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Equivalence of the Falicov-Kimball and Brandt-Mielsch forms for the free energy
of the infinite-dimensional Falicov-Kimball model
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Falicov and Kimball proposed a real-axis form for the free energy of the Falicov-Kimball model that was
modified for the coherent potential approximation by Plischke. Brandt and Mielsch proposed an imaginary-axis
form for the free energy of the dynamical mean field theory solution of the Falicov-Kimball model. It has long
been known that these two formulas are numerically equal to each other; an explicit derivation showing this
equivalence is presented here.
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The Falicov-Kimball modélis one of the simplest many-
body Hamiltonians. It was introduced in 1969 to describe G(Z)=J dep(e)
metal-insulator transitions in a number of rare-earth and
transition-metal compounds and was solved in the limit ofwith z in the complex plane andl(z) the local self-energy.
infinite dimensions by Brandt and Mielséh? The earlier Dyson’s equation for the local self-energy reads
work of Falicov's group was modified by PlischKefor the
coherent-potential approximation to give an explicit formula 3(z2)=z2+u—N2)—-G (2 ()
for the _Helmholz_free energy in terms of integrals over the, i, \(2) the dynamical mean fielwhich must be deter-
interacting density of statesDOS). Later, Brandt and ineq self-consistently Solving the atomic problem in a

Mielsctf derived an exact formula for the Helmholz freg time-dependent field yields another equation for the local
energy in terms of summations over Matsubara frequencieg aen’s function

in the infinite-dimensional limit. Numerical evaluation of
these two for8ms for the free energy showed that they were Wo Wy
indeed equdl® but no explicit derivation of the equivalence G(2)= T2 + 2T Nz -U
has appeared.
We illustrate this equivalence here for the spinless versionvith wy= 2,/ 2, w,;= 2,/ Z (the localized electron densjty
of the Falicov-Kimball modelgeneralization to higher-spin and Z= Z,+ Z; (the atomic partition function The symbols
versions is simple The spinless Falicov-Kimball Z; and Z; can be expressed as infinite products
Hamiltoniart is
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wherec! (c;) creategdestroy$ an itinerant electron at sife Zy=e FEAr(1ve )l_n[ ( 1 Tont U)

f;r (f;) creates(destroy$ a localized electron at site t;; is (6)
the Hermitian hopping matrigwhich is chosen to be nonzero
only between nearest neighbprg; is the localized electron
site energy, andJ is the on-site Coulomb interaction be-
tween localized and itinerant electrons. Chemical potentials
w and s are employed for the intinerant and localized elec-
trons, respectively. F=-=TIn Z—Tf dep(€)>, N[(iwy+u—3,—€)Gy]
In the limit where the spatial dimensiahbecomes large, n

the many-body problem can be solved exactly when the hop-
ping is chosen to scdl@st=t*/2\/d. In this case, the so- TR e 0
called local approximation becomes exact. We sketch the alwith p. the itinerant electron density. Our aim is to replace
gorithm used to solve the many-body problem, in order tathe Matsubara frequency summation of the logarithmic func-

where 8=1/T, and we used the notation,=\ (i w,) with
iw,=i7T(2n+1) the fermionic Matsubara frequency.
The Brandt-Mielsch form for the Helmholz free energf is

establish our notation. tion by an integral over the real axis. To do this we use Eq.
The local Green’s functiorG(z) can be written as the (3) to write G,=1/(iw,+u—\,—2,) and rewrite the sum
Hilbert transform of the noninteracting DQXe) in Eq. (7) as
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Because the sign of the imaginary part of the functions that

(a) X D) v . .
make up the argument of the logarithms is fixed above and
A « below the real axis, the value of the imaginary part of the
% logarithms is defined to lie in the range betweenr and 0
e Tieeceicceeeees X or 0 and, depending on this sign. To satisfy the analytic
s e properties of the logarithms in E¢LO), note that the expres-
X y sion in the square brackets can be rewritten as
i X otu—2(w)—€
Imin , (12
FIG. 1. Contours used in various integrals. In paf®| we o+ p—2(0) = \o)

show the contou€ that surrounds all of the fermionic Matsubara
frequencies which are indicated by X’s. The dotted line denotes th
real axis. In pane(b), we show the deformed conto@’ that al-
lows one to replace the integral by one over the real axis.

but one must be careful not to shift the imaginary part of the
?ogarithm by an integer multiple of 2, which corresponds
to a different sheet of the logarithm.

Noting that
T2 In[(iwp+p—2,~€)Gy] d
n f(w)z—TEIn[leexp(—,Bw)] (12
€
=T2 In 1—m) allows us to integrate by partsince the boundary terms
" n n vanish and gives
An
—In 1—m)} (8) F=—=TIn Z+ puiwq+ ppe

The functionE(z) =1[z+ u—2(2z)] is the irreducible part
(with respect to the hoppin@f the itinerant electron Green'’s
function and it possesses the same analytic properties as do
the Green’s functionga branch cut on the real axis with a
change in sign of the imaginary part above or below the
cutt®. The dynamical mean field(z) also has the same (13
analytic properties. As a result, the logarithmic functions in

Eq. (8) are analytic functions above and below the real axiswith the prime indicating a derivative with respectdo The

(the only branch cut lies on the real axénd they behave as integral overe can be performed by using E(R) and the
1/z for |z| —. This implies that we can express the Matsub-fact that the DOS has unit weight, to yield
ara frequency summation as a contour integral around the

+;J’ de dep(e)ln[1+e A]

1-3(w) 1-3"(w)—\N'(w)

xIm w+,u—2(w)—e_ o+ u—Aw)—2(w)

contourC illustrated in Fig. 1a) yielding F=—=TInZ+ wwWi+ upe
. T
T; In[(ioq+p—25—€)Gp] +;f doIn[1+e A°lm[G(w)\' (w)]. (14)
_ 1 dzf(2)|in| 1- € The interacting DOS is defined to beA(w)
27 e Z+u—2(2) =—Im[G(w)]/7. Using this fact, we can add and subtract
an integral oveA(w) to produce
NP ;
: z+u—3(2) ©

F=-T f dwA(w)In(1+e ) —TIn Z+ ww; + up.
with f(z)=1/[1+exp(Bz)] the Fermi-Dirac distribution. The
contourC is deformed toC' which runs parallel to the real T
axis as shown in Fig.(b). Since there is a branch cut on the + ;f doIn[1+e A*lIm[G(w){—1+\'(w)}].
real axis, the integral oveZ’ becomes the imaginary part of
the integral from— to o (15

1 Next, we substitue in Eq4) for G(w) and add
F=—=TInZ+ wiW+ upc+ ;j de dep(e)f(w)

T _ Wy
€ OZEJ dwliIn(l+e B“’)Im ﬂ
X[ ImIn 1—m ot+u—U+I
B(u—U)
| Aw) +Tw;In(1+eP#™5)) (16)
—Imin 1——w+’u_2(w) . (10 and

153103-2



BRIEF REPORTS

w+u+io*

-
0= ;f dwIn(1+e #®)Im

+T(1—w,)In(1+ePH) (17

to Eq.(15). Collecting terms gives
F= —Tf dwA(w)In(1+e A2)=TIn Z+ ww; + up.

Wy

T
+ —f dwin[l+e A*]im{ ———
™ w+u—U+i0"

1_Wl

(0t pu—U)[—1+N(w)]
X{l—i_ ot+tpu—U—Nw)

o+ u+i0"

(0t p)[—1+N (0)]
X{l—i_ o+ u—Nw)

] +Tw,In(1+efn—Y))

+T(1—wy)In(1+ePH). (18

The terms inside Ift - -} can be expressed as a derivative

F= —Tf dwA(w)In(1+e #°)=TIn Z+ ww; + up.

+de In[1+ *ﬁw—d| | 1—)\(0’)

p wlin[1l+e ]dwm wyln -y
AMow) _

+(1_W1)|n 1_m +TW1|n(1+eB(" U))

+T(1—wy)In(1+ePH). (19

Now we integrate by parts and recall E{.2). Since the

boundary terms vanish, we are left with an integral over the
real axis, which can be reexpressed in terms of the contour

C’, and then deformed into an integral over the contGur
This gives

F= —TJ dwA(w)In(1+e #9)=TIn Z+ ww;+ up.

dof in| 1— L)
2 deft@lwiln =020
N
+(1—-wy)in 1—w(T; +TwyIn(1+ef-V))

+T(1—wy)In(1+ePH). (20)
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The contour integral can be evaluated by residues which pro-
duces a sum over Matsubara frequencies

F= —Tf doA(w)In(1+e #°)—=TIn Z+ ww, + up.

An
+ -+ (1-
TE (Wlln(l pa—y (1—w;)
XIn[ 1— ———| t + TwyIn(1+efr-V))
lo,+uw

+T(1—w,)In(1+ePH). (21)

The sum over Matsubara frequencies can replaced by terms
that involve InZ, and InZ; from Egs.(5) and(6). Collecting
terms gives

_ Z
]-"=—Tf dwA(w)In(1+e ﬁ“’)+TW1InE

Z,
+T(1—W1)In§O+EfW1+ ©pe. (22)

Using the definitions fow, andw; in terms of theZ’s, and
the relation

In(1+e #°)=—Bwf(w)—f(w)nf(w)
—[1-f(w)]In[1-f(w)]

gives us our final result for the Helmholz free energy

(23

.7:=f de(w)f(w)(w-F,u,)—FEle-i-Tf dwA(w)

x{f(w)Inf(w)+[1—f(w)]IN[1-f(w)]}

+T[wylnw;+(1—wq)In(1—wy)]. (24

This is the Falicov-Kimball-Plischke form for the free
energy>® which completes the derivation. This form of the
Helmholz free energy is also correct for the Falicov-Kimball
model with correlated hopping and it can be proved in the
same way starting from the expressions of Ref. 10.
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