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The spinless Falicov-Kimball model is solved exactly in the limit of infinite dimensions on both the hyper-
cubic and Bethe lattices. The competition between segregation, which is present folJ|aagel charge-
density-wave order, which is prevalent at modetatés examined in detail. We find a rich phase diagram that
displays both of these phases. The model also shows nonanalytic behavior in the charge-density-wave transi-
tion temperature whebl is large enough to generate a correlation-induced gap in the single-particle density of
states.

[. INTRODUCTION strongly correlated systems like the cuprates or the nickelates
towards charge-stripe formation, where the stripes arise from
The Falicov-Kimball modél is the simplest fermionic a minimization of the free energy when both the tendency
model for crystallizatiorf,where the system has a phase tran-toward phase separation and the long-range Coulomb inter-
sition from a disorderediquid) phase at high temperature to action are taken into accouht.Further results about the
an ordered(solid) phase as the temperature is lowered. |tFaI!cov1—4KimbaII model can be found in a recently completed
similarly can be viewed as a binary alloy problem where the'€VIEW:
presence of an ion indicates aspecies and the absence of  In this contribution we examine what happens to the spin-
an ion is aB species. less Falicov-Kimball model as the interaction strength is
In this model itinerant(spinless electrons interact with Made finite and the system engages in a competition between
static ions through an on-site Coulomb interaction. Many-Phase separatiofsegregationand charge-density-wave or-
body effects enter via the statistical mechanics associatede!- We find a number of interesting results for the phase
with annealed averaging_ It is the Simp|est many_body probdiagrams that differ from what occurred in the infinite-

lem that can be solved exactly in the limit of large interaction-strength limit. _ _
dimensions. This paper is organized as follows: Section Il describes

Brandt and Mielsch presented the first solution of this the formalism, Sec. Il presents the results for both the Bethe
problem using dynamical mean-field theory. Their solutionlattice and the hypercubic lattice, and Sec. IV presents our
illustrated how a period-two charge-density-wave phase i§onclusions.
stabilized at low temperatures. Freeritkster showed that
the model also illustrated incommensurate charge-density-
wave order and phase separation. That work concentrated on
the case where the ions were half filled on a hypercubic The spinless Falicov-Kimball model is represented by the
lattice. Segregation was favored at large interaction strengthollowing Hamiltonian:
and incommensurate order disappeared when the interaction
strength became larger than the order of the hopping matrix "
element.

Recent work” has shown that the segregation principle H=-—=2 clg+EX w+UX clow, (1)
holds in the infinite-dimensional limit—a§ is lowered the 2Vd () ' '
system undergoes a phase transition that separates it into
electron-rich and ion-rich regionvhen the interaction en- wherec/ (c;) creategdestroy$ a conduction electron at lat-
ergy becomes infinije This result, coupled with the rigorous tice sitei andw;=0 or 1 is a classical variable that measures
proof of segregation in one dimensfoand approximate re- the number of ions at lattice site The hopping matrix con-
sults in two dimension¥** provides compelling evidence nects nearest neighbdrandj and has magnitude /(2 /d),
for segregation to hold in all dimensions. We offer no proofwhich scales inversely as the square root of the dimension-
of that statement here. Instead, we just want to comment thatlity d. We choose* =1 to be our energy scalk.is the site
such a result is in the same spirit as the Brandt-ScHidt energy for the ions and is the on-site Coulomb interaction
and Lieb-Kennedy result that when the electron and ion between electrons and ions. For simplicity we will consider
concentrations are equal to one-half, the system orders inthe case of positive), since negativéJ can be mapped onto
period-two ordered phase for all dimensiofend has a this case with a particle-hole transformatfon.
finite-temperature phase transition ¥ 2). This tendency In the thermodynamic limit, the local lattice Green'’s func-
toward phase separation could be the mechanism that drivéi®n is defined to be

Il. FORMALISM
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8 Tr(e AH-#NT ¢(7)cT(0)) system can undergo a phase transition to a charge density
G,=G(iw,)= —f dre'n” HT < , wave. The temperature below which the homogenous phase
0 Tr(e™ AH= 1Ny is unstable is found by calculating the divergence of the rel-

(20 evant susceptibility. The detailed fogmulas for these suscep-
where iw,=i#T(2n+1) is the fermionic Matsubara fre- tPilities have appeared elsewh&fe® and will not be re-
quency,4=L1T s the inverse temperaturtds a number of - FELCE EE, T8 10 W CORA B AR To R EEEl
co?dutptllon electror:js,tan'ﬂ, f{jc—:;ﬂoteslr-otrderlng. A ckler?_lcal der is easily handled in the hypercubic latficesince the
Eig?céaa"r‘] q I?hgsseite gnesregE ise a?jjicstrgg tgo;]izla; {ﬁéﬁ% N transitions are second order and a susceptibility can be cal-

_ ) culated for each possible ordering wave vector, but it is prob-
concentratiorp;=(w). The angle brackets in Eq) denote  |ematic on the Bethe lattice, where it appears that higher-

tion is determined by mapping onto an atomic problem in aransitiond” (these higher-period phases on the Bethe lattice

time-dependent field, with the following action: have a one-dimensional ordering “wave vector,” as the only
p 5 possible order corresponds to a charge density that varies
s.— | d f dr e’ (NG 7= Vel 7 from one Igvel to another on the tree; explicit soll_Jtlons for
at fo T 0 7' C(7)Go (r=7)e(r) ABC ordering have been worked out elsewhele inves-

5 tigate two different possibilities heréi) the two-sublattice
i t I chessboard charge-densny-wg\_/e phase, which has o_hfferent
Ufo drei(ne(r)w+Ew, ® electron and ion charge densities on the two sublattices of
) ) o 1 the bipartite lattice, andi) the segregated phase, where the
wherew=0,1 is the ion number for the atomic site a8¢ = system separates into two uniform phases with different elec-
is the mean-field or effective-medium Green’s function,{,on and ion densities. The former is the,Gr,m, . ..) sus-

which is determined self-consistentiys described below  ceptibility and the latter is the uniform susceptibility.

The atomic Green’s function, with the action in H@), is We also need to calculate the Helmholz free energy for

computed to be these systems in order to perform a Maxwell construction to
track the first-order phase transition to the segregated phase

) 1-p; n Pi 4) (the transition to the chessboard phase is always continuous

This free energy can be expressed either as a summation over

Gy Hiwn) Gpliwy)—U’ : _
Matsubara frequencies, as first shown by Brandt and

and the local lattice Green’s function satisfies Mielsch? or it can be expressed as an integral over the in-
. teracting density of states, as first shown by Ramirez, Fali-
G,= J' de.L, (5) cov, and Kimballt We choose the former form, since there is
—w doptu—3,—€ no analytic form for the interacting density of states whén

where p(€) is the noninteracting density of states for theIs finite. Hence, the free energy becomes

infinite lattice andX,=3 (iw,) is the self-energy. The self- F(pe,pi))=—TIN2+Tp;Inp;+T(1—p)In(1—p))
consistency relation is that the self-enebgyin Eq. (5) must U
SO ) y 4 ; Pi
coincide with the self-energy of the atomic problem, i.e., + u(pe— 1)+ T|+Tf dep(e)
S(iwn) =Gy iw,)—Gpt. (6) o
Equations(4), (5), and (6) titute the d ical X > In{ Collwn)iy
quations(4), (5), an constitute the dynamical mean- : (ont p—S,— )G,

field theory for homogeneous phases. In the lichit Eq.
(6) is an exact equation for the lattice problem.

These equations must be solved numerically for the gen- ~Tpi > IN[1-UGq(iwp)]. (7)
eral case(an analytic simplificatioh occurs on the Bethe "
lattice whenU = ). We use Jarrell’s iterative algoritimto ~~ One must be careful in evaluating this expression, since the
solve this problem(i) begin with the self-energy set equal to integrand, which involves the summation of a logarithm over
zeroX,=0; (ii) use Eq.(5) to determine the local Green's the Matsubara frequencies, can require a large frequency cut-
function; (i) solve for the effective medium by employing off to converge. The asymptotic behavior of the tails of the
Eq. (6); (iv) find the new local Green's function from Eq. summations with the logarithms behave likeLif one com-
(4); (v) extract a new self-energy from E¢6); and(vi) re-  bines the positive and negative Matsubara frequencies into a
peat stepsii)—(v) until the self-energy does not change from common summand. The cutoff must be chosen large enough,
one iteration to the next. We use a relative error of one parwvhen U is large but finite, to include contributions arising
in 10" as our convergence criterion. These equations rapidljrom the two pieces of the density of stat@me centered
converge in most cases, but occasionally require damping @fround zero, and the other centered arourd
oscillations to force them to converge, rather than enter a The Maxwell construction for the phase-separgsefre-
periodic limit cycle. These equations can also be solved ogated state consists of taking a weighted average of the free
the real axis, where the Matsubara frequency is replaced bgnergy in two homogeneous phases with densities
the real frequencyif,— w+id). (p,pM) and (), p{?)) subject to the system having the

At high temperatures the system is in a homogeneousorrectaverageelectron and ion concentration. In equations,
phase, with a uniform charge density. Ass lowered, the we take
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Fsedpe.pi)=aF(pl) p{)+ (1= a)F(pP p{?), (8) 0.06 - - - '
wher - (a) U=1
ere e
o
pe=ap+(1-a)pl?, 9 5 o004t
oy
©
t =9
pi=ap+(1-a)p{®. 19 g
The electron concentrations are determined by setting a comaE> 0.02 -
mon chemical potential between the two phases and thJ;
constraint of Eg. (9. Of the six parameters © .
. pt s -
(@, m, p, p{, pM, andp{”)) needed to specify the seg- @ | seg. ..
regated phase, only two are independent variables. We usg_ 0 = =
the ion concentrationﬁi(l) andpi(z) as our independent vari- g 0.08 | (b) U=
ables. Our minimization procedure is identical to the one ©
. S 7 ) @
used in the infinitdd case: (i) we first choose a coarse grid -?
for both p( and p(® and compute the average free energy = 906
for all points on that grid, and locate the minimufii) the g homogenous
ion densityp(® is fixed at this coarse minimum, and® is . go4 |
varied over a fine grid to find the new minimuij ) the ion c%
densityp(? is fixed at this new minimum, and® is varied eI -
over a fine grid to find the new minimum; artiy) both ion 0.02 -/ segregated
densities are varied over a final fine grid centered at the ]
approximate minimum to complete the minimization proce- 0 . .
dure. We find that the minima rarely change in step, 0 0.2 0.4 0.6 0.8 1
which illustrates the convergence of this method. This mul- P,
tistep convergence procedure is much more efficient than
just minimizing over the fine grid from the start. FIG. 1. Phase diagrams to the chessboard charge-density-wave

phase and the spinodal-decomposition temperature for the segre-
gated phase on the Bethe lattice wjih=0.2. (a) is the caseU
=1 where the chessboard phase and the segregated phase do not

We perform calculations for two different lattices—the compete with each othefb) is the case wit =4 where there is
infinite-coordination-number Bethe lattice wherp(e) an overlap of the. spinodal phase Iings, indicating a competition
_ \/m/(Zw) and the infinite-dimensional hypercubic lat- between segregatlgn and charge-dt_ansny-wave formation, and_ where
. - . a well-developed kink can be seen in the chessboard phase diagram,
tice wherep(e) =exp(—€)/\/ar. In general, computations for hich d lation-induced i the singl o]
the Bethe lattice are simpler than for the hypercubic lattice o1 9CUrs CUe to a corretation-induced gap In the single-particle

. . tlensity of states, as described in the text.

because many of the integrals over the density of states can
be performed analytically. But we find that there is little
difference between the results for the two lattices, as can behessboard phase. This kink occurs at the filling=1
seen in the results presented below. —pi, Which is a special filling for the spinless Falicov-

We begin by showing the transition temperatures to theKimball model. WhenU is large enough, this is the filling
chessboard(two-sublattice charge density wave and the where the system undergoes a metal-insulator transiiion
spinodal-decomposition temperature for segregation, as déhis case wittp;=0.2 the critical value ol is approximately
termined by finding the temperature where the relevant sust.86). The interacting density of states for the electrons gen-
ceptibility diverges. Figure 1 displays the results for the caserates a gap, and increasing the electron filling from just
wherep;=0.2 on the Bethe lattice for two different values of below 1- p; to just above *p; results in a large shift in the
U. In the weak-coupling regime, there is no competition be-electronic chemical potential as it moves from the lower to
tween the chessboard phase and segregation, because the tv upper band® What is remarkable is that this metal-
regions do not overlap, but whes is made larger, one can insulator transition illustrates itself via a kink in the chess-
see an overlap between these regions. It may appear then thmdard phase transition temperature. A similar result can be
there are regions in the weak-coupling regime where the hoseen in the Hubbard model, but was not pointed out in the
mogenous phase is stable all the way dowi te0, but we  original paper:® BeyondU =3 the antiferromagnetic transi-
believe that this will not be the case in general. As seen irion temperature curves display the same kink at half filling
the work on the hypercubic lattice pat=0.5, the region that as seen in the Falicov-Kimball model, and the presence of
appeared to be a homogeneous phase turned out to be osigch kinks appears to be another way to infer that the system
that displayed incommensurate ordéNe expect a similar has a gap in the single-particle density of states, which does
result to take place here, but due to the difficulty in calculat-not require performing calculations on the real afighich
ing incommensurate order on the Bethe latfiekich is typi-  are much more difficult for quantum Monte Carlo simula-
cally a first-order transitionwe have not investigated that tions).
guestion here. In Fig. 2 we show the spinodal-decomposition tempera-

Furthermore, a kink appears in tie(p.) curve for the ture for segregation on the Bethe lattice for bptk 0.5 and

Ill. RESULTS
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(a) o U=eo homogenous

S

Spinodal-decomposition temperature T,

Spinodal-decomposition temperature T

FIG. 2. Spinodal decomposition temperature for the segregategl.v
phase on the Bethe lattice as a functionlbf(a) the casep;=0.5
and (b) the casep;=0.2. The chain-dashed line correspondgJto
= where only the lower branch is relevant.

cases

pi=0.2. Notice how the two pieces of the phase diagram
move towards each other to meet@t=1—p;. We also
include the result fold = which has a mirror symmetry
about the linep.=(1—p;)/2. That symmetry is absent for  0.06
finite U and develops slowly abl increases. There are no =
states at finite energy with.>1—p; whenU =« so only
one branch is included in the spinodal-decomposition tem-‘é’o'c'4
perature. 3

The transition temperature to the chessboard phase on tth,o_oz
Bethe lattice is shown in Fig. 3 for the same capgs 0.5
andp;=0.2. Here we separate the figures into those at Weahg
coupling (a) and (c), where there is no kink in the phase §
diagram, and those at strong coupliij and (d), where a 2'0-08
kink is present because of the gap in the single-particle den §
sity of states(for p;=0.5 this occurs at=2). The chess- %006
board phase is stable only in a narrow window arowiRd '
=1-p; whenU is large, but migrates towargs,=0.5 for
smaller values olJ. The competition between segregation ‘g0.04
and the chessboard phase is the strongest vherl — p; @
andU is around two times of the bandwidth. Notice how the
case withp;=0.5 displays an additional reflection symmetry
about p,=0.5. This particle-hole symmetry disappears and
the phase diagrams possess a strong asymmetry when Y
#0.5.

Figures 4 and 5 display the identical results as Figs. 2 ana

ure
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FIG. 3. Phase diagram for the chessho@io) charge-density-
wave phase on the Bethe latti¢a) p;=0.5 and smallJ, where the
curve is smooth(b) p;=0.5 and largeJ, where the curve develops
a kink at p,=0.5; (c) p;=0.2 and smallU, where the curve is
smooth; andd) p;=0.2 and largelJ, where the curve develops a
kink at p.=0.8.

gram appear to be sharper on the hypercubic lattice, but oth-
erwise the results are nearly identical with each other. Due to
the similarity of the results for the Bethe and hypercubic
lattices, we have chosen to concentrate only on the compu-
tationally simpler Bethe lattice for the free-energy analysis
e have verified the similarity of the free-energy phase
iagrams for the hypercubic and Bethe lattices for a few

A Maxwell construction is needed to calculate the phase

(a)

Ui homogenous
e

homogenous 1

3, respectively, but this time plotted for the hypercubic lat-  FiG. 4. Spinodal decomposition temperature for the hypercubic
tice rather than the Bethe lattice. It is remarkable how similafattice as a function ob): (a) the casep;=0.5 and(b) the casep

the results are for these two lattic@gith the exception of an  =0.2. The chain-dashed line corresponddts « where only the
overall scale factgr The kinks in the chessboard phase dia-lower branch is relevant. Note the similarity with Fig. 2.
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FIG. 5. Phase diagram for the chessboard charge-density-wav: 0 +——¢ » »> —
phase on the hypercubic lattiog) p;=0.5 and smallJ, where the 0 0.1 0.2 03 0.4 0.5
curve is smooth(b) p;=0.5 and largdJ, where the curve develops Pe

a kink at p,=0.5; (c) p;=0.2 and smallU, where the curve is
smooth; andd) p;=0.2 and largeJ, where the curve develops a FIG. 6. Projections of the segregation phase diagram onto the
kink at p,=0.8. Note how the only difference with Fig. 3 is that the pe-pi Plane for the Bethe lattice. The solid diamonds connected by
kinks are more strongly developed here. the solid curve neap;=0.7 denote the homogeneous densities
where the spinodal-decomposition temperature is a maximum for a
diagram when the system phase separates. Just like the capgen value ofU. The solid lines are the values of the densities at
where U=, we find that the phase diagram has specialarious temperatures, and the dashed lines are straight-line guides
homogeneous densitiep] ,p;) where the first-order phase to the eye. The chain-dashed line is the result with .
transition(binodal, T,;) and the spinodal-decomposition tem-
perature(spinodal,Ts) coincide. The point corresponds to a infinite-dimension limit a&r— 0 are similar to those found in
critical temperatur€l;=Ts 1) where for a givenJ both  the ground state in one dimenst#® and two
the first-order transition temperature and the spinodaldimensiong®!In all these case€or U>0) the segregated
decomposition temperature share a maximum. At this poinphase characterized by the pair of densities, ;) is a mix-
both of the electron densities approach the homogeneouygre of the fully occupied phas@vhere the ions clump to-
density p{’—pf and p{’—p}) as the temperature ap- gethej without electrons, i.e., 42 ,p™)=(0,1) and the
proaches the transition temperature from be{end likewise  empty phaséwithout iong with a finite density of electrons
for p;). Obviously the transition is continuous at this point. equal top./(1—p;), i.e., (p((f) ,Pi(z)):(Pe/(l—Pi),O)- The
In the general case, we find only one of the two pairs tendgyo regions where the segregated phase is stable consist of
towards the homogeneous values of the fillingsTgss ap-  those points of theg,,p;) plane that satisfy one of the in-
proached, and the phase transition is discontinu@ushis  equalities: 0<p.<(1—p;)bg(U) or (1—p;)by(U)<pe<1,
case we findx approaches either O or 1 g is approached  \yhere by(U) [by(U)>0] is an increasing function ot
The phase diagrams are complicated three-dimensiongnding towards unity whetl goes to infinity ¢l denotes the

curves inpj, pe, andT space. We project those curves onto gpatial dimension In the one-dimensional case a transcen-
different planes in order to summarize our results.

Figure 6 contains the projection of the segregation phase
diagram onto the.-p; plane for the Bethe lattice. The dia-
monds indicate the values of the electron and ion concentra T max fOr U=eo
tions at the maximum of the spinodal-decomposition tem-
perature for a given value ofJ. These maxima are
monotonic inp., but are nonmonotonic ip; increasing 0.1
from 0.58 atU =0.25 to 0.8 folU =2 and then decreasing to
0.65 asU — . The solid curves display the pairs of densities
that the system phase separates into as a function of temper &
ture when in the segregated phase. BRs:0 we find all =
systems go to the states wity”=0 andp"’=1 andp? 0.05
=p¥/(1—p¥) and p!¥=0. The dashed lines are straight
lines that connect these two points, and are guides to the ey
The chain-dashed line is a similar plot for the case where
U=o. Note how these solid curves are nearly straight lines

0.15 T T T T

__________ S

for both small and largéJ, and how they become curved 0 . ' ' '
. - . . 0 8 16 24 32
only for cases of intermediate). The maximal spinodal- U
decomposition temperature does monotonically increase with
U as shown in Fig. 7. FIG. 7. Maximal spinodal-decomposition temperature on the

It is remarkable that the results we obtained in theBethe lattice plotted as a function bf
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0.12 | U=16 —— binodal —— binodal
----- spinodal ----- gpinodal

0.1

0.05
0.04 |/ R

0.02 |t N N

Transition Temperature T
Transition Temperature T

P P

FIG. 8. Projection of the segregation phase diagram onto the FIG. 9. Projection of the segregation phase diagram onto the
pe-T plane for the Bethe lattice. The diamonds denote the homogep;-T plane for the Bethe lattice. The diamonds denote the homoge-
neous densities where the spinodal-decomposition temperature isn&ous densities where the spinodal-decomposition temperature is a
maximum for a given value af) (which corresponds to the classi- maximum for a given value of). The solid lines are the binodal
cal critical poin}. The solid lines are the binodéirst-orde) tran- (first-orde) transition temperatures, and the dashed lines are the
sition temperatures, and the dashed lines are the spinodaspinodal-decomposition temperatures. Note how the maximal ion
decomposition temperatures. density is not monotonic itJ.

dental equation fob,(U) has been derivetf. (p,p®y and V), p{?) respectively. The solid lines are
With an increase oU, the stability of the segregated g pinodal (first-orde) phase-transition lines, and the
phase for the one- and two-dimensional phase diagramg,gheq Jines are the spinodabcond-ordérphase-transition
spreads over the whole region of densitigsandp; except  |ineg where the system becomes locally unstable. Although
for the unit-density caspe+p;=1, where periodic phases hese phase diagrams appear to have similar shapes to those
are stable. In one dimension, the u_n|t—.der.13|ty phasg COM&een atU=o0, we were unable to determine any kind of
sponds to the most homogeneous distribution of the ions fog oo hriate scaling form that could collapse the data onto an
any U. In two dimensions, the ions are also arranged periyniversal scaling form.
odically (in_ the unit-de_nsity ca;)ebut their arrangement An example of the general case, where the phase transi-
changes withU (there is no unique “most homogeneous oy, js discontinuous, is shown in Fig. 10. Here the spinodal

distribution™ in two dimensions o _ and binodal transition temperatures are not equal to each
If p;=0.5 and the unit-density condition is fulfillegy(

+pe=1), then the charge-ordered phase is found to be stable
in the infinite-dimensional limit(in fact, this is also for a

region of p, close to that given by the unit-density condi- -~ 0.08 | bir}odgll ‘ 1
tion). However our calculations show this property is rel- @ | 777 'S)Fﬂgc; a

evant for moderat® only. Presumably the order of the lim-

its d—o; U—o andp.— 1—p; must be taken properly to
get the charge-density order in this case. We cannot comparg.
the one- and two-dimensional results fpr=0.2 (p=1 qE,

—p;=0.8) with those in the infinitéJ limit because we rec- = g g4

tricted ourselvedqfor technical reasonsto the chessboard- €

type charge-ordering only. =

For finite U, the rest of the 4. ,p;) region(apart from the 2

@©

t S

0.06

eratu

areas occupied by the segregated and the unit-density phase 0.02

of the one- and two-dimensional phase diagrams contain &=

number of charge-density-wave phases that differ from the /

chessboard onéas well as their mixturés We expect that 0 0 0.2 04 0.6 08 1

the similar effect will occur in the infinite-dimensional limit P,

for intermediate densities, where the homogenous phase ap- !

peared to be stable down to zero temperatsee Fig. 1, but FIG. 10. Projection of the segregation phase diagram onto the
where we expect incommensurate order to prevail. pi-T plane for the Bethe lattice in a generic discontinuous case

Figures 8 and 9 show the projection of the phase diagrany,=0.15 andp;=0.5). The solid line is the binodafirst-orde)
onto thepe-T and p;-T planes respectively. At any given transition temperature, and the dashed line is the spinodal-
temperature, a horizontal line intersects a solid line of thelecomposition temperature. A horizontal line is includedpat
phase diagram at two points, corresponding to the pair0.5 as a reference.



13444 J. K. FREERICKS AND R. LEMANSKI

PRB 61

other for a given pair of densitiep{,p;). We have chosen nomena of stripes, since it must contribute to the ability of a
the case ofp,=0.15,p;=0.5, andU=4, and show results system like the Hubbard model to form stripes.

only for thep;-T plane. Note that one of the ion densities has We also find that there are some regions where this seg-
a discontinuous jump &k, , whereas the other one changesregation can compete with charge-density-wave order. These
smoothly when the temperature is lowered bel6y This  regions are fairly small in the phase diagram, since they oc-
occurs because of the nucleation of the new phase inside tloir nearp,=1— p; for moderate values dfl. In this region

(old) high-temperature phase. there can also be competition between incommensurate order
(which we have not considered due to its technical difficul-
ties on the Bethe lattigeand either phase separation or
chessboard charge-density-wave order.

The main result of this work is the pervasiveness of phase Finally, we discovered an interesting slope discontinuity
separation and the segregation principle in the Falicov{nonanalyticity in the chessboard-phase transition tempera-
Kimball model in infinite dimensions. We see that it survivestyre that occurs when the single-particle density of states
for all values ofU, and that it can take up a large portion of generates a correlation-induced gap. Such a signature of a
the phase space in the system. In addition, the transitioBorrelation-induced gap is ubiquitous, and it can also be seen
temperatures become larger & grows, and the phase- in the Hubbard model when it is beyond the Mott transition.
separated state takes over the entire phase diagram exceghile we believe the formation of an anomalous kink in the
possibly the point wherp.=1—p;. Since this is precisely phase diagram implies the generation of a correlation-
the result seen in the one-dimensidhaland induced gap, we once again offer no proof, and simply state
two-dimensionaf"** cases, this result strongly suggests thatthat such an observation will shed insight on metal-insulator

the phenomenon of segregation is indeed independent of diransitions, but it is not a substitute for calculations of the
mensionality. Such a general principle should have a fundasingle-particle density of states.

mental physical reason that drives its behavior, and this begs
for a general proof that would hold in arbitrary dimensions.
We offer no such proof here, since we are unable to deter-
mine what this general principle is. In one dimension, segre- We would like to thank M. Jarrell and V. Zlatfor useful
gation is driven by a lowering of the kinetic energy by plac- conversations. We acknowledge support from the Office of
ing all electrons in as large a “box” as possible. This Naval Research under Grant Nos. NO0014-96-1-0828 and
kinetic-energy-driven effect should hold in all dimensions,N00014-99-1-0328. We also acknowledge support from the
but the analysis is much more complicated dior 1. We do  National Research Council under the Collaboration in Basic
believe that this general principle is important in the phe-Science and Engineering Program.

IV. CONCLUSIONS
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