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The f-electron spectral function of the Falicov-Kimball model is calculated via a Keldysh-based many-body
formalism originally developed by Brandt and Urbanek. We provide results for both the Bethe lattice and the
hypercubic lattice at half filling. Since the numerical computations are quite sensitive to the discretization
along the Kadanoff-Baym contour and to the maximum cutoff in time that is employed, we analyze the
accuracy of the results using a variety of different moment sum rules and spectral formulas. We find that the
f-electron spectral function has interesting temperature dependence, becoming a narrow single-peaked function
for small U and developing a gap, with two broader peaks for largeU.
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I. INTRODUCTION

Nonequilibrium many-body physics is becoming an in-
creasingly important field because it allows strongly corre-
lated electrons to be examined in the presence of large ex-
ternal fields, which can drive them far from equilibrium; as
nanotechnology research grows, there are an increasing num-
ber of nanoscale solid-state devices which are exposed to
extreme fields. The formalism to solve nonequilibrium prob-
lems was developed independently by Kadanoff and Baym1

and by Keldysh.2 In principle, it allows these nonequilibrium
problems to be solved exactlysincluding all nonlinear field
effectsd, but usually the formalism is employed in a pertur-
bative approach for the electron correlations. These nonequi-
librium formalisms can also be used to calculate equilibrium
Green’s functions, especially in cases where alternative ana-
lytic continuation methods are intractable. We examine the
simplest such problem—thef-electron spectrum of the
Falicov-Kimball model. This problem can be solved exactly
with dynamical mean-field theorysDMFTd.

The spinless Falicov-Kimball model3 sFKd describes the
dynamics of two types of electrons: conduction electrons
screated or destroyed at sitei by d† or dd and localized elec-
trons screated or destroyed at sitei by f† or fd. The nonin-
teracting conduction electrons can hop between nearest-
neighbor sites on aD-dimensional lattice, with a hopping
matrix −tij =−t* /2ÎD; we choose a scaling of the hopping
matrix that yields a nontrivial limit in infinite dimensions.4

The f electrons have a site energyEf, and a chemical poten-
tial m is employed to adjust the total number of electrons
nd+nf =ntot. The d- and f-number operators at each site are
nd andnf. There is a finite Coulomb interactionU betweend-
and f electrons that occupy the same lattice site, and so the
Falicov-Kimball Hamiltonian for the lattice is

HFK = o
i j

s− tij − mdi jddi
†dj + o

i

sEf − mdf i
†f i + o

i

Udi
†di f i

†f i .

s1d

The FK lattice modelfin Eq. s1dg can be solved in infinite
dimensions using the methods of Brandt and Mielsch.5 We
consider two kinds of lattices:sid the hypercubic lattice with
a Gaussian noninteracting density of statesrhcsed
=expf−e2/ t*2g / sÎpt*d, and sii d the infinite-coordination Be-
the lattice with a semicircular noninteracting density of states
rBsed=Î4t*2 −e2/ s2pt*2d; we take t* as the unit of energy
st* =1d, and consider only the homogeneous phase, where all
quantities are translationally invariant. For our numerical
work, we will concentrate on half filling, wherem=U /2 and
Ef =0.

Despite the conservation of the localf-electron number
sfHFK , f i

†f ig=0d, the f electrons have nontrivial dynamics as
a function ofT,6,7 so we expect thef-electron spectral func-
tion to have an interesting evolution with the correlation
strengthU. WhenU=0, the spectral function is a delta func-
tion, which broadens asU increases because thef electron
sees a fluctuatingd electron that hops onto and off of the
local site as a function of time. WhenU is increased further,
a metal-insulator transition takes place, and we expect the
f-spectral function to develop a gap asT→0. Hence, the
f-electron spectral function should have rich behavior as a
function of U andT.

The organization of this paper is as follows. In Sec. II, we
present the formalism, outlining in detail how the analytic
continuation is carried out within this nonequilibrium ap-
proach; our notation is nonstandard because we use the usual
Kadanoff-Baym contour, but we stick with the Green’s func-
tion definitions forG. and G, of Brandt and Urbanek.8 In
Sec. III, we present our numerical results for both the Bethe
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and hypercubic lattices, and we conclude in Sec. IV. A short
communication, showing the spectral function at the critical
or near-critical value ofU for the metal-insulator transition,
has been completed,9 and a longer contribution, detailing the
computational algorithm, parallelization, and numerical ac-
curacy, has also been completed.10

II. FORMALISM

The many-body problem on an infinite-coordination lat-
tice can be solved by a mean-field-like procedure, because
the self-energy of the conduction electrons is local.4 Hence,
the local d-electron Green’s functionGlocszd on the lattice
satisfies

Gd
locszd =E rsed

z+ m − Sdszd − e
de, s2d

where z is a complex variable andSd is the momentum-
independent self-energy. As noted by Brandt and Mielsch,5

the lattice self-energy coincides with the self-energy of an
atomicd state coupled to anf state with the same Coulomb
interaction as on the lattice, and perturbed by an external
time-dependent field,lst ,t8d, which mimics, for the impu-
rity, the hopping of the conduction electrons on the lattice, by
creating time-dependent fluctations of the conduction-
electron density. For an appropriate choice of thel field, the
functional dependence ofSd on Gdszd andGfszd, the atomic
propagators ford- and f states, is exactly the same as in the
lattice case. The lattice problem is thus reduced to finding the
atomic self-energy functional for thed electrons, and then
settingGd

locszd=Gdszd andGf
locszd=Gfszd on each lattice site.

The FK atom can be solved by using the interaction rep-
resentation, such that the time dependence of operators is
defined by the atomic Hamiltonian

Hat = − md†d + sEf − mdf†f + Ud†df†f , s3d

and the time dependence of the state vectors is governed by
an evolution operator which is defined by thel field. For
purely imaginary times,t̄P s0,−ibd, the evolution operator
is

Sst̄,ld = Tt̄e
+e0

t̄dt̄8e0
t̄dt̄9lst̄8,t̄9dd†st̄8ddst̄9d, s4d

whereTt̄f¯g orders all the operators within the bracket with
respect to the position on the lines0,−ibd of their time ar-
gument in such a way that the time arguments which are
closer to zero appear further to the right, and there is an
overall change of sign whenever the time ordering inter-
changes two fermionic operators. The time evolution of the
operators between an initial timet̄8 and the final timet̄ is
determined byHat as

Ost̄d = eist̄−t̄8dHatOst̄8de−ist̄−t̄8dHat. s5d

The integration is along the imaginary-time axisst̄ andt̄8 are
purely imaginaryd, i.e., our time variablet̄ can be expressed
in terms of Brandt and Mielsch’s5 variablet in the following
way: t̄=−it.

The atomic HamiltonianHat and the time-dependent field
lst̄ , t̄8d define the partition function of the FK atom

Zatsl,m,bd = Trdf Tt̄fexph− bHatjSs− ib,ldg, s6d

where the trace is taken over the atomicd- and f states. Since
the number off electrons is a conserved quantity, we can
write

Zatsld = Z0sl,md + e−bsEf−mdZ0sl,m − Ud, s7d

with Z0sl ,md the partition function of ad electron subject to
the l field in the absence off electronssnf =0d. That is,
Z0sl ,md=Trd Tt̄fexph−bH0jSs−ib ,ldg, whereH0=−md†d.

The fieldlst̄ , t̄8d gives rise to fluctuations in thed occu-
pancy, which correspond in the equivalent lattice problem to
the local d fluctuations due to thed-electron hopping. We
chooselst̄ , t̄8d such that it satisfies the samesantiperiodicd
boundary condition as the imaginary-time Green’s function
ssee belowd, and expand it in a Fourier series along the
imaginary axissrecall t̄ is purely imaginaryd

lst̄ − t̄8d = To
n

evnst̄−t̄8dln. s8d

Here, vn=ps2n+1dT is the fermionic Matsubara frequency
and we setkB=1. Thel field in the complexv plane, which
is needed for thef-electron propagator, can be determined by
an iterative procedure using the DMFT self-consistency con-
dition for thed-electron’s Green’s function.

Thed-electron Green’s function is defined as a functional
derivative of the atomic partition function,1 Gdst̄− t̄8d
=d ln Zat/dlst̄8 , t̄d, which gives

Gdst̄ − t̄8d = −
1

Zat
Trdf Tt̄fe−bHatSs− ib,lddst̄dd†st̄8dg.

s9d

Gfst̄− t̄8d is periodic on the imaginary time axis with period
2ib, and is antiperiodic modulosibd. It depends on the dif-
ference of the time arguments, because we are in thermal
equilibrium and the system is time-translation invariant; it
has a discontinuity att̄= t̄8 and is therefore a nonanalytic
function of t̄− t̄8.

To find Gf we define the effective-medium Green’s func-
tion, Gd

0st̄− t̄8d=d ln Z0/dlst̄8 , t̄d, which reads

Gd
0st̄ − t̄8d = −

1

Z0sl,md
Trd Tt̄fe−bH0Ss− ib,lddst̄dd†st̄8dg,

s10d

and satisfies the equation of motionfEOMg sRef. 1d

E dt%fs− ]t̄ + imddcst̄ − t%d + lst̄ − t%dgGd
0st% − t̄8d = dcst̄ − t̄8d,

s11d

with dcst̄d the delta function defined on the line segment
s0,−ibd with the normalization edt̄dcst̄d=1 fi.e., dcst̄d
= iTon expfvnt̄gg. SinceGd

0 also satisfies the usual periodic
boundary conditions, Fourier transforming the EOM gives
the solution
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fGd
0sivndg−1 = ivn + m − ln, s12d

and the full Green’s function follows as5,7

Gdsivnd =
w0

fGd
0sivndg−1 +

w1

fGd
0sivndg−1 − U

, s13d

with w0 andw1 the statistical weighting factors of the unoc-
cupied and the occupiedf states, respectively. These are
given by5 w1=1−w0 andw0=Z0/Zat, where

Z0sl,md = 2ebm/2p
n

fGd
0sivndg−1

ivn
. s14d

Defining the self-energy function of the FK atomSd by Dys-
on’s equation

Sd = fGd
0g−1 − fGdg−1, s15d

which holds on the imaginary and the real frequency axes,
we can find thel field and the statistical weighting factors
w0 and w1 by an iterative procedure. We start with a trial
self-energy on the imaginary axis and calculateGd from Eq.
s2d, getfGd

0g−1 from Eq.s15d, calculatew0 andw1 using Eqs.
s14d and s7d, recalculateGd from s13d, and find the newSd
from Eq. s15d. Once the procedure is converged on the
imaginary axis, we have the weightsw0 andw1, the chemical
potentialm, and the self-consistent solution for thel field.
Sincew0 andw1 are just numbers, we can analytically con-
tinue Gdsivnd given by Eq.s13d from the imaginary axis in
the complex frequency plane and repeat the iterative proce-
dure to find retarded quantities and the spectral function of
the l field. The knowledge of thel field everywhere in the
complex v plane is a necessary input to find the Green’s
function of the localizedf electrons.

The imaginary time Green’s function of thef electrons is
defined by an expression analogous to Eq.s9d

Gfst̄ − t̄8d = −
1

Zat
Trdf Tt̄fe−bHatSs− ib,ldfst̄df†st̄8dg;

s16d

it satisfies the same boundary condition, and has the same
analytic structure asGdst̄− t̄8d. As usual, we expressGfst̄
− t̄8d in terms of two analytic functions oft̄− t̄8, such that

Gfst̄ − t̄8d = HGf
.st̄ − t̄8d for Imst̄ − t̄8d , 0

Gf
,st̄ − t̄8d for Imst̄ − t̄8d . 0

J . s17d

To find Gf
. andGf

, we introduce the real variablest= i t̄ and
t8= i t̄8, and representGfst̄− t̄8d by the Matsubara sum

Gfst̄ − t̄8d = To
n

e−ivnst−t8dGfsivnd. s18d

For t−t8P s−b ,0d, which corresponds to Imst̄− t̄8dP s0,bd,
we replace the sum over Matsubara frequencies by a contour
integral in the complex frequency plane. UsinguResfszduiwn
=−1/b, where fsvd is the Fermi function, we obtain

Gf
,st̄ − t̄8d =E

−`

`

dv fsvde−vst−t8dAfsvd, s19d

where Afsvd=−Im Gf
Rsvd /p is the spectral function. Here,

we used the fact thatGfszd coincides with the retarded
Green’s function,Gf

Rszd, in the upper half-plane and with the
advanced Green’s function,Gf

Aszd, in the lower half-plane,
and that the discontinuity ofGfszd across the cut along the
real v axis is given by fGf

Rsv+ i0+d−Gf
Asv− i0+dg /2pi

=−Im Gf
Rsvd /p. Sincet−t8P s−b ,0d, the integrand is well

behaved forv→ ±` sthe cutoff atv→` is provided by the
Fermi functiond and the integral defines an analytic function
sit has derivatives to all ordersd. Reinstating the imaginary
times t̄ and t̄8, we obtain

Gf
,st̄ − t̄8d =E

−`

`

dv Afsvdfsvde−ivst̄−t̄8d, s20d

which can be used to perform the analytic continuation from
the imaginary to real times,t̄→ t, t̄8→ t8. Defining the Fou-
rier transform of the real-time Green’s function as

Gf
,st − t8d =

1

2p
E

−`

`

dv e−ivst−t8dGf
,svd, s21d

it follows that

Gf
,svd = 2pAfsvdfsvd; s22d

hence, our definition forG, andG. is missing a factor ofi
from the standard definition, but agrees with that of Brandt
and Urbanek.8 Similarly, for t−t8P s0,bd and Imst̄− t̄8d
P s−b ,0d, we use uResfs−zduiwn

=1/b and express the Mat-
subara sum forGf

.st−t8d as

Gf
.st̄ − t̄8d = −E

−`

`

dv Afsvdfs− vde−ivst̄−t̄8d. s23d

This integrand is also well behaved and shows thatGf
. is an

analytic function of imaginary times. The analytic continua-
tion to the real axis,t̄→ t, t̄8→ t8, gives

Gf
.st − t8d =E

−`

`

dv Afsvdffsvd − 1ge−ivst−t8d, s24d

so that the Fourier transform ofGf
.std reads

Gf
.svd = 2pAfsvdffsvd − 1g. s25d

At half-filling, where Afsvd=Afs−vd, we use Gf
.st− t8d

=fGf
.st8− tdg* and obtain from the inverse of Eq.s24d the

result

Afsvd = −
2

p
E

0

`

dt cossvtdReGf
.std. s26d

Thus, the time-ordered Green’s function at real times can be
written as
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Gfst − t8d =E dv Afsvdffsvd − Qst − t8dge−ivst−t8d, s27d

with Qsxd the unit step functionQsx.0d=1 andQsx,0d
=0.

However, these formal manipulations, which reveal the
analytic properties of the Green’s function, do not explicitly
provide the spectral function,Afsvd, which is needed to find
Gf

. or Gf
,. On the other hand, the imaginary-time formalism

provides numerical results for the Green’s function at the
Matsubara frequencies5,7,11but it does not reveal the full ana-
lytic structure and it does not provide the spectral function.
Thus, the real-time Green’s function of thef electron cannot
be inferred directly from these formal and numerical results
but has to be calculated separately.

To obtain the real-time properties of thef electron, we
define the contour-ordered Green’s function in the interaction
representation as

Gf
cst − t8d = −

1

Zat
Trdf Tcfe−bHatScslcdfstdf†st8dg, s28d

where

Scslcd = Tce
ecdt̄ecdt̄8lcst̄,t̄8dd†st̄ddst̄8d, s29d

is the analytic continuation of the evolution operator in Eq.
s4d from imaginary times to times on the contour which is
depicted in Fig. 1 for the caset, t8. For t, t8 the contour
starts att, runs tot8, goes back tot, and ends att− ib. Once
again, this notation is missing a factor ofi in the exponent of
the evolution operator and as a prefactor for the Green’s
function, from that used in standard approaches, but it agrees
with Brandt and Urbanek.8

The time dependence of the operators on the contour is
defined assassumingt̄8 precedest̄ on Cd

Ost̄d = eist̄−t̄8dHatOst̄8de−ist̄−t̄8dHat. s30d

The Tcf¯g orders all operators within the bracket with re-
spect to the position on the contour of their time arguments,
such that

Tcffst̄df†st̄8dg =H fst̄df†st̄8d t̄8 precedingt̄ on C

− f†st̄8dfst̄d t̄ precedingt̄8 on C
J ,

s31d

and similarly for thed operators.
Thel field on the contour is obtained by an analytic con-

tinuation from the imaginary time axis. Since thel field,
considered as a function of imaginary times, satisfies the
same boundary condition as the Green’s function, it is com-
posed of two analytic pieces which can be continued from
imaginary times to complex times on the contourC. Starting
from the Fourier transform given by Eq.s8d we obtain, in
analogy with Eqs.s20d and s23d, the results

l,st̄ − t̄8d = −
1

p
E

−`

`

dv fsvde−ivst̄−t̄8d Im lRsvd, s32d

and

l.st̄ − t̄8d = −
1

p
E

−`

`

dvffsvd − 1ge−ivst̄−t̄8d Im lRsvd,

s33d

where ImlRsvd is the spectral function of thel field. These
integrals define analytic functions of imaginary times and
can be continued to the contour shown in Fig. 1 simply by
substitutingt̄→ t̄ and t̄8→ t̄8, wheret̄ and t̄8 are on the con-
tour C. Thus, the contour-orderedl-field can be written as

lcst̄, t̄8d = −
1

p
E

−`

`

dv Im lRsvd

3expf− ivst̄ − t̄8dgffsvd − Qcst̄ − t̄8dg, s34d

whereQc=0 if t̄ precedest̄8 on C andQc=1 otherwise, and
t̄ and t̄8 lie anywhere on the contour. Restrictingt̄ and t̄8 to
the vertical part of the contour, and using the antiperiodicity
along the imaginary axis, we can make the inverse Fourier
transform

lsivnd = ln = iE
0

−ib

dt̄ lcst̄,0de−vnt̄

= − iE
0

−ib

dt̄ lcst̄,− ibde−vnt̄, s35d

and recover the spectral formula

lsivnd = −
1

p
E

−`

`

dv
Im lRsvd
ivn − v

. s36d

Contrary to the arguments ofGfst− t8d, which define the
boundaries of the horizontal piece of the contour, the argu-
mentst̄ andt̄8 of the contour-orderedl field can be anywhere
on the contourC, so that the dynamical mean field connects
the real and the imaginary parts of the contour. In DMFT,
thel field originates from the electron hopping on the lattice
and it is responsible not only for the propagation of particles
in real times but for the thermalization of the system as well.
Contrary to most nonequilibrium problems, in which the real

FIG. 1. Kadanoff-Baym contour for evaluating the equilibrium
Green’s function fortø t8. For tù t8 the contour starts att8 and runs
to t, then goes back tot8 and ends att8− ib.
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field is switched on at some timet0 and the integration along
the vertical part of the Kadanoff-Baym contour can be ne-
glected as one approaches the steady state, in DMFT prob-
lems it is essential to integrate over the whole contour, be-
cause the hopping on the latticeswhich gives rise to thel
fieldd is always present.

We can now find the contour-ordered Green’s function
using the Kadanoff-Baym EOM methods, and we consider
the caset. t8. The fermionic operators on the contour satisfy
the EOMs

i
d

dt̄
d†st̄d = fm − Uf†st̄dfst̄dgd†st̄d, s37d

and

i
d

dt̄
fst̄d = fsEf − md + Ud†st̄ddst̄dgfst̄d. s38d

Since f†st̄dfst̄d= f†s0dfs0d does not change with timesi.e., it
commutes with the Hamiltoniand, Eq. s37d has a simple so-
lution

d†st̄d = e−ifm−Uf†st8dfst8dgst̄−t8dd†st8d, s39d

wheret8 is the initial time on the contour. The evolution off
electrons is more complicated, because the number ofd elec-
trons fluctuates in time and we can only write the solution as
a contour-ordered product

fst̄d = e−isEf−mdst̄−t8dSc8sxt̄dfst8d, s40d

where

Sc8sxt̄d = Tc expHE
c

dt%E
c

dt%8xt̄st%,t%8dd†st%ddst%8dJ , s41d

and

xt̄st%,t%8d = − iUQcst̄ − t%ddcst% − t%8d. s42d

Thus, we obtain

Gf
.st − t8d = −

e−isEf−mdst−t8d

Zat
Trdffe−bHatScsl̃cdfst8df†st8dg,

s43d

whereScsl̃cd is the evolution operator in the presence of the
modified time-dependent potential which is due to the fluc-
tuation in the number ofd electrons during the propagation
of an f electron from the initial timet8 to the final timet

l̃cst%,t%8d = lcst%,t%8d + xtst%,t%8d. s44d

Note, the operator sequencefst8df†st8d commutes withScsl̃cd
and removes all the occupiedf states from the trace, so that
the f propagator can be expressed in terms of a partition
function of an effectived electron

Gf
.st − t8d = −

e−isEf−mdst−t8d

Zat
Zsm,l̃cd, s45d

whereH0 defines the dynamics of ad electron when there
are nof electrons, and

Zsl̃cd = Trdfe−bH0Scsl̃cdg s46d

is the partition function of such an electron subject to the

effectivel̃c field. Because of time-translation invariance, we
set t8=0 from now on.

To find the partition function of ad electron driven by the

time-dependentl̃c field, we use again functional derivative
techniques to define an auxiliary Green’s function

gcst̄, t̄8d =
1

Zsl̃d

dZsl̃cd

dl̃st̄8, t̄d
, s47d

such that

gcst̄, t̄8d = −
1

Zsl̃d
TrdfTce

−bH0dst̄dd†st̄8dScsl̃cdg. s48d

Note, the operator dynamics on the contour is now defined
by H0

Ost̄d = eist̄−t̄8dH0Ost̄8de−ist̄−t̄8dH0. s49d

Next, we introduce an auxiliary contour-ordered Green’s
function for ad electron driven by thext field in the absence
of the lc field

g0
cst̄, t̄8d =

d ln Z0sxtd

dxtst̄8, t̄d
, s50d

where

Z0sxtd = TrdfTce
−bH0Scsxtdg = 1 +ebm−iUt , s51d

is the effective partition function of such a system. Func-
tional differentiation gives

g0
cst̄, t̄8d = −

1

Z0sxtd
TrdfTce

−bH0dst̄dd†st̄8dScsxtdg. s52d

The evaluation ofZ0sxtd and g0
c is straightforwardsfor de-

tails see Refs. 11 and 7d, Scsxtd does not change the number
of d electrons and the Hilbert space for thed states com-
prises only two statessnd=0 andnd=1d. The Green’s func-
tionsg andg0 depend explicitly on the contour timest̄ andt̄8,
and implicitly on the external timet srecall we sett8=0d.

Taking the time derivatives ofgcst̄ , t̄8d and g0
cst̄ , t̄8d with

respect tot̄, we find, using Eq.s49d, the EOMs

E
c

dt̄8fgcg−1st̄, t̄8dgcst̄8, t̄d = dcst̄ − t̄8d, s53d

where

fgcg−1st̄, t̄8d = fg0
cg−1st̄, t̄8d + lcst̄, t̄8d, s54d

and
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fg0
cg−1st̄, t̄8d = S−

]

]t̄
+ imDdcst̄ − t̄8d + xtst̄, t̄8d. s55d

In operator form, this can be written as

fgcg−1gc = 1, s56d

where the unit operator1 has the matrix elementsdcst̄− t̄8d.
The Dyson equation for the integral operatorgc can thus be
written as

fgcg−1 = fg0
cg−1f1 + g0

clcg, s57d

with the operator product implying an integration over the
contourC. From the definition ofgc in terms of the func-

tional derivatives of the partition functionZsl̃cd, it follows
that

Zsl̃cd = eTr lnfgcg−1
, s58d

where the continuous trace of a contour-ordered operator is
given by the line integral over the contourC. Using Dyson’s
equation, this can be written as

Zsl̃cd = Z0sxt̄deTr lns1+g0
clcd. s59d

To approximate the continuous trace by a discrete one,8 we
expand the logarithm

lns1 + g0
clcd = o

n=1

`
1

n
sg0

clcdn, s60d

and replace each contour integral by a discrete sum, using a
discrete quadrature rule

E
c

dt Istd = o
i=1

N

WiIstid, s61d

with weightsWi for the discrete set of timesht1, . . . ,tNj on
the contourC. Then, the multiple integrals in Eq.s60d reduce
to matrix multiplication, and we can use the usual expression
from linear algebra

Tr lns1 + g0
clcd = ln dets1 + g0

clcd, s62d

where det represents anN3N matrix determinant. We obtain
the final result

Gf
.std = −

1

Ze−isEf−mdtZ0sxt̄d

3detFWiH di j

Dtc
+ o

k

gcsti,tkdWklcstk,tjdJG ,

s63d

which we calculate numericallys1/Dtc is the approximation
to the delta function on the contourC with Dtc the width of
the interval that includes the delta function; for afmidpointg
rectangular quadrature rule, one takesWi =Dtcd.

III. COMPUTATIONAL RESULTS

The numerical evaluation of thef-electron Green’s func-
tion appears to be a rather straightforward procedure: one

decides on a step size for the real-time axisDtreal and for the
imaginary-time axisDtimag of the Kadanoff-Baym contour
and then calculates out to the largest time that is feasible
within the limitations of the computational resources. In the
results presented here, we takeDtreal to range from 0.1 to
0.0125. We fixDtimag=0.05. The cutoff in time is always
taken to be no larger than 80. In order to calculate the
f-electron Green’s function, we need to calculate the deter-
minant of a discretized matrix operator. This is done by first
diagonalizing the matrix, and then taking the product of all
of the eigenvalues. This step is the most time-consuming step
of the calculation, because the matrix is a general complex
matrix, with no special symmetries, and the eigenvalues are
usually complex-valuedsthe maximal matrix size that we
consider is about 210032100d. Since each timet chosen to
evaluate the Green’s function requires a new contour, the
grid of points on the time axis, whereGf

.std is generated,
need not use the same spacing as the discretizing grid of each
Kadanoff-Baym contour used for discretizing the continuous
matrix operator. Usually, we use a time-grid spacing of 0.2 or
0.1, because the Green’s function does not normally have
oscillations that are on a finer scale than that on the time
axis. Once the Green’s function has been calculated on the
time-axis grid, we perform a Fourier transform to calculate it
on the real-frequency axis. We first spline our real-time data
susing a shape-preserving Akuba splined onto a real-time grid
that is 20 times smaller than the originally chosen time-grid
spacing. Next, we numerically sum thescosined Fourier
transform of the real part of the Green’s function to deter-
mine the spectral functionswhich is possible only at half-
filling; for other fillings the analysis is more complicated7d.
More details of the numerics can be found elsewhere.10

The spectral function satisfies a number of important
properties. Since our calculation is an equilibrium calcula-
tion seven though we are employing a non-equilibrium for-
malismd, the spectral function is non-negative and the inte-
gral of the spectral function over all frequency is equal to 1.
Furthermore, the Green’s function on the real-time axis ap-
proachesw1−1 as t→0 and has an exponentially decaying
sand possibly oscillatingd behavior at large times. It also in-
creases quadratically int for small times with a curvature
that is independent of temperature. Unlike the conduction
density of statessDOSd, which is independent12 of tempera-
ture, the f-electron DOS evolves8 with T. But, because the
value att=0 fand the first and second derivative of ReGf

.stdg
is the same for all temperatures, we find that the deviations
of the real-time Green’s functionssdue to changes in the
temperatured increase at large times.

When the DOS develops a gap at low temperature, the
long-time behavior of the Green’s function develops signifi-
cant oscillations, with an amplitude that can decay to zero
very slowly. This creates numerical problems, since it im-
plies that the cutoff in time needs to be large in order to be
able to accurately determine the DOS. Indeed, we will find
that this cutoff dependence limits our ability to accurately
determine the DOS at low temperature.

We begin our discussion with a plot of the real part of
the sgreaterd Green’s function versus time forT=1 on the
Bethe lattice and for five different values ofU sFig. 2d; re-
call our units aret* =1. The values ofDtreal are 0.0125 for
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U=1,0.025 for U=2, and U=5 and 0.05 forU=2 and
U=2.5. Notice how the Green’s function appears to have just
a smooth exponential decay for smallU, but asU increases,
we first see the Green’s function assume positive values, and
then we see that it picks up significant oscillations, whose
period decreases asU increases. WhenU is small enough
that there is no gap in the DOS, then we find that the long-
time behavior is exponentially decayingswith oscillations
entering as the critical value ofU for the Mott transition is
approachedd. In this regime, we can extrapolate the results
for small time out to large time, by fitting the Green’s func-
tion tail with an exponential function, and evaluating that
function out to long times. This allows us to use a smaller
time cutoff sand thereby a smallerDtreald, which becomes
increasingly important at low temperature in order to main-
tain high quality in the data.

In Fig. 3, we plot the logarithm of the absolute value of
the real part of thesgreaterd Green’s function forT=0.2 and
U=1.5 on the Bethe lattice. Note how the tails of the Green’s
functions show perfect exponential decay at large time. The
exponent depends strongly on the discretizationDtreal of the
Kadanoff-Baym contour. But, because of this simple expo-
nential behavior, we can append extrapolated tails to our
more accurate calculationsswith smallerDtreald and construct
good Fourier transforms. Unfortunately, there does not seem
to be any simple way to extrapolate the results to the limit
Dtreal→0 on the time axis. The problem is that the systematic
error due to a finiteDtreal is not arising from a Trotter
breakup which has a simple error term, but rather is arising
from the discretization of the continuous matrix operator.

When U is large enough that the tails of the Green’s func-
tions show oscillatory behavior on top of the decaying be-
havior, we have no simple way to extrapolate the tails out to
large time, and the errors of the calculations become larger.
fOne might have wanted to extrapolate lnuGf

.stdu on the time
axis to Dt→0, but that cannot be done onceGf

.std crosses
zero.g

When we perform the cosine Fourier transform of the real
part of Gf

.std to get thef-electron spectral function, we first
spline the real-time dataswith an exponentially decaying tail
appended if appropriated onto a grid that is 20 times finer
using a shape-preserving Akuba spline, and then numerically
perform the Fourier transform. Next, we try to extrapolate
the Fourier transform toDtreal→0. This extrapolation is per-
formed using ann-point Lagrange interpolation formula
spointwise invd on the different DOS generated for the dif-
ferentDtreal. Such a procedure allows for higher order poly-
nomial approximations to the extrapolation as more data are
included. We sometimes find that, even though we have data
for a number of differentDtreal values, it is most accurate to
perform a linear extrapolation for the two smallest values of
Dtreal. We call this extrapolation schemed extrapolation.

We judge the accuracy of our calculations in a number of
different ways. The first thing we do is to compare the mo-
ments of the DOSfwith or without an extra factor offsvdg to
exact results for those momentsssee belowd. We also com-
pare the Matsubara frequency Green’s functionssgenerated
from an independent program that works directly on the
imaginary axis7,8,11d with the Matsubara frequency Green’s
function generated by integrating the spectral formulaswith
the given DOSd for each Matsubara frequency

Gfsivnd =E dv Afsvd
1

ivn − v
. s64d

One of the important checks of our numerical accuracy
comes from a careful comparison of the calculated results
with a number of different moment sum rules of the DOS.
The sum rules can be derived in a straightforward fashion:
the DOS is first expressed as the imaginary part of the Fou-
rier transform of the real-time retarded Green’s function. By
introducing complete sets of states, the time dependence of
the operators can be expressed in terms of the many-body
energies of the different statessnote that because this calcu-
lation is performed for the impurity, one must include the
evolution operator of thel field, but since it commutes with
the f-electron operators, it provides no further complica-
tionsd. These can then be integrated over time, and when the
imaginary part is taken, one gets a delta function in fre-
quency, which allows the frequency integral to be performed.
Finally, any energy factors that remain can be replaced by
the Hamiltonian, and the sums over the complete sets of
states can be performed. In the end, we are left with operator
averages to evaluate. These results are summarized in Table
I. Note that when we perform actual calculations, we always
add a small shift to the DOS in order to satisfy the zero
moment sum rule to at least one part in 105 stypically this
means adding a shift no larger than 0.005 to the spectral
functiond.

FIG. 2. Real part of thesgreaterd f-electron Green’s function as
a function of time forT=1 and five different values ofU on the
Bethe lattice.

FIG. 3. Logarithm of the absolute value of the real part of the
sgreaterd f-electron Green’s function as a function of time forT
=0.2 andU=1.5 on the Bethe lattice. Three different values ofDtreal

are shown.
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We find that sometimes thed-extrapolation scheme does
not further improve the accuracy of the spectral function. In
that case, it is often more accurate to use the result generated
with the smallestDtreal. In other cases, we find that the exact
result for the lowest Matsubara frequency Green’s function is
bracketed by the calculation with the smallestDtreal and the
d-extrapolation result. In that case, we can average those two
spectral functions in order to produce better agreement for
Gfsiv0d. We call this extrapolation procedure Matsubara ex-
trapolation. It sometimes can improve the accuracy of the
results.

As a general rule of thumb, if we can achieve accuracy of
better than 1% for all of the spectral moments, and we can
achieve four digits of accuracy for all of the Matsubara fre-
quency Green’s functions, then the resulting DOS is numeri-
cally quite accurate. The deviations from the exact result are
most likely occurring at small frequencies, where we need
long-time data to get an accurate Fourier transform, and at
high frequencies, where the tails don’t always decay exactly
to zero.

We illustrate these extrapolation procedures with the case
U=1.5 on the Bethe latticesresults for U=1 have also
appeared10d. We first focus on high temperature, withT=5.
The results for the moment sum rules, for the shift to the
DOS, and for the lowest Matsubara frequency Green’s func-
tion are presented in Table II. We plot the DOS for different
Dtreal in Fig. 4. As can be seen in the figure, as the discreti-
zation size decreases, the DOS approaches a limiting result,

which is close to the one predicted by thed-extrapolation
procedure. An examination of the table shows how the mo-
ment sum rules and the Matsubara frequency Green’s func-
tions are all improved as the discretization error is reduced.
The extrapolation formula used a quadratic Lagrange inter-
polation with all the three DOS calculated at different
Dtreal’s. These results show that a systematic extrapolation
procedure is sometimes possible, and that the overall accu-
racy that can be achieved is quite highsof course it is diffi-
cult to estimate the pointwise accuracy of the DOS from any
of these integral sum rulesd.

As the temperature is lowered, the spectral function
sharpens whenU is small. In the noninteracting case, the
spectral function is a delta function. In the interacting case,
the spectral function approaches a delta function, but always
maintains a finite width, even atT=0. Nevertheless, the cal-
culations become more difficult at lowerT, because a narrow
peak in the DOS implies a slow exponential decay inGf

.std,
and we find that the discretization error also grows asT is
reduced. To illustrate this phenomenon we show results for
U=1.5 andT=0.1. The moment sum rules are summarized in
Table III and the DOS are summarized in Fig. 5. One can see
that asDtreal is made smaller, the peak in the DOS is reduced
in height and increases in width. Furthermore, the
d-extrapolation scheme seems to overcorrect, by producing a
DOS that is too wideswe use a two-pointflinearg interpola-
tion formula hered. The Matsubara-extrapolation procedure is
much better, but the overall accuracy is reduced relative to

TABLE I. Sum rules for thef-electron DOS. The expectation valuekOl denotes Trfe−bHatSs−ib ,ldOg /Zat. The column on the far right
gives the results for the half-filled case considered here. The symbolxmixed denotes the mixed static local charge susceptibility between the
conduction and the localized electrons. Recall at half-fillingEf =0, m=U /2, w1=1/2, andre=1/2.

Moment Operator average General result Half-filling result

edvAfsvd khf , f†j+l 1 1

edvAfsvdfsvd kf†fl w1 1/2

edvAfsvdv −kfH , fgf†l+kfH , f†gfl Ef −m+Ure 0

edvAfsvdvfsvd kfH , f†gfl sEf −mdw1+Usxmixed+w1red Uxmixed

edvAfsvdv2 kfH ,fH , fggf†l+kfH ,fH , f†ggfl sEf −md2+s2Ef −2m+UdUre U2/4

edvAfsvdv2fsvd kfH ,fH , f†ggfl sEf −md2w1+s2Ef −2m+UdUsxmixed+w1red U2/8

TABLE II. Table of the accuracy of the different calculations of the DOS by comparing results for the
different sum rulessU=1.5 on the Bethe lattice, withT=5d. The frequency cutoff for the zero moment sum
rule is uvu,15, while all other moments are cut off at the point where the integral stops increasing and
approaches a constantsthere is usually a decrease for larger values ofvd which normally corresponds to
uvu,4.

Moment Dtreal=0.1 Dtreal=0.05 Dtreal=0.025 d extrapolation Exact

1 0.999994217 1.00000354 1.0000113 1.00000099 1

fsvd 0.502728929 0.501524381 0.500528293 0.49994769 0.5

vfsvd −0.023149398 −0.025185717 −0.026169934 −0.02785382 −0.027912

v2 0.465833709 0.507191087 0.527187957 0.56173037 0.5625

v2fsvd 0.232916854 0.253595543 0.263593979 0.28086519 0.28125

Gfsiv0d −0.063584452 −0.063571673 −0.063545431 −0.06351812 −0.063518334

Shift 0.00485 0.005015 0.002534 −0.0000039 0
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the higher temperature resultsswe find only about 3% accu-
racy for the moments, and three parts in 103 accuracy for the
Matsubara frequency Green’s functionsd. We find that this
behavior is generic for our calculations—usually the calcu-
lations are more difficult at lower temperature, often requir-
ing a smaller discretization size for the same level of accu-
racy. We also find that the real-frequency extrapolation
procedures start to break down asT is reduced too.

A summary of the results for the case ofU=1.5 on the
Bethe lattice is shown in Fig. 6. We have used the most
accurate DOS calculated at each temperature, by one of the
two extrapolation procedures. We also included the conduc-
tion electron DOS, which has a dip develop at the Fermi
energy. One can see that thef-electron DOS grows and
sharpens asT is reduced. We find that calculations at much
lower temperatures than presented here become problematic
due to discretization and time-domain cutoff errors. Inset
into the figure is a plot of 1/Afsv=0d versusT. We have
linearly extrapolated the last few points to estimate how big
the DOS would grow asT→0. Our estimate shows that the
peak in the DOS should increase to about 4.5 asT→0. Note
the major differences between the localized electron DOS
and the conduction electron DOS. Thef-electron DOS sharp-
ens and concentrates much weight aroundv=0, while the
conduction electron DOS has a dip there. Notice further that

there is no significant change that we can see in our data near
the band edge of the conduction electron DOS that is also
seen in thef-electron DOS, although we expect that at
T=0 the bandwidths of both DOS should agree with each
other.

We next investigate the caseU=2.5 on the Bethe lattice
sresults for the critical interaction strengthU=2 appear
elsewhere9d. This case corresponds to lying just on the insu-
lating side of the metal-insulator transitionswhich occurs at
U=2d. The summary plot of the DOS is presented in Fig. 7.
Note how the localized electron DOS sharpens and develops
a gap asT is lowered. What is interesting is that the DOS
seems to pile up near the correlation-induced gap at lowT.
We also see a kink start to develop near the upper and lower
conduction band edges, indicating that thef-electron DOS
will likely vanish outside of the band asT→0. Numerically,
these calculations are challenging. If the discretization error
is too large, or the time-domain cutoff is too small, then we
can find negative DOS in the gap region at low temperature.
In fact, the poor quality of our data for largerDtreal is the
reason why we cannot extrapolate the low-temperature data
faithfully. The accuracy of our calculations is usually better
than 1.5% for the first moment, better than 4% for the second
moment, and better than 0.5% for the Matsubara frequency

FIG. 4. f-electron DOS for different discretization sizes. Also
plotted is thed-extrapolated result using a three-pointsquadraticd
Lagrange interpolation formula. The parameters areU=1.5 on the
Bethe lattice, withT=5.0.

TABLE III. Table of the accuracy of the different calculations of the DOS by comparing results for the
different sum rulessU=1.5 on the Bethe lattice, withT=0.1d. The frequency cutoff for the zero moment sum
rule is uvu,15, while all other moments are cutoff at the point where the integral stops increasing and
approaches a constantsthere is usually a decrease for larger values ofvd which normally corresponds to
uvu,4.

Moment Dtreal=0.1 Dtreal=0.05 Dtreal=0.025 d extrapolation Mats-extrapolation Exact

1 1.00015473 1.00000776 1.00000629 0.99999920 1.0000015 1

fsvd 0.503123093 0.501181165 0.500012329 0.50005666 0.5003576 0.5

vfsvd −0.192872666 −0.208532743 −0.215836651 −0.22736437 −0.2227881 −0.220742

v2 0.477461453 0.518025518 0.537836969 0.58728661 0.5699565 0.5625

v2fsvd 0.238730727 0.259012759 0.268918484 0.29364330 0.2849782 0.28125

Gfsiv0d −2.08188686 −1.96833103 −1.91591427 −1.86349693 −1.8890850 −1.88908508

Gfsiv1d −0.882512945 −0.865141592 0.85643369 −0.847725223 −0.851976249 −0.854845179

Shift 0.00501 0.005060 0.002544 −0.0000091 −0.0004000 0

FIG. 5. f-electron DOS for different discretization sizes. Also
plotted is thed-extrapolated result using a linear interpolation for-
mula for the smallest twoDtreal values and the Matsubara extrapo-
lated result. The parameters areU=1.5 on the Bethe lattice, with
T=0.1.
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Green’s functionssat higher temperature, we do significantly
betterd.

We have also performed calculations for a large-gap insu-
lator on the Bethe lattice, withU=5. The summary plot is
shown in Ref. 10. The results show a conduction-electron
DOS with a large gap of about 2.5t* . At high temperature, the
f-electron DOS has significant subgap states. AsT is low-
ered, we find a transfer of spectral weight out of the gap
region, with the weight in the peaks moving towards the gap,
and then some additional weight being transferred to shoul-
ders that lie close to the conduction band edges. There are
small oscillations in the gap region forT=0.8 that are arti-
facts of the cutoff in time. In these calculations, we do not

perform any extrapolations; instead, we use the smallest
Dtreal that produces a positive DOS everywhere, and does not
develop significant oscillations due to the finite time cutoff.
These values are the following: forT=5 andT=2 we use
Dtreal=0.05; forT=1 andT=0.8 we useDtreal=0.025. When
we compare thef-electron DOS to the conduction-electron
DOS, we find that the conduction electron DOS has more
spectral weight at higher frequency up to the band edge—the
f-electron DOS spills out beyond the conduction band edge
for finite T, but this weight is reduced asT is lowered. It is
difficult to go to lower temperatures, as computer resources
are rapidly exhausted.

We also present results for the hypercubic lattice. The
hypercubic lattice does not develop gaps at the metal-
insulator transition due to the infinite exponential tails of the
noninteracting Gaussian DOS. But, the spectral function is
suppressed to zero at the Fermi energy and there is a “gap
region” where the DOS remains exponentially small. The
transition occurs atU=Î2, and we expect results for the
hypercubic lattice to be similar to those of the Bethe lattice
when UBethe=Î2Uhypercubic. Brandt and Urbanek’s original
work8 presented results for the hypercubic lattice. Unfortu-
nately they gave no details on the step sizes used in their
computations or of the accuracy of their results. The one
discussion of moments that they include gives an improper
value to the second moment of thef-electron DOS, and it is
likely they never checked the numerical accuracy of their
results against any moment sum rules.

We calculate three different values ofU for the hypercu-
bic lattice:U=1, which has a dip in the conduction electron
DOS ssimilar toU=1.5 for the Bethe latticed; U=2, which is
a “small-gap” insulatorssimilar to U=2.5 on the Bethe lat-
ticed; and U=4, a “large-gap” insulatorssimilar to U=5 on
the Bethe latticed; the near-critical pointU=1.5 appears
elsewhere.9 Brandt and Urbanek showed two DOS forU
=1 and five DOS forU=2. They did not calculate theU
=4 case.

TheU=1 case is plotted in Fig. 8. The results shown here
are quite similar to those on the Bethe latticesFig. 6d. The
DOS sharpens asT is lowered, even though the conduction-
electron DOS has a dip at the Fermi energy. Inset is a plot of
the inverse of the DOS at the chemical potential versusT.
We can use it to extrapolate toT=0 and predict that the
spectral function peaks at about 4.5. Our results at high tem-
perature and at low temperature agree well with those of
Brandt and Urbanek.8

Next, we consider the caseU=2 in Fig. 9, which should
be compared to the similar results on the Bethe latticesFig.
7d. Here, we see the same kind of behavior—the gap is filled
at high temperature; asT is lowered, spectral weight trans-
fers from the gap region out to the band edges, and the peaks
of the DOS migrate toward the gap regions. Note that the
data shown forT=0.2 actually have a small region of fre-
quency where the DOS becomes negative. This is an artifact
of the discretization error and the time-domain cutoff.

The results forU=4 on the hypercubic lattice are pre-
sented in Fig. 10. The behavior is what one expects: at high
temperature, the gap region is filled in by thermal excita-
tions. As the temperature is lowered, the gap region devel-
ops, with spectral weight being transferred from the gap out

FIG. 6. f-electron DOS for different temperatures. Also plotted
is the conduction-electron DOSswhich is temperature independentd.
The parameters areU=1.5 on the Bethe lattice. Inset is a plot of
1/Afsv=0d versusT. Note how it appears to behave linearly at
small T, allowing us to extrapolate to theT=0 result, so we can
predict the maximal height of thef-electron DOS atT=0.

FIG. 7. f-electron DOS for different temperatures withU=2.5
on the Bethe lattice. Also plotted is the conduction-electron DOS
swhich is temperature independentd. TheT=5 data usesd extrapo-
lation, theT=1 and 0.6 data use the Matsubara-extrapolation pro-
cedure, and the lower temperatures are not extrapolatedsbut have
Dtreal=0.05d. Note how thef-electron DOS develops a gap asT is
lowered. Note further that a kink starts to develop near the upper
and lower band edges of the conduction DOS as expected too. Our
computational accuracy is worst for the subgap DOS at low
temperature.
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to higher energy. As the temperature becomes even lower,
the computational needs exceed our resources. Note how the
peaks in thef-electron DOS are pushed closer to the gap
region than the peaks in the conduction-electron DOS.

IV. CONCLUSIONS

In this contribution we calculated thef-electron DOS of
the Falicov-Kimball model at half-filling. The procedure re-
quires us to generate the greater Green’s function for real
time and the Fourier transform to get the DOS. Unlike the
conduction DOS, which is temperature independent, the

f-electron DOS has significant temperature dependence. For
small U, the DOS sharpens asT is lowered to a single-peak
structure with a narrow width. For largeU, the DOS devel-
ops a gap at lowT and the peaks of the DOS push close to
the correlation-induced gap edges. When we compare results
for similar U values on the Bethe and hypercubic lattices, we
see similar behavior in the DOS.

We performed an in-depth analysis of the accuracy of the
numerical calculations. Errors arise from a finite discretiza-
tion errorsdiscretizing the continuous matrix operator into a
discrete matrixd and a time-domain cutoff errorfrepresenting
the largest timet that Gf

.std is calculated out tog. We use
linear and quadratic moment sum rules and the spectral for-
mula for the Matsubara frequency Green’s functions to
gauge the accuracy of the calculations. In general, the dis-
cretization error becomes worse asT→0, and it is quite chal-
lenging to get accurate results at low temperatures and strong
coupling.

This study is useful to understand problems with the ac-
curacy of truly nonequilibrium calculations that use similar
Kadanoff-Baym contours. While we would not have exact
sum rules to compare to anymore, it is clear that one needs to
perform systematic studies in the discretization size along
the contour to gauge the accuracy of the results. One also
needs to reduce the real-axis discretization as the temperature
is reduced. True nonequilibrium problems evolve in an ex-
ternal field, and such a field can be added into the analysis
given here. The complicated aspect is being able to construct
the local Green’s function from the local self-energy, as the
coupling to a vector potential enters into the hopping part of
the Hamiltonian, and the local Green’s function is no longer
represented by a simple Hilbert transform.

We only examined the half-filled case here. This provides
a significant simplification, as the DOS can be calculated by
a Fourier transform of the real part ofGf

.std. For other fill-
ings, the analysis is more complicated and usually requires
using the particle-hole transformationsfor calculations with

FIG. 8. f-electron DOS for different temperatures withU=1 on
the hypercubic lattice. Also plotted is the conduction-electron DOS.
All of the data were extrapolated with one of the two extrapolation
techniques discussed in the text. Note the similarity with Fig. 6 for
the Bethe lattice. In the inset we plot the inverse of the DOS at the
chemical potential. Here, the low-temperature results don’t appear
to behave in quite the linear fashion we saw on the Bethe lattice, but
we can still attempt to extrapolate toT=0 with the prediction that
the peak in the DOS will also be around 4.5 atT=0.

FIG. 9. f-electron DOS for different temperatures withU=2 on
the hypercubic lattice. Also plotted is the conduction-electron DOS.
The data are either extrapolated with one of the two extrapolation
techniques discussed in the text, or we work with a fixed value of
the discretization on the real-time axis. Note the similarity with Fig.
7 for the Bethe lattice.

FIG. 10. f-electron DOS for different temperatures withU=4 on
the hypercubic latticestheT=5 andT=2 data overlapd. Also plotted
is the conduction-electron DOS. TheT=5 data are calculated with
the d-extrapolation technique; all other temperatures work with
Dtreal=0.05. These results are similar to those found for the Bethe
lattice sRef. 10d, but for the Bethe lattice the difference between the
f-electron DOS and the conduction electron DOS is more dramatic.
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fillings re andw1 and with fillings 1−re and 1−w1d to gen-
erate the full DOS. This is because the exponential factors in
fsvd−1 suppress the spectral function forv,0, so onlyv
.0 results can be determined accurately; by using the
particle-hole transformation for the conjugate fillings, we can
construct the full DOS. We plan to examine that case in the
future.

Note added in proof:After completing this manuscript,
we were informed of similar work by F. B. Anders and G.
Czycholl scond-mat/0411721d which efficiently solves for
the f-electron spectral function using the complimentary ap-

proach of the numerical renormalization group. Their work is
most accurate at low frequencies and shows the development
of x-ray edge singularities in the metallic phase asT→0.
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