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F-electron spectral function of the Falicov-Kimball model in infinite dimensions:
The half-filled case
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The f-electron spectral function of the Falicov-Kimball model is calculated via a Keldysh-based many-body
formalism originally developed by Brandt and Urbanek. We provide results for both the Bethe lattice and the
hypercubic lattice at half filling. Since the numerical computations are quite sensitive to the discretization
along the Kadanoff-Baym contour and to the maximum cutoff in time that is employed, we analyze the
accuracy of the results using a variety of different moment sum rules and spectral formulas. We find that the
f-electron spectral function has interesting temperature dependence, becoming a narrow single-peaked function
for smallU and developing a gap, with two broader peaks for lddge

DOI: 10.1103/PhysRevB.71.115111 PACS nunt®er71.10—w, 71.27+a, 71.30+h
I. INTRODUCTION
opueTio Hex =2 (-t - wddid, + 3 (- it + 3 Udldifl;.
ij i i
Nonequilibrium many-body physics is becoming an in- (1)

creasingly important field because it allows strongly corre-

lated electrons to be examined in the presence of large ex-

ternal fields, which can drive them far from equilibrium; as The FK lattice mode[in Eq. (1)] can be solved in infinite
nanotechnology research grows, there are an increasing nuiimensions using the methods of Brandt and Miefstiie

ber of nanoscale solid-state devices which are exposed @Pnsider two kinds of latticesi) the hypercubic lattice with
extreme fields. The formalism to solve nonequilibrium prob-2 ~Gaussian noninteracting density of = statgf(e)
lems was developed independently by Kadanoff and Baym=exH-€*/t?]/(Vat), and (i) the infinite-coordination Be-
and by Keldyst?. In principle, it allows these nonequilibrium the Iattig:e*with a senlicircular noni*nteracting density of states
problems to be solved exactljncluding all nonlinear field ~Pa(€)= V4t ~€/(27t?); we taket as the unit of energy
effects, but usually the formalism is employed in a pertur- (t =1), and consider only the homogeneous phase, where all
bative approach for the electron correlations. These nonequfiuantities are translationally invariant. For our numerical
librium formalisms can also be used to calculate equilibriumVOrk, we will concentrate on half filling, where=U/2 and
Green'’s functions, especially in cases where alternative an&=0- ) )

lytic continuation methods are intractable. We examine the DespTlte the conservation of the lockelectron number
simplest such problem—thd-electron spectrum of the ([Hek. f{1;]1=0), the f electrons have nontrivial dynamics as

i 6,7 - -
Falicov-Kimball model. This problem can be solved exactly"’.1 function ofT, S0 we expect the glectrqn spectral func_
with dynamical mean-field theoDMFT). tion to have an interesting evolution with the correlation

The spinless Falicov-Kimball mode(FK) describes the strengthU. WhenU =0, the spectral function is a delta func-

. ) . tion, which broadens ad increases because tlieclectron
dynamics of two types of electrons: conduction electrons

. T ) ~ "sees a fluctuatingl electron that hops onto and off of the
(created or destroyed at sitdy d.. or d)Tand localized eI_ec local site as a function of time. Whau is increased further,
trons (created or destroyed at siteby f' or f). The nonin-

N X a metal-insulator transition takes place, and we expect the
tergctlng c'onductlon glectrqns can hop bgtween ”?aresfispectral function to develop a gap &s-0. Hence, the
neighbor sites on @-dimensional lattice, with a hopping f_glectron spectral function should have rich behavior as a
matrix t;;=-t /2VD; we choose a scaling of the hopping fynction of U andT.

matrix that yields a nontrivial limit in infinite dimensiors. The organization of this paper is as follows. In Sec. II, we
Thef electrons have a site enerfly, and a chemical poten- present the formalism, outlining in detail how the analytic
tial u is employed to adjust the total number of electronscontinuation is carried out within this nonequilibrium ap-
Ng+Ns=nNy. Thed- and f-number operators at each site are proach; our notation is nonstandard because we use the usual
ng andn;. There is a finite Coulomb interactidh betweerd-  Kadanoff-Baym contour, but we stick with the Green'’s func-
andf electrons that occupy the same lattice site, and so thton definitions forG™ and G~ of Brandt and Urbanek.In
Falicov-Kimball Hamiltonian for the lattice is Sec. lll, we present our numerical results for both the Bethe
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and hypercubic lattices, and we conclude in Sec. IV. A short Zal\ 1, B) = Trys THexpl— BH4S(—i8,M)], (6)
communication, showing the spectral function at the critical
or near-critical value ofJ for the metal-insulator transition, Where the trace is taken over the atomti@ndf states. Since
has been completédand a longer contribution, detailing the the number off electrons is a conserved quantity, we can
computational algorithm, parallelization, and numerical ac-write
curacy, has also been completéd. e
ZaN) = Zo\ ) +EPEHZ 0N u=U), (D)
Il. FORMALISM

with Zg(\, w) the partition function of a electron subject to
~ The many-body problem on an infinite-coordination lat-the )\ field in the absence of electrons(n;=0). That is,
tice can be solved by a mean-field-like procedure, becausg () | ,)=Tr, T-fexp- BH,}S(-iB,\)], whereHo=—ud'd.,
the self-energy of the conduction electrons is IdcHience, The field\(7,7) gives rise to fluctuations in the: occu-

the local d-electron Green's functioi,.(2) on the lattice pancy, which correspond in the equivalent lattice problem to

satisfies the locald fluctuations due to thel-electron hopping. We
(e choose\(r,7') such that it satisfies the sant@ntiperiodi¢
Gy4(2) =f z+,u—2(z)ed6' (20 boundary condition as the imaginary-time Green’s function
—S,2)-

(see below, and expand it in a Fourier series along the
wherez is a complex variable and4 is the momentum- imaginary axis(recall 7 is purely imaginary

independent self-energy. As noted by Brandt and Mie¥sch, o .

the lattice self-energy coincides with the self-energy of an NT=7)=T2 e™7\,,. (8)
atomicd state coupled to ah state with the same Coulomb n

interaction as on the lattice, and perturbed by an eXtema}here,wnzw(Zm DT is the fermionic Matsubara frequency
tl_me-depend(_ant fieldh(z, ), W.h'Ch mimics, for the IMPU- and we sekg=1. The\ field in the complex» plane, which
rity, the hopping of the conduction electrons on the lattice, byis needed for thé-electron propagator, can be determined by

creating tmg-dependent fluctgtlons Qf the ponduchon-an iterative procedure using the DMFT self-consistency con-
electron density. For an appropriate choice of Xtigeld, the dition for the d-electron’s Green’s function

functional dependence af on G¢(2) andG(2), the atomic The d-electron Green’s function is defined as a functional

propagators fod- andf states, is exactly the same as in the yorivative of the atomic partition function, Gy(7—7)
lattice case. The lattice problem is thus reduced to finding thg5|n 2,/ 5\(7 ), which gives
atomic self-energy functional for thé electrons, and then a o
settingG/9%(2) =G4(2) andGI*(2)=G(2) on each lattice site. - 1 . o

The FK atom can be solved by using the interaction rep-  Ga(7—17) =~ Z_defT‘r[e_’BHa‘S(— i8N d(Dd(7)].
resentation, such that the time dependence of operators is a
defined by the atomic Hamiltonian 9

Hae= — udid + (B — w)f'f + Ud'df'F, (3)  Gy(7—7) is periodic on the imaginary time axis with period
and is antiperiodic modu({gd). It depends on the dif-
nce of the time arguments, because we are in thermal
equilibrium and the system is time-translation invariant; it
has a discontinuity atr=7" and is therefore a nonanalytic
function of 7—7'.

4) To find G; we define the effective-medium Green’s func-

' tion, GY(7=7')=61In Zy/ S\(7’ 1), which reads

whereTH- -] orders all the operators within the bracket with

2i 3,
and the time dependence of the state vectors is governed t?é/fe
an evolution operator which is defined by thefield. For
purely imaginary timess e (0,-i8), the evolution operator
is

SFA) = Toet J3d7 [N 7 d (7 )d (7

respect to the position on the i@, -ig) of their time ar- GYr-7)=- L Try Te FHoS(— i g, ) d(d (7)],
gument in such a way that the time arguments which are Zo(\, 1)
closer to zero appear further to the right, and there is an (10)

overall change of sign whenever the time ordering inter-
changes two fermionic operators. The time evolution of theand satisfies the equation of motifBOM] (Ref. 1)
operators between an initial time and the final timer is

determined by as f A= o7+ iw) 87 D+ M7= DIGYF~7) = 87~ 7),
OGj — ei<;7)HatO(7)e"‘(;7)Hat. (5)
The integration is along the imaginary-time asands’ are

purely imaginary, i.e., our time variabler can be expressed With &(7) the delta function defined on the line segment
in terms of Brandt and Mielscifwariabler in the following ~ (0,-iB8) with the normalization [dr5()=1 [i.e., &(7)

11

way: r=-ir. =iTE, exdw,7]]. SinceGj also satisfies the usual periodic
The atomic Hamiltoniari,; and the time-dependent field boundary conditions, Fourier transforming the EOM gives
\(7,7) define the partition function of the FK atom the solution
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0 \1-1_; _ =
[Gyliwp) ] " =iwn+ =Ny, (12 Gf< —7) = f dw f(w)e_“’(’hT’)Af(w), (19

and the full Green'’s function follows &$

where Ai(w)=-Im G?(w)/rr is the spectral function. Here,
(13 we used the fact thaG;(z) coincides with the retarded
Green’s functionGR(2), in the upper half-plane and with the

) : A ;
with wy andw; the statistical weighting factors of the unoc- @dvanced Green's functioi(2), in the lower half-plane,
cupied and the occupied states, respectively. These are @nd that the discontinuity dB(2) across the cut along the

given by w;=1-w, andwy= 2,/ Z,,, where real » axis is given by [GR(w+i0")-G(w-i0")]/27i
=—Im GfR(w)/w. Sincer—7' € (-f3,0), the integrand is well
[CYiwy)] ™ behaved forw — o0 (the cutoff atw— o is provided by the
VN (14 Fermi function and the integral defines an analytic function
(it has derivatives to all ordersReinstating the imaginary
Defining the self-energy function of the FK atdiy by Dys-  timesand ', we obtain
on’s equation

Wo + Wl
[Gliw)]™? [Gliw)]™t-U’

Gyliwn) =

Zo(\ ) =26°42] |

Wn

<=7 = : ® ) f(w io(t—7")
Ed:[Gg]_l_[Gd]_l. (15) Gf T T) f_wd Af( )f( )e ) (20)

which holds on the imaginary and the real frequency axeswhich can be used to perform the analytic continuation from
we can find the\ field and the statistical weighting factors the imaginary to real times;—t, 7 —t’. Defining the Fou-
wo andw; by an iterative procedure. We start with a trial rier transform of the real-time Green’s function as
self-energgl ?n the imaginary axis and calcul&tgfrom Eq.
(2), get[Gg]™ from Eq.(15), calculatewy andw; using Egs. , 1 (" (it
(14) and (7), recalculateG, from (13), and find the neviq Gr(t-t)= er dw &G (w), (21)
from Eg. (15). Once the procedure is converged on the -
imaginary axis, we have the weightg andw, the chemical jt follows that
potential u, and the self-consistent solution for thefield.
Sincew, andw; are just numbers, we can analytically con- Gf(w) = 27Al(w)f(w); (22)
tinue Gy(iw,) given by Eq.(13) from the imaginary axis in
the complex frequency plane and repeat the iterative procéience, our definition foG= andG~ is missing a factor of
dure to find retarded quantities and the spectral function ofrom the standard definition, but agrees with that of Brandt
the \ field. The knowledge of tha field everywhere in the and UrbaneR. Similarly, for 7—7' (0,8) and In(7—7')
complex w plane is a necessary input to find the Green'se (-3,0), we use Resf(—Z)IiWn=1/B and express the Mat-
function of the localized electrons. subara sum fo; (7-7') as

The imaginary time Green’s function of theelectrons is

defined by an expression analogous to . G (=7 = _f doo A(w)f(- W)™ (23)

1
Gi(7=7) = = —Trg TLe PaS(- i g, N (DF(7)];
=7 Za A SBNHTT)] This integrand is also well behaved and shows @atis an

(16) analytic function of imaginary times. The analytic continua-
tion to the real axisy—t, 7 —t’, gives
it satisfies the same boundary condition, and has the same .
analytic structure a&4(7—7'). As usual, we expres&;(r G (t-t) :f do Al @) f(w) - 1]e et (24)
-7') in terms of two analytic functions of- 7', such that f . f ’

— G;(7-7) forim(z-7)<0 so that the Fourier transform @& (t) reads
Gir—7)=) - — - - (17)
Gi(r=7) forim(r=7)>0

G (w) = 27A¢()[f(w) - 1]. (25
To find G;” andG;™ we introduce the real variablesi~ and

. _ > ’
7 =i7, and represen®(7—7) by the Matsubara sum At half-filling, where A(w)=Aq(-w), we use Gy (t-t)

=[G{ (t'-t)]" and obtain from the inverse of E¢24) the
Gi(r=7) =T & )Gy(iw,). (19 ~ result
n
2 (* N
For 77 e (-3,0), which corresponds to Ia=7) € (0, ), Arw) = ;,fo dtcoswt)ReGy (1). (26)
we replace the sum over Matsubara frequencies by a contour

integral in the complex frequency plane. USinl@eS‘(Z)IiWn Thus, the time-ordered Green’s function at real times can be
=-1/B, wheref(w) is the Fermi function, we obtain written as

115111-3



FREERICKS, TURKOWSKI, AND ZLATIC PHYSICAL REVIEW B 71, 115111(2005

¢ TLFOF()] = f(Of'(t’) t precedingt onC
C |- ') Tpreceding’ onC
(3D

and similarly for thed operators.

The \ field on the contour is obtained by an analytic con-
tinuation from the imaginary time axis. Since thefield,
considered as a function of imaginary times, satisfies the
same boundary condition as the Green'’s function, it is com-
posed of two analytic pieces which can be continued from
imaginary times to complex times on the cont@urStarting

t -iB from the Fourier transform given by E¢8) we obtain, in

) ... analogy with Eqs(20) and (23), the results
FIG. 1. Kadanoff-Baym contour for evaluating the equilibrium

Green’s function fot<t’. Fort=t’ the contour starts @t and runs _ - 1(” (=7 R
to t, then goes back tt and ends at’ -ig. N (r-7)=- g do f(w)e™ ™" Im \(w), (32)

) and
Gf(t—t’):Jdef(w)[f(w)—@(t—t')]e"w“‘t’), (27)

N(r=7)=- lf do[f(w) - 1] Im \R(w),
with ®(x) the unit step functior®(x>0)=1 and ®(x<0) TJ
=0. (33
However, these formal manipulations, which reveal the ) ) )
analytic properties of the Green’s function, do not explicitly Where Im\*(w) is the spectral function of the field. These
provide the spectral functiory(w), which is needed to find integrals define analytic functions of imaginary times and
G; or G;. On the other hand, the imaginary-time formalism ¢an be continued to the contour shown in Fig. 1 simply by
provides numerical results for the Green’s function at theSubstitutingr—t and 7’ —t’, wheret andt’ are on the con-
Matsubara frequenci2é!lbut it does not reveal the full ana- tour C. Thus, the contour-orderedfield can be written as
lytic structure and it does not provide the spectral function. 10~
Thus, the real-time Green'’s function of tfielectron cannot A(tt) =- —f dow Im A\R(w)
be inferred directly from these formal and numerical results -0
but has to be calculated separately. .= = — —
To obtain the real-time properties of theelectron, we xexp-ia(t-t)][f(w) - Oyt-1)], (34)
define the contour-ordered Green'’s function in the interactionyhere®.=0 if t precedes’ on C and®,=1 otherwise, and

representation as t andt’ lie anywhere on the contour. Restrictihgndt’ to
1 the vertical part of the contour, and using the antiperiodicity
Gi(t-t')=- Z_TrdfTc[e-BHaxs:()\C)f(t)f‘r(tf)], (28)  along the imaginary axis, we can make the inverse Fourier

at transform
where . (B _
Miwy) =N = |J d7 A\ (7,0)e "
=T of AU AU D) 0
S(h) =Tl : (29 " B
is the analytic continuation of the evolution operator in Eq. == if dr\(r,—ip)e ", (35)
0

(4) from imaginary times to times on the contour which is
depiCted in Flg 1 for the case<t’. Fort<t’ the contour and recover the Spectra| formula
starts att, runs tot’, goes back td, and ends at-iB. Once

again, this notation is missing a factoriah the exponent of MNiow.) = 1 Jw Im \R(w)
. , (i) =——| do—. (36)
the evolution operator and as a prefactor for the Green’s a)_., iwp— @
function, from that used in standard approaches, but it agrees
with Brandt and Urbanek. Contrary to the arguments dB(t—t’), which define the
The time dependence of the operators on the contour igoundaries of the horizontal piece of the contour, the argu-
defined agassuming’ precedes on C) mentst andt’ of the contour-orderen field can be anywhere
on the contoulC, so that the dynamical mean field connects
O(t) = " HaQ(t7) g (-t ) Har, (30) the real and the imaginary parts of the contolmn DMFT,

the\ field originates from the electron hopping on the lattice
The T---] orders all operators within the bracket with re- and it is responsible not only for the propagation of particles
spect to the position on the contour of their time argumentsin real times but for the thermalization of the system as well.
such that Contrary to most nonequilibrium problems, in which the real
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field is switched on at some timgand the integration along g i (Erm)(t-t') ~
the vertical part of the Kadanoff-Baym contour can be ne- Gy (t-t')=————Z2(u\o), (45)
glected as one approaches the steady state, in DMFT prob- Zat
lems it is essential to integrate over the whole contour, bewhere , defines the dynamics of @ electron when there
cause the hopping on the latti¢ehich gives rise to the.  are nof electrons, and
field) is always present.

We can now find the contour-ordered Green’s function 2Z(\o) = Tryle oS (\o)] (46)
using the Kadanoff-Baym EOM methods, and we consider N ) ]
the casé>t'. The fermionic operators on the contour satisfy IS the palrtmon function of such an electron subject to the
the EOMs effective\ field. Because of time-translation invariance, we

sett’=0 from now on.

d . S . " . .
i 2t = [ - UH DD, 37) . To find the pgrtlt.mn function of d .electrorT driven py the
dt time-dependeni. field, we use again functional derivative
g techniques to define an auxiliary Green'’s function
an
1 62Z(\)
d_ R — (L) =——= : (47)
SH=(E -+ U TADND. @39 TR AT

. N L . such that
Sincef'(t)f(t)=f(0)f(0) does not change with timg.e., it

commutes with the HamiltonianEq. (37) has a simple so-

J— 1 o~
lution g°(t,t) = — —— Tr[Te Pod({t)d't)S(\)]. (49

Z(N)

Jo— TR TN INIt—t! . - .
df(t) = e lr- VOO gT ¢y (399  Note, the operator dynamics on the contour is now defined

by H
wheret’ is the initial time on the contour. The evolution Df ¥ o

electrons is more complicated, because the numbeetéc- O(t) = Moo eri -1 Ho, (49

trons fluctuates in time and we can only write the solution as . . ,
a contour-ordered product Next, we introduce an auxiliary contour-ordered Green’s

function for ad electron driven by the; field in the absence

f(t) = e_i(Ef_M)(t__t,)S,:(Xt_)f(t/), (40) of the A, field
oln Zo(x)
h ot t)=—"—, 50
where STt W (50
Sxp =Tc exp{f dtzf dtz’Xﬁt:,tz’)dT(t:)d(f’)}, (41  Where
©r Zo(x) = T Tee Pos ()] =1+, (51)

and is the effective partition function of such a system. Func-
_ . tional differentiation gives
WET) = —iUOT= Do f-T). (42) g
Thus’ we obtain gg(t,t,) == z (X) Trd[TCe_'BHOd(t_)dT(t_’)&(Xt)]- (52)
O\At
- ) g i (Erm)(t-t") e et The evaluation ofZ(x,) andgg is straightforward(for de-
Gr(t-t)=- Z Tral e =S\ F) ()], tails see Refs. 11 and,7S(x,) does not change the number

a of d electrons and the Hilbert space for tbestates com-

(43 prises only two stateény=0 andny=1). The Green’s func-

~ ) ) tionsg andg, depend explicitly on the contour timesndt’,
whereS(Ao) is the evolution operator in the presence of theang implicitly on the external time (recall we set’=0).
modified time-dependent potential which is due to the fluc- Taking the time derivatives af°(t,t’) and gg(t,t") with

tuation in the number ofl electrons during the propagation respect td, we find, using Eq(49), the EOMs
of anf electron from the initial time’ to the final timet ' ' '

RE0) =AlE0) + 3. (a4 J T EOSTI=ATD, 69

Note, the operator sequent¢’)fT(t") commutes withS.(\,) where
and removes all the occupiddstates from the trace, so that

the f propagator can be expressed in terms of a partition
function of an effectived electron and

[0 1 tt) =[gg] M(tt) + A (L 1), (54)
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J— J — — decides on a step size for the real-time axig, and for the
[gol (t,t") = matie St=t)+x(tt). (59  imaginary-time axisAtiy,g of the Kadanoff-Baym contour
and then calculates out to the largest time that is feasible

In operator form, this can be written as within the limitations of the computational resources. In the
Celc results presented here, we také,, to range from 0.1 to
[T g =1, (56)  0.0125. We fixAtjyag=0.05. The cutoff in time is always

: . — taken to be no larger than 80. In order to calculate the
where the unit operatdt has the matrix elemeni&(t-t). f-electron Green’s function, we need to calculate the deter-

The Dyson equation for the integral operagSrcan thus be  \inant of a discretized matrix operator. This is done by first

written as diagonalizing the matrix, and then taking the product of all
[0 =081 +gdn ], (57) of the eigenval_ues. This step is the most time-consuming step
of the calculation, because the matrix is a general complex
with the operator product implying an integration over thematrix, with no special symmetries, and the eigenvalues are
contour C. From the definition ofg. in terms of the func- usually complex-valuedthe maximal matrix size that we
tional derivatives of the partition functioB(\,), it follows ~ consider is about 21002100. Since each time chosen to
that evaluate the Green’s function requires a new contour, the
grid of points on the time axis, whei®; (t) is generated,
Z(\) =€" In[g°T* (58)  need not use the same spacing as the discretizing grid of each
Kadanoff-Baym contour used for discretizing the continuous
where the continuous trace of a contour-ordered operator isatrix operator. Usually, we use a time-grid spacing of 0.2 or
given by the line integral over the contodr Using Dyson’s 0.1, because the Green’s function does not normally have

equation, this can be written as oscillations that are on a finer scale than that on the time
~ T In(L+gEng axis. Once the Green'’s function has been calculated on the
Z(N\o) = Zo(xpe e (59 time-axis grid, we perform a Fourier transform to calculate it

on the real-frequency axis. We first spline our real-time data
(using a shape-preserving Akuba spjinato a real-time grid
that is 20 times smaller than the originally chosen time-grid

To approximate the continuous trace by a discrete®one,
expand the logarithm

‘1 spacing. Next, we numerically sum thosing Fourier
IN(1+giho) = 2 ~(giA)", (60)  transform of the real part of the Green's function to deter-
n=1 1 mine the spectral functiofwhich is possible only at half-
and replace each contour integral by a discrete sum, using8ling; for other fillings the analysis is more complicafed
discrete quadrature rule More details of the numerics can be found elsewhere.
N The spectral function satisfies a number of important
properties. Since our calculation is an equilibrium calcula-
fc dti(® :zwil(ti)' (61) tion (even though we are employing a non-equilibrium for-

malism), the spectral function is non-negative and the inte-
with weightsW, for the discrete set of time, ... ty} on  gral of the spectral function over all frequency is equal to 1.
the contouiC. Then, the multiple integrals in E¢G0) reduce  Furthermore, the Green’s function on the real-time axis ap-
to matrix multiplication, and we can use the usual expressioproachesyv; -1 ast—0 and has an exponentially decaying
from linear algebra (and possibly oscillatingbehavior at large times. It also in-
creases quadratically ihfor small times with a curvature

Trin(1+ggho) = In detl +goho), (62)  that is independent of temperature. Unlike the conduction
where det represents ahx N matrix determinant. We obtain density of state$DOS), which is independefit of tempera-
the final result ture, thef-electron DOS evolvéswith T. But, because the
value att=0[and the first and second derivative of Bg(t)]
Gf>(t) —_ le‘i(Ef_,u)tZO(Xt—) is the same for all temperatures, we find that the deviations
zZ of the real-time Green’s function&ue to changes in the

When the DOS develops a gap at low temperature, the
long-time behavior of the Green’s function develops signifi-
(63) cant oscillations, with an amplitude that can decay to zero
very slowly. This creates numerical problems, since it im-
which we calculate numericallfl /At is the approximation plies that the cutoff in time needs to be large in order to be
to the delta function on the conto@ with At the width of  able to accurately determine the DOS. Indeed, we will find
the interval that includes the delta function; fofraidpoint]  that this cutoff dependence limits our ability to accurately
rectangular quadrature rule, one takéis=At,). determine the DOS at low temperature.
We begin our discussion with a plot of the real part of
the (greatey Green’s function versus time foF=1 on the
The numerical evaluation of thieelectron Green’s func- Bethe lattice and for five different values bf (Fig. 2); re-
tion appears to be a rather straightforward procedure: oneall our units aret”=1. The values ofAt,., are 0.0125 for

5. temperaturgincrease at large times.
Xde{V\/i thj‘ +> g°(t, Y Wik o(t 1)) } ,

C k

Ill. COMPUTATIONAL RESULTS

115111-6



f-ELECTRON SPECTRAL FUNCTION OF THE. PHYSICAL REVIEW B 71, 115111(2005

0.2k ] tions show oscillatory behavior on top of the decaying be-
0.1F . havior, we have no simple way to extrapolate the tails out to
0 large time, and the errors of the calculations become larger.

OJ__'f' R WhenU is large enough that the tails of the Green’s func-

Re G,”(t)

:8‘; r b=t [One might have wanted to extrapolatéGfi(t)| on the time
_0.30 u=2 1 axis to At—0, but that cannot be done onGg (t) crosses
—0.4 v ] zero]
058 e L When we perform the cosine Fourier transform of the real
0 5 10 15 20 - . i
Time t [1/t] part of G; (t) to get thef-electron spectral function, we first

spline the real-time datavith an exponentially decaying tail
FIG. 2. Real part of thégreatey f-electron Green's function as appended if appropriateonto a grid that is 20 times finer

a function of time forT=1 and five different values dff on the  using a shape-preserving Akuba spline, and then numerically
Bethe lattice. perform the Fourier transform. Next, we try to extrapolate

the Fourier transform tadt,.,— 0. This extrapolation is per-
U=1,0.025 forU=2, and U=5 and 0.05 forU=2 and formed using ann-point Lagrange interpolation formula
U=2.5. Notice how the Green’s function appears to have jus{pointwise inw) on the different DOS generated for the dif-
a smooth exponential decay for smil] but asU increases, ferentAtreal_ Such a procedure allows for h|gher order po|y-
we first see the Green’s function assume positive values, angbmial approximations to the extrapolation as more data are
then we see that it picks up significant oscillations, whoséncluded. We sometimes find that, even though we have data
period decreases a3 increases. WhetJ is small enough  for a number of different\t,, values, it is most accurate to
that there is no gap in the DOS, then we find that the longperform a linear extrapolation for the two smallest values of
time behavior is exponentially decayirfgith oscillations  At,.., We call this extrapolation schemgextrapolation.
entering as the critical value & for the Mott transition is We judge the accuracy of our calculations in a number of
approacheqd In this regime, we can extrapolate the resultsdifferent ways. The first thing we do is to compare the mo-
for small time out to large time, by fitting the Green’s func- ments of the DO$with or without an extra factor of(w)] to
tion tail with an exponential function, and evaluating thatexact results for those momerftee below. We also com-
function out to |Ong times. This allows us to use a Sma”erpare the Matsubara frequency Green’s functi@merated
time cutoff (and thereby a smalleAt,), which becomes  from an independent program that works directly on the
increasingly important at low temperature in order to main-imaginary axié®!) with the Matsubara frequency Green’s
tain high quality in the data. function generated by integrating the spectral formulith

In Fig. 3, we plot the logarithm of the absolute value of the given DO$ for each Matsubara frequency
the real part of thégreatey Green’s function foilT=0.2 and

U=1.5 on the Bethe lattice. Note how the tails of the Green’s
functions show perfect exponential decay at large time. The Gi(imwy) = f dow Ai(w)
exponent depends strongly on the discretizatidg,, of the
Kadanoff-Baym contour. But, because of this simple expo- One of the important checks of our numerical accuracy
nential behavior, we can append extrapolated tails to OUgomes from a careful comparison of the calculated results
more accurate calculatioriwith smallerAt,e,) and construct  with a number of different moment sum rules of the DOS.
good Fourier transforms. Unfortunately, there does not seemthe sum rules can be derived in a straightforward fashion:
to be any simple way to extrapolate the results to the limithe DOS is first expressed as the imaginary part of the Fou-
Atreq— 0 On the time axis. The problem is that the systematicier transform of the real-time retarded Green’s function. By
error due to a finiteAt., is not arising from a Trotter introducing complete sets of states, the time dependence of
bl’eakup which has a Simple error term, but rather is arisinghe operators can be expressed in terms of the many_body
from the discretization of the continuous matrix Operator.energies Of the diﬁerent Statésote that because th|s Calcu_
lation is performed for the impurity, one must include the
evolution operator of tha field, but since it commutes with
the f-electron operators, it provides no further complica-
tions). These can then be integrated over time, and when the
imaginary part is taken, one gets a delta function in fre-
guency, which allows the frequency integral to be performed.
Finally, any energy factors that remain can be replaced by
the Hamiltonian, and the sums over the complete sets of
states can be performed. In the end, we are left with operator
averages to evaluate. These results are summarized in Table
I. Note that when we perform actual calculations, we always
FIG. 3. Logarithm of the absolute value of the real part of theadd a small shift to the DOS in order to satisfy the zero
(greatey f-electron Green’s function as a function of time for ~moment sum rule to at least one part i 1§pically this
=0.2 andU=1.5 on the Bethe lattice. Three different values\tf,,, = means adding a shift no larger than 0.005 to the spectral
are shown. function).

1

lop—

(64)

1 LA R R AR RN DR R

logylRe G (V)]

1 1 1 i
0 5 10 15 20 25 30 35 40
Time t [1/t]
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TABLE I. Sum rules for thef-electron DOS. The expectation val(®) denotes Tre#"aS(~i8,\) O]/ Z,. The column on the far right
gives the results for the half-filled case considered here. The symbgl; denotes the mixed static local charge susceptibility between the
conduction and the localized electrons. Recall at half-fillhg0, u=U/2, w;=1/2, andp=1/2.

Moment Operator average General result Half-filling result
JdwA(w) df 1) 1 1
JdwAi{(w)f(w) (f7f) Wy 1/2
JdwA(w)w ~([H, fIFN)+([H, £11F) Ef—u+Upe 0
JdwA{(w)wf(w) <[H1ft]f> (Ef_#)W1+U(Xmixed+Wlpe) UXmixed
JdwA((w)w? ([H I D +(H [ 06 (E¢—p)?+(2E¢—2u+U)Upe u?/4
JdwA((w)o?f(w) ([H.[H, 1706 (E= )Wy + (2B = 20+ U)U (Ximixea+ Wipe) u?/8

We find that sometimes th&extrapolation scheme does which is close to the one predicted by tldeextrapolation
not further improve the accuracy of the spectral function. Inprocedure. An examination of the table shows how the mo-
that case, it is often more accurate to use the result generatetent sum rules and the Matsubara frequency Green’s func-
with the smallesiAt,¢, In other cases, we find that the exact tions are all improved as the discretization error is reduced.
result for the lowest Matsubara frequency Green'’s function isThe extrapolation formula used a quadratic Lagrange inter-
bracketed by the calculation with the smallédt., and the polation with all the three DOS calculated at different
S-extrapolation result. In that case, we can average those twit,e,S. These results show that a systematic extrapolation
spectral functions in order to produce better agreement foprocedure is sometimes possible, and that the overall accu-
Gi(iwp). We call this extrapolation procedure Matsubara ex-acy that can be achieved is quite higif course it is diffi-
trapolation. It sometimes can improve the accuracy of theult to estimate the pointwise accuracy of the DOS from any
results. of these integral sum rulgs

As a general rule of thumb, if we can achieve accuracy of As the temperature is lowered, the spectral function
better than 1% for all of the spectral moments, and we caisharpens whetJ is small. In the noninteracting case, the
achieve four digits of accuracy for all of the Matsubara fre-spectral function is a delta function. In the interacting case,
guency Green'’s functions, then the resulting DOS is numerithe spectral function approaches a delta function, but always
cally quite accurate. The deviations from the exact result argnaintains a finite width, even a=0. Nevertheless, the cal-
most likely occurring at small frequencies, where we needulations become more difficult at low&r because a narrow
long-time data to get an accurate Fourier transform, and gteak in the DOS implies a slow exponential decaysi(t),
high frequencies, where the tails don't always decay exactlygnd we find that the discretization error also growsTas
to zero. reduced. To illustrate this phenomenon we show results for

We illustrate these extrapolation procedures with the case)=1.5 andT=0.1. The moment sum rules are summarized in
U=1.5 on the Bethe latticdresults for U=1 have also Table Il and the DOS are summarized in Fig. 5. One can see
appearetf). We first focus on high temperature, wilhe5.  that asAt,., is made smaller, the peak in the DOS is reduced
The results for the moment sum rules, for the shift to thein height and increases in width. Furthermore, the
DOS, and for the lowest Matsubara frequency Green’s funcé-extrapolation scheme seems to overcorrect, by producing a
tion are presented in Table II. We plot the DOS for differentDOS that is too widgwe use a two-poinflinear] interpola-
At,oo in Fig. 4. As can be seen in the figure, as the discretition formula herg The Matsubara-extrapolation procedure is
zation size decreases, the DOS approaches a limiting resuitfjuch better, but the overall accuracy is reduced relative to

TABLE II. Table of the accuracy of the different calculations of the DOS by comparing results for the
different sum rulefU=1.5 on the Bethe lattice, witli=5). The frequency cutoff for the zero moment sum
rule is |w| <15, while all other moments are cut off at the point where the integral stops increasing and
approaches a constafthere is usually a decrease for larger valuesodfwhich normally corresponds to

|w| <4.

Moment At,e5=0.1 At;e5=0.05 At,05=0.025 S extrapolation Exact

1 0.999994217 1.00000354 1.0000113 1.00000099 1

f(w) 0.502728929 0.501524381 0.500528293 0.49994769 0.5

of(w) -0.023149398 -0.025185717 -0.026169934 -0.02785382 -0.027912
? 0.465833709 0.507191087 0.527187957 0.56173037 0.5625
0?f(w) 0.232916854 0.253595543 0.263593979 0.28086519 0.28125
Gi(iwp) -0.063584452 -0.063571673 -0.063545431 -0.06351812 -0.063518334
Shift 0.00485 0.005015 0.002534 -0.0000039 0
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[ — — - At=0.1 A
4F —-— A=0.05 i 5

vvvvvvv At=0.025 I
*, 3 :— S—extrap ‘A‘l -
/:; E Mats—extrap "\l ]
<2F ‘ ]
1F =
0 0 E — — | — 3
-2-15-1-05 0 05 1 15 2 =1 -0.5 0 0.5 1

Frequency w [t'] Frequency w [t*]

FIG. 4. f-electron DOS for different discretization sizes. Also FIG. 5. f-electron DOS for different discretization sizes. Also
plotted is thes-extrapolated result using a three-po{quadrati¢  plotted is thes-extrapolated result using a linear interpolation for-
Lagrange interpolation formula. The parameterstrel.5 on the  myja for the smallest twat,., values and the Matsubara extrapo-
Bethe lattice, withT=5.0. lated result. The parameters dde=1.5 on the Bethe lattice, with

T=0.1.
the higher temperature resulise find only about 3% accu-
racy for the moments, and three parts irf 4@curacy for the there is no significant change that we can see in our data near
Matsubara frequency Green’s functipn§Ve find that this the band edge of the conduction electron DOS that is also
behavior is generic for our calculations—usually the calcuseen in thef-electron DOS, although we expect that at
lations are more difficult at lower temperature, often requir-T=0 the bandwidths of both DOS should agree with each
ing a smaller discretization size for the same level of accuother.
racy. We also find that the real-frequency extrapolation We next investigate the casé=2.5 on the Bethe lattice
procedures start to break down BRss reduced too. (results for the critical interaction strengtd=2 appear

A summary of the results for the case dE1.5 on the elsewherd. This case corresponds to lying just on the insu-
Bethe lattice is shown in Fig. 6. We have used the mostating side of the metal-insulator transiti¢which occurs at
accurate DOS calculated at each temperature, by one of thé=2). The summary plot of the DOS is presented in Fig. 7.
two extrapolation procedures. We also included the conducNote how the localized electron DOS sharpens and develops
tion electron DOS, which has a dip develop at the Fermia gap asT is lowered. What is interesting is that the DOS
energy. One can see that theelectron DOS grows and seems to pile up near the correlation-induced gap atTow
sharpens a§ is reduced. We find that calculations at much We also see a kink start to develop near the upper and lower
lower temperatures than presented here become problemationduction band edges, indicating that thelectron DOS
due to discretization and time-domain cutoff errors. Insetwill likely vanish outside of the band a&— 0. Numerically,
into the figure is a plot of 14;(w=0) versusT. We have these calculations are challenging. If the discretization error
linearly extrapolated the last few points to estimate how bigs too large, or the time-domain cutoff is too small, then we
the DOS would grow a3 — 0. Our estimate shows that the can find negative DOS in the gap region at low temperature.
peak in the DOS should increase to about 4.9 as0. Note  In fact, the poor quality of our data for largét,., is the
the major differences between the localized electron DO3Season why we cannot extrapolate the low-temperature data
and the conduction electron DOS. Thelectron DOS sharp- faithfully. The accuracy of our calculations is usually better
ens and concentrates much weight aroww0, while the than 1.5% for the first moment, better than 4% for the second
conduction electron DOS has a dip there. Notice further thatnoment, and better than 0.5% for the Matsubara frequency

TABLE Ill. Table of the accuracy of the different calculations of the DOS by comparing results for the
different sum rulegU=1.5 on the Bethe lattice, with=0.1). The frequency cutoff for the zero moment sum
rule is || <15, while all other moments are cutoff at the point where the integral stops increasing and
approaches a constafthere is usually a decrease for larger valuesodfwhich normally corresponds to
|w| < 4.

Moment  At,,=0.1 At,o5=0.05  At,,=0.025 6 extrapolation Mats-extrapolation Exact

1 1.00015473  1.00000776  1.00000629 0.99999920 1.0000015 1

f(w) 0.503123093 0.501181165 0.500012329  0.50005666 0.5003576 0.5
of(w)  —0.192872666 -0.208532743 -0.215836651 -0.22736437 -0.2227881 -0.220742
w? 0.477461453 0.518025518 0.537836969  0.58728661 0.5699565 0.5625
w’f(w) 0.238730727 0.259012759 0.268918484  0.29364330 0.2849782 0.28125
Gi(img) -2.08188686 -1.96833103 -1.91591427 -1.86349693 -1.8890850 -1.88908508
Gi(iwy) —0.882512945 -0.865141592 0.85643369 -0.847725223 -0.851976249 -0.854845179
Shift 0.00501 0.005060 0.002544 —-0.0000091 —-0.0004000 0
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B e LA R perform any extrapolations; instead, we use the smallest
R e ] At,.o that produces a positive DOS everywhere, and does not
251, . =05 ] develop significant oscillations due to the finite time cutoff.
S 1 1=03 ] These values are the following: far=5 andT=2 we use
2F2ost, 1 o ] Ate=0.05; forT=1 andT=0.8 we uset,,=0.025. When
% i sb o dl— — Conduction 005 ] we compare thd-electron DOS to the conduction-electron
F [ ooz0d0s0en DOS, we find that the conduction electron DOS has more

spectral weight at higher frequency up to the band edge—the
f-electron DOS spills out beyond the conduction band edge
for finite T, but this weight is reduced asis lowered. It is

C difficult to go to lower temperatures, as computer resources
oke = . S are rapidly exhausted.
-2 -1 0 1 2 We also present results for the hypercubic lattice. The

Frequency w [t'] hypercubic lattice does not develop gaps at the metal-
_ insulator transition due to the infinite exponential tails of the
FIG. 6. f-electron DOS for different temperatures. Also plotted noninteracting Gaussian DOS. But, the spectral function is
is the conduction-electron DO®@hich is temperature independgnt suppressed to zero at the Fermi energy and there is a “gap
The parameters ard=1.5 on the_ Bethe lattice. Inset is_a plot of region” where the DOS remains exponentially small. The
1/A(w=0) versusT. Note how it appears to behave linearly at ansition occurs atU=y2, and we expect results for the
sm"él.l I,tr?llowm_g U‘T‘ go.eﬁttrafptor:gtel tot th-é:D%;eS‘u{'E OSO We €8N hypercubic lattice to be similar to those of the Bethe lattice
predict the maximat height o electron at=>u. when Ugeine= V2Upypercunic Brandt and Urbanek’s original
, . . . work® presented results for the hypercubic lattice. Unfortu-
Green’s functiongat higher temperature, we do significantly nately they gave no details on the step sizes used in their

benvsg.have also performed calculations for a large-gap insugomputations or of the accuracy of their results. The one
lator on the Bethe lattice, with/=5. The summary plot is discussion of moments that they include gives an improper

shown in Ref. 10. The results show a conduction-electror\{alue to the second moment of thelectron DOS, and it is

DOS with a large gap of about 2.5At high temperature, the Irt;lﬁtsthaeg ai?,i\t/(;rn;hrﬁglﬁgmthsirgurrgégcal accuracy of their
;-rzlgd\;voen f!?]cd)sa rtlfasn;lgPIg(f:inteiltjrg?é\l/{/oe?tﬁiesimzfI?r\::z i a We calculate three different values dffor the hypercu-

- . o P 19 93¢ lattice: U=1, which has a dip in the conduction electron
region, with the weight in the peaks moving towards the gapDOS(simiIar toU=1.5 for the Bethe lattice U=2, which is
and then some additional weight being transferred to shouly “small-gap” insula:[or(similar toU=2.5 on the Bethe lat-
ders that lie close to the conduction band edges. There ARe): andU=4, a “large-gap” insulato.fsimilar toU=5 on
small oscillations in the gap region f@=0.8 that are arti- ’ !

o . the Bethe lattice the near-critical pointU=1.5 appears
facts of the cutoff in time. In these calculations, we do nOteIsewheré?. Brandt and Urbanek showed two DOS for

0.7 s =1 and five DOS forU=2. They did not calculate th&
T=5 (6—extrap) ] =4 case.
205 (Mate oxtiar) ] TheU=1 case is plotted in Fig. 8. The results shown here

T=0.4 (At=0.05) 1 are quite similar to those on the Bethe latti¢eg. 6). The
0 (h=009) 1 DOS sharpens dE is lowered, even though the conduction-
electron DOS has a dip at the Fermi energy. Inset is a plot of
the inverse of the DOS at the chemical potential verfus
We can use it to extrapolate f6=0 and predict that the
spectral function peaks at about 4.5. Our results at high tem-
perature and at low temperature agree well with those of
Brandt and Urbanek.
Next, we consider the cadé=2 in Fig. 9, which should
be compared to the similar results on the Bethe lattitg.
7). Here, we see the same kind of behavior—the gap is filled
at high temperature; &b is lowered, spectral weight trans-

FIG. 7. f-electron DOS for different temperatures with=2.5 fers from the ggp region out to the band e_dges, and the peaks
on the Bethe lattice. Also plotted is the conduction-electron Do<sOf the DOS migrate toward the gap regions. Note that the
(which is temperature independgrithe T=5 data uses extrapo- ~ data shown forT=0.2 actually have a small region of fre-
lation, theT=1 and 0.6 data use the Matsubara-extrapolation produency where the DOS becomes negative. This is an artifact
cedure, and the lower temperatures are not extrapoltgdhave  Of the discretization error and the time-domain cutoff.
At,ea=0.05. Note how thef-electron DOS develops a gap &ds The results forU=4 on the hypercubic lattice are pre-
lowered. Note further that a kink starts to develop near the uppesented in Fig. 10. The behavior is what one expects: at high
and lower band edges of the conduction DOS as expected too. Otemperature, the gap region is filled in by thermal excita-
computational accuracy is worst for the subgap DOS at lowtions. As the temperature is lowered, the gap region devel-
temperature. ops, with spectral weight being transferred from the gap out

— T=1 (Mats—extra
0.6 ( p)

Frequency @ [t*]
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FIG. 10. f-electron DOS for different temperatures witl= 4 on

FIG. 8. f-electron DOS for different temperatures with=1 on the hypercubic latticéhe T=5 andT=2 data overlap Also plotted
the hypercubic lattice. Also plotted is the conduction-electron DOSis the conduction-electron DOS. TAe=5 data are calculated with
All of the data were extrapolated with one of the two extrapolationthe &-extrapolation technique; all other temperatures work with
techniques discussed in the text. Note the similarity with Fig. 6 forAt,.,=0.05. These results are similar to those found for the Bethe
the Bethe lattice. In the inset we plot the inverse of the DOS at thdattice (Ref. 10, but for the Bethe lattice the difference between the
chemical potential. Here, the low-temperature results don't appeaf-electron DOS and the conduction electron DOS is more dramatic.
to behave in quite the linear fashion we saw on the Bethe lattice, but

we can st'iII attempt to fextrapolate =0 with the prediction that  {_glectron DOS has significant temperature dependence. For

the peak in the DOS will also be around 4.5Tat0. small U, the DOS sharpens &sis lowered to a single-peak
structure with a narrow width. For larde, the DOS devel-

to higher energy. As the temperature becomes even lowegps a gap at lowl and the peaks of the DOS push close to

the computational needs exceed our resources. Note how thige correlation-induced gap edges. When we compare results

peaks in thef-electron DOS are pushed closer to the gapfor similar U values on the Bethe and hypercubic lattices, we

region than the peaks in the conduction-electron DOS. see similar behavior in the DOS.

We performed an in-depth analysis of the accuracy of the
numerical calculations. Errors arise from a finite discretiza-
tion error(discretizing the continuous matrix operator into a
discrete matrixand a time-domain cutoff errgrepresenting
the largest timet that G{ (t) is calculated out th We use
Ainear and quadratic moment sum rules and the spectral for-

time and the Fourier transform to get the DOS. Unlike themUIa for the Matsubara frequency Greens functions to

conduction DOS, which is temperature independent thdauge Fhe accuracy of the calculations. In_ gene_ral, the dis-
' ' 7 Cretization error becomes worses- 0, and it is quite chal-

IV. CONCLUSIONS

In this contribution we calculated thieelectron DOS of
the Falicov-Kimball model at half-filling. The procedure re-
quires us to generate the greater Green’s function for re

lenging to get accurate results at low temperatures and strong

S MR coupling
" ——— T1=0.5 (Mats—extrap) This study is useful to understand problems with the ac-
0.6 ——— T7=0.3 (At=0.05) _ S . .
i ———— T=0.2 (At=0,05) curacy of truly nonequilibrium calculations that use similar
0.5 - — T Conduction DO i Kadanoff-Baym contours. While we would not have exact
. - sum rules to compare to anymore, it is clear that one needs to
3 0.4 T perform systematic studies in the discretization size along
< 0.3'_ \ / \ i the contour to gauge the accuracy of the results. One also
. / \ /i needs to reduce the real-axis discretization as the temperature
25 \ T is reduced. True nonequilibrium problems evolve in an ex-
0.2 / \ duced. T lib bl |
01 K / / \ ] ternal field, and such a field can be added into the analysis
L Y \ given here. The complicated aspect is being able to construct
0 L. 1L R E—— the local Green'’s function from the local self-energy, as the

-3 -2 -1 0 1 2 3

Frequency @ [t'] coupling to a vector potential enters into the hopping part of

the Hamiltonian, and the local Green’s function is no longer
FIG. 9. f-electron DOS for different temperatures with=2 on ~ F€presented by a simple Hilbert transform. _ _

the hypercubic lattice. Also plotted is the conduction-electron DOS.  We only examined the half-filled case here. This provides

The data are either extrapolated with one of the two extrapolatio® Significant simplification, as the DOS can be calculated by

techniques discussed in the text, or we work with a fixed value ot Fourier transform of the real part 6 (t). For other fill-

the discretization on the real-time axis. Note the similarity with Fig.ings, the analysis is more complicated and usually requires

7 for the Bethe lattice. using the particle-hole transformatidfor calculations with
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fillings pe andw; and with fillings 1—-p, and 1-w;) to gen-  proach of the numerical renormalization group. Their work is
erate the full DOS. This is because the exponential factors imost accurate at low frequencies and shows the development
f(w)—1 suppress the spectral function fex<0, so onlyw  of x-ray edge singularities in the metallic phaseTas 0.

>0 results can be determined accurately; by using the

particle-hole transformation for the conjugate fillings, we can ACKNOWLEDGMENT
construct the full DOS. We plan to examine that case in the
future. We acknowledge support from the National Science

Note added in proofAfter completing this manuscript, Foundation under Grant No. DMR-0210717 and the Office
we were informed of similar work by F. B. Anders and G. of Naval Research under Grant No. N00014-99-1-0328. Su-
Czycholl (cond-mat/0411721which efficiently solves for percomputer time was provided by the ERDC and ARSC
the f-electron spectral function using the complimentary ap-supercomputer centers.

*Electronic address: freericks@physics.georgetown.edu 7J. K. Freericks and V. Zlatj Rev. Mod. Phys.75, 1333(2003.

'Electronic address: turk@physics.georgetown.edu 8U. Brandt and M. P. Urbanek, Z. Phys. B: Condens. Mag#y

*Electronic address: zlatic@ifs.hr 297 (1992.

L. P. Kadanoff and G. BaymQuantum Statistical Mechanics 93 . Freericks, V. M. Turkowski, and V. ZI&ti Physica B(to be
(Benjamin, New York, 196p published.

2L. V. Keldysh, Zh. Eksp. Teor. Fiz47, 1945(1964 [Zh. Eksp.
Teor. Fiz. 20, 1018(1965)].

SL. M. Falicov and J. C. Kimball, Phys. Rev. Let22, 997 (1969.

4W. Metzner and D. Vollhardt, Phys. Rev. Le&2, 324 (1989. 1 - g o )

5U. Brandt and C. Mielsch, Z. Phys. B: Condens. Maif& 365 V. Zlati¢, J. K. Freericks, R. Lemfski, and G. Czycholl, Philos.
(1989. Mag. B 81, 1443(2002.

6G. Czycholl, Phys. Rev. B59, 2642(1999. 12p. G. J. van Dongen, Phys. Rev. 45, 2267(1992.

103, K. Freericks, V. M. Turkowski, and V. Zl&ti Proceedings of
the 2004 Users Group Conferend&EE Computer Society, Los
Alamitos, CA, 2005, p. 7.

115111-12



