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Equivalence of the Falicov-Kimball and Brandt-Mielsch forms for the free energy
of the infinite-dimensional Falicov-Kimball model
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Falicov and Kimball proposed a real-axis form for the free energy of the Falicov-Kimball model that was
modified for the coherent potential approximation by Plischke. Brandt and Mielsch proposed an imaginary-axis
form for the free energy of the dynamical mean field theory solution of the Falicov-Kimball model. It has long
been known that these two formulas are numerically equal to each other; an explicit derivation showing this
equivalence is presented here.
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The Falicov-Kimball model1 is one of the simplest many
body Hamiltonians. It was introduced in 1969 to descr
metal-insulator transitions in a number of rare-earth a
transition-metal compounds and was solved in the limit
infinite dimensions by Brandt and Mielsch.2–4 The earlier
work of Falicov’s group5 was modified by Plischke6 for the
coherent-potential approximation to give an explicit formu
for the Helmholz free energy in terms of integrals over t
interacting density of states~DOS!. Later, Brandt and
Mielsch4 derived an exact formula for the Helmholz fre
energy in terms of summations over Matsubara frequen
in the infinite-dimensional limit. Numerical evaluation o
these two forms for the free energy showed that they w
indeed equal7,8 but no explicit derivation of the equivalenc
has appeared.

We illustrate this equivalence here for the spinless vers
of the Falicov-Kimball model~generalization to higher-spin
versions is simple!. The spinless Falicov-Kimbal
Hamiltonian1 is

H52(
i j

t i j ci
†cj1Ef(

i
f i

†f i1U(
i

ci
†ci f i

†f i , ~1!

whereci
† (ci) creates~destroys! an itinerant electron at sitei,

f i
† ( f i) creates~destroys! a localized electron at sitei, t i j is

the Hermitian hopping matrix~which is chosen to be nonzer
only between nearest neighbors!, Ef is the localized electron
site energy, andU is the on-site Coulomb interaction be
tween localized and itinerant electrons. Chemical potent
m andm f are employed for the intinerant and localized ele
trons, respectively.

In the limit where the spatial dimensiond becomes large
the many-body problem can be solved exactly when the h
ping is chosen to scale9 as t5t* /2Ad. In this case, the so
called local approximation becomes exact. We sketch the
gorithm used to solve the many-body problem, in order
establish our notation.

The local Green’s functionG(z) can be written as the
Hilbert transform of the noninteracting DOSr(e)
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G~z!5E der~e!
1

z1m2S~z!2e
~2!

with z in the complex plane andS(z) the local self-energy.
Dyson’s equation for the local self-energy reads

S~z!5z1m2l~z!2G21~z! ~3!

with l(z) the dynamical mean field~which must be deter-
mined self-consistently!. Solving the atomic problem in a
time-dependent field yields another equation for the lo
Green’s function

G~z!5
w0

z1m2l~z!
1

w1

z1m2l~z!2U
~4!

with w05Z0 /Z, w15Z1 /Z ~the localized electron density!,
andZ5Z01Z1 ~the atomic partition function!. The symbols
Z0 andZ1 can be expressed as infinite products

Z05~11ebm!)
n

S 12
ln

ivn1m D ~5!

and

Z15e2b(Ef2m f )~11eb(m2U)!)
n

S 12
ln

ivn1m2U D
~6!

whereb51/T, and we used the notationln5l( ivn) with
ivn5 ipT(2n11) the fermionic Matsubara frequency.

The Brandt-Mielsch form for the Helmholz free energy i4

F52T ln Z2TE der~e!(
n

ln@~ ivn1m2Sn2e!Gn#

1m fw11mrc ~7!

with rc the itinerant electron density. Our aim is to repla
the Matsubara frequency summation of the logarithmic fu
tion by an integral over the real axis. To do this we use E
~3! to write Gn51/(ivn1m2ln2Sn) and rewrite the sum
in Eq. ~7! as
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T (
n

ln@~ ivn1m2Sn2e!Gn#

5T(
n

F lnS 12
e

ivn1m2Sn
D

2 lnS 12
ln

ivn1m2Sn
D G . ~8!

The functionJ(z)51/@z1m2S(z)# is the irreducible part
~with respect to the hopping! of the itinerant electron Green’
function and it possesses the same analytic properties a
the Green’s functions~a branch cut on the real axis with
change in sign of the imaginary part above or below
cut10!. The dynamical mean fieldl(z) also has the sam
analytic properties. As a result, the logarithmic functions
Eq. ~8! are analytic functions above and below the real a
~the only branch cut lies on the real axis! and they behave a
1/z for uzu→`. This implies that we can express the Matsu
ara frequency summation as a contour integral around
contourC illustrated in Fig. 1~a! yielding

T (
n

ln@~ ivn1m2Sn2e!Gn#

5
1

2p i EC
dz f~z!F lnS 12

e

z1m2S~z! D
2 lnS 12

l~z!

z1m2S~z! D G ~9!

with f (z)51/@11exp(bz)# the Fermi-Dirac distribution. The
contourC is deformed toC8 which runs parallel to the rea
axis as shown in Fig. 1~b!. Since there is a branch cut on th
real axis, the integral overC8 becomes the imaginary part o
the integral from2` to `

F52T ln Z1m fw11mrc1
1

pE dvE der~e! f ~v!

3F Im lnS 12
e

v1m2S~v! D
2Im lnS 12

l~v!

v1m2S~v! D G . ~10!

FIG. 1. Contours used in various integrals. In panel~a!, we
show the contourC that surrounds all of the fermionic Matsuba
frequencies which are indicated by X’s. The dotted line denotes
real axis. In panel~b!, we show the deformed contourC8 that al-
lows one to replace the integral by one over the real axis.
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Because the sign of the imaginary part of the functions t
make up the argument of the logarithms is fixed above
below the real axis, the value of the imaginary part of t
logarithms is defined to lie in the range between2p and 0
or 0 andp, depending on this sign. To satisfy the analy
properties of the logarithms in Eq.~10!, note that the expres
sion in the square brackets can be rewritten as

Im ln
v1m2S~v!2e

v1m2S~v!2l~v!
, ~11!

but one must be careful not to shift the imaginary part of
logarithm by an integer multiple of 2p, which corresponds
to a different sheet of the logarithm.

Noting that

f ~v!52T
d

dv
ln@11exp~2bv!# ~12!

allows us to integrate by parts~since the boundary term
vanish! and gives

F52T ln Z1m fw11mrc

1
T

pE dvE der~e!ln@11e2bv#

3ImF 12S8~v!

v1m2S~v!2e
2

12S8~v!2l8~v!

v1m2l~v!2S~v!G
~13!

with the prime indicating a derivative with respect tov. The
integral overe can be performed by using Eq.~2! and the
fact that the DOS has unit weight, to yield

F52T ln Z1m fw11mrc

1
T

pE dv ln@11e2bv#Im@G~v!l8~v!#. ~14!

The interacting DOS is defined to beA(v)
52Im@G(v)#/p. Using this fact, we can add and subtra
an integral overA(v) to produce

F52T E dvA~v!ln~11e2bv!2T ln Z1m fw11mrc

1
T

pE dv ln@11e2bv#Im@G~v!$211l8~v!%#.

~15!

Next, we substitue in Eq.~4! for G(v) and add

05
T

pE dv ln~11e2bv!ImF w1

v1m2U1 i01G
1Tw1ln~11eb(m2U)! ~16!

and

e
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05
T

pE dv ln~11e2bv!ImF 12w1

v1m1 i01G
1T~12w1!ln~11ebm! ~17!

to Eq. ~15!. Collecting terms gives

F52TE dvA~v!ln~11e2bv!2T ln Z1m fw11mrc

1
T

pE dv ln@11e2bv#ImH w1

v1m2U1 i01

3F11
~v1m2U !@211l8~v!#

v1m2U2l~v! G1
12w1

v1m1 i01

3F11
~v1m!@211l8~v!#

v1m2l~v! G J 1Tw1ln~11eb(m2U)!

1T~12w1!ln~11ebm!. ~18!

The terms inside Im$•••% can be expressed as a derivativ

F52TE dvA~v!ln~11e2bv!2T ln Z1m fw11mrc

1
T

pE dv ln@11e2bv#
d

dv
ImH w1lnF12

l~v!

v1m2UG
1~12w1!lnF12

l~v!

v1mG J 1Tw1ln~11eb(m2U)!

1T~12w1!ln~11ebm!. ~19!

Now we integrate by parts and recall Eq.~12!. Since the
boundary terms vanish, we are left with an integral over
real axis, which can be reexpressed in terms of the con
C8, and then deformed into an integral over the contourC.
This gives

F52TE dvA~v!ln~11e2bv!2T ln Z1m fw11mrc

2
1

2ipEC
dv f ~v!H w1lnF12

l~v!

v1m2UG
1~12w1!lnF12

l~v!

v1mG J 1Tw1ln~11eb(m2U)!

1T~12w1!ln~11ebm!. ~20!
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The contour integral can be evaluated by residues which
duces a sum over Matsubara frequencies

F52TE dvA~v!ln~11e2bv!2T ln Z1m fw11mrc

1T(
n

H w1lnS 12
ln

ivn1m2U D1~12w1!

3 lnS 12
ln

ivn1m D J 1Tw1ln~11eb(m2U)!

1T~12w1!ln~11ebm!. ~21!

The sum over Matsubara frequencies can replaced by te
that involve lnZ0 and lnZ1 from Eqs.~5! and~6!. Collecting
terms gives

F52TE dvA~v!ln~11e2bv!1Tw1ln
Z1

Z

1T~12w1!ln
Z0

Z 1Efw11mrc . ~22!

Using the definitions forw0 andw1 in terms of theZ’s, and
the relation

ln~11e2bv!52bv f ~v!2 f ~v!ln f ~v!

2@12 f ~v!# ln@12 f ~v!# ~23!

gives us our final result for the Helmholz free energy

F5E dvA~v! f ~v!~v1m!1Efw11TE dvA~v!

3$ f ~v!ln f ~v!1@12 f ~v!# ln@12 f ~v!#%

1T@w1ln w11~12w1!ln~12w1!#. ~24!

This is the Falicov-Kimball-Plischke form for the fre
energy1,5,6 which completes the derivation. This form of th
Helmholz free energy is also correct for the Falicov-Kimb
model with correlated hopping and it can be proved in
same way starting from the expressions of Ref. 10.
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