re , but are nonmonotonic inr i increasing
from 0.58 atU50.25 to 0.8 forU52 and then decreasing t
0.65 asU→`. The solid curves display the pairs of densiti
that the system phase separates into as a function of tem
ture when in the segregated phase. AsT→0 we find all
systems go to the states withre

(1)50 andr i
(1)51 andre

(2)

5re* /(12r i* ) and r i
(2)50. The dashed lines are straig

lines that connect these two points, and are guides to the
The chain-dashed line is a similar plot for the case wh
U5`. Note how these solid curves are nearly straight lin
for both small and largeU, and how they become curve
only for cases of intermediateU. The maximal spinodal-
decomposition temperature does monotonically increase
U as shown in Fig. 7.

It is remarkable that the results we obtained in t

FIG. 5. Phase diagram for the chessboard charge-density-w
phase on the hypercubic lattice:~a! r i50.5 and smallU, where the
curve is smooth;~b! r i50.5 and largeU, where the curve develop
a kink at re50.5; ~c! r i50.2 and smallU, where the curve is
smooth; and~d! r i50.2 and largeU, where the curve develops
kink at re50.8. Note how the only difference with Fig. 3 is that th
kinks are more strongly developed here.
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infinite-dimension limit asT→0 are similar to those found in
the ground state in one dimension20–22 and two
dimensions.10,11 In all these cases~for U.0) the segregated
phase characterized by the pair of densities (re ,r i) is a mix-
ture of the fully occupied phase~where the ions clump to-
gether! without electrons, i.e., (re

(1) ,r i
(1))5(0,1) and the

empty phase~without ions! with a finite density of electrons
equal tore /(12r i), i.e., (re

(2) ,r i
(2))5„re /(12r i),0…. The

two regions where the segregated phase is stable consi
those points of the (re ,r i) plane that satisfy one of the in
equalities: 0,re,(12r i)bd(U) or (12r i)bd(U),re,1,
where bd(U) @bd(U).0# is an increasing function ofU
tending towards unity whenU goes to infinity (d denotes the
spatial dimension!. In the one-dimensional case a transce

ve

FIG. 6. Projections of the segregation phase diagram onto
re-r i plane for the Bethe lattice. The solid diamonds connected
the solid curve nearr i50.7 denote the homogeneous densit
where the spinodal-decomposition temperature is a maximum f
given value ofU. The solid lines are the values of the densities
various temperatures, and the dashed lines are straight-line gu
to the eye. The chain-dashed line is the result withU5`.

FIG. 7. Maximal spinodal-decomposition temperature on
Bethe lattice plotted as a function ofU.
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dental equation forb1(U) has been derived.21

With an increase ofU, the stability of the segregate
phase for the one- and two-dimensional phase diagr
spreads over the whole region of densitiesre andr i except
for the unit-density casere1r i51, where periodic phase
are stable. In one dimension, the unit-density phase co
sponds to the most homogeneous distribution of the ions
any U. In two dimensions, the ions are also arranged p
odically ~in the unit-density case! but their arrangemen
changes withU ~there is no unique ‘‘most homogeneou
distribution’’ in two dimensions!.

If r i50.5 and the unit-density condition is fulfilled (r i
1re51), then the charge-ordered phase is found to be st
in the infinite-dimensional limit~in fact, this is also for a
region of re close to that given by the unit-density cond
tion!. However our calculations show this property is re
evant for moderateU only. Presumably the order of the lim
its d→`; U→` and re→12r i must be taken properly to
get the charge-density order in this case. We cannot com
the one- and two-dimensional results forr i50.2 (re51
2r i50.8) with those in the infinite-U limit because we rec-
tricted ourselves~for technical reasons! to the chessboard
type charge-ordering only.

For finiteU, the rest of the (re ,r i) region~apart from the
areas occupied by the segregated and the unit-density ph!
of the one- and two-dimensional phase diagrams conta
number of charge-density-wave phases that differ from
chessboard one~as well as their mixtures!. We expect that
the similar effect will occur in the infinite-dimensional lim
for intermediate densities, where the homogenous phase
peared to be stable down to zero temperature~see Fig. 1!, but
where we expect incommensurate order to prevail.

Figures 8 and 9 show the projection of the phase diag
onto there-T and r i-T planes respectively. At any give
temperature, a horizontal line intersects a solid line of
phase diagram at two points, corresponding to the p

FIG. 8. Projection of the segregation phase diagram onto
re-T plane for the Bethe lattice. The diamonds denote the homo
neous densities where the spinodal-decomposition temperature
maximum for a given value ofU ~which corresponds to the class
cal critical point!. The solid lines are the binodal~first-order! tran-
sition temperatures, and the dashed lines are the spino
decomposition temperatures.
s

e-
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i-

le

re
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m

e
ir

(re
(1) ,re

(2)) and (r i
(1) ,r i

(2)) respectively. The solid lines ar
the binodal ~first-order! phase-transition lines, and th
dashed lines are the spinodal~second-order! phase-transition
lines where the system becomes locally unstable. Altho
these phase diagrams appear to have similar shapes to
seen atU5`, we were unable to determine any kind
appropriate scaling form that could collapse the data onto
universal scaling form.

An example of the general case, where the phase tra
tion is discontinuous, is shown in Fig. 10. Here the spino
and binodal transition temperatures are not equal to e

e
e-
s a

al-

FIG. 9. Projection of the segregation phase diagram onto
r i-T plane for the Bethe lattice. The diamonds denote the homo
neous densities where the spinodal-decomposition temperature
maximum for a given value ofU. The solid lines are the binoda
~first-order! transition temperatures, and the dashed lines are
spinodal-decomposition temperatures. Note how the maximal
density is not monotonic inU.

FIG. 10. Projection of the segregation phase diagram onto
r i-T plane for the Bethe lattice in a generic discontinuous c
(re50.15 andr i50.5). The solid line is the binodal~first-order!
transition temperature, and the dashed line is the spino
decomposition temperature. A horizontal line is included atr i

50.5 as a reference.
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other for a given pair of densities (re ,r i). We have chosen
the case ofre50.15,r i50.5, andU54, and show results
only for ther i-T plane. Note that one of the ion densities h
a discontinuous jump atTb , whereas the other one chang
smoothly when the temperature is lowered belowTb . This
occurs because of the nucleation of the new phase inside
~old! high-temperature phase.

IV. CONCLUSIONS

The main result of this work is the pervasiveness of ph
separation and the segregation principle in the Falic
Kimball model in infinite dimensions. We see that it surviv
for all values ofU, and that it can take up a large portion
the phase space in the system. In addition, the trans
temperatures become larger asU grows, and the phase
separated state takes over the entire phase diagram e
possibly the point wherere512r i . Since this is precisely
the result seen in the one-dimensional9 and
two-dimensional10,11 cases, this result strongly suggests th
the phenomenon of segregation is indeed independent o
mensionality. Such a general principle should have a fun
mental physical reason that drives its behavior, and this b
for a general proof that would hold in arbitrary dimension
We offer no such proof here, since we are unable to de
mine what this general principle is. In one dimension, seg
gation is driven by a lowering of the kinetic energy by pla
ing all electrons in as large a ‘‘box’’ as possible. Th
kinetic-energy-driven effect should hold in all dimension
but the analysis is much more complicated ford.1. We do
believe that this general principle is important in the ph
s

the

e
-

n

ept

t
di-
a-
gs
.
r-
-

,

-

nomena of stripes, since it must contribute to the ability o
system like the Hubbard model to form stripes.

We also find that there are some regions where this s
regation can compete with charge-density-wave order. Th
regions are fairly small in the phase diagram, since they
cur nearre512r i for moderate values ofU. In this region
there can also be competition between incommensurate o
~which we have not considered due to its technical diffic
ties on the Bethe lattice! and either phase separation
chessboard charge-density-wave order.

Finally, we discovered an interesting slope discontinu
~nonanalyticity! in the chessboard-phase transition tempe
ture that occurs when the single-particle density of sta
generates a correlation-induced gap. Such a signature
correlation-induced gap is ubiquitous, and it can also be s
in the Hubbard model when it is beyond the Mott transitio
While we believe the formation of an anomalous kink in t
phase diagram implies the generation of a correlati
induced gap, we once again offer no proof, and simply s
that such an observation will shed insight on metal-insula
transitions, but it is not a substitute for calculations of t
single-particle density of states.
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