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Higher period ordered phases on the Bethe lattice
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We solve for period-three ordered phases on the infinite-coordination Bethe lattice. The model we have
chosen to analyze is the spinless Falicov-Kimball model~although we believe these results should have more
general validity!. Contrary to the belief of many researchers in the field, the Bethe lattice can support higher
period ordered phases even though there is no ‘‘momentum space’’ associated with the lattice. These higher
period phases can be rigorously shown to appear at zero temperature and a numerical analysis indicates that
their thermodynamic phase transition from the homogeneous, period-two, or higher period ordered phases is
generically a first-order transition.
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I. INTRODUCTION

Phase diagrams of quantum statistical models are m
less understood than their classical counterparts. This is
cause the quantum fluctuations make both low-tempera
and ground-state properties difficult to determine. During
last decade, starting with the work of Metzner a
Vollhardt,1 progress has been made in the limit of infin
dimensions. As in classical statistical mechanics, it turns
that, in this limit, the lattice problem has a mean-field ch
acter, with the order parameter being self-consistently rela
to a local mean field. The self-consistent equations gener
correspond to an effective single-site~or few-sites! system
that represents a significant simplification with respect to
original problem. However, an important difficulty related
quantum fluctuations is that these equations remain dyna
cal ~or more precisely, frequency dependent! and are there-
fore difficult to solve. As a consequence, in practice, one
compare only a limited number of broken-symmetry can
date phases and it is possible to miss the true ground-
and low-temperature behavior. A thorough review of the
methods in the field of strongly correlated electronic mod
has already appeared.2

In this paper we examine the infinite-dimensional limit f
a simple model that has both quantum and classical deg
of freedom, namely the Falicov-Kimball model.3 It is defined
on a finite latticeL consisting of a set of sitesx and bonds
$x,y%. Spinless fermions have a kinetic energy given by
hopping matrixtxy5t if $x,y% is a bond ofL and txy50
otherwise. There is an on-site interaction between itiner
fermions and static particles~ions! whose configurations ar
defined by the occupation numberswx50,1 for xPL. In
terms of creation and annihilation operatorscx

† , cx of fermi-
ons, the Hamiltonian is

H~$wx%!52 (
x,yPL

txycx
†cy1U (

xPL
wxcx

†cx , ~1!

for a given configuration$wx% of ions. This model was in-
troduced in 1969 by Falicov and Kimball3 to study metal-
insulator transitions in mixed-valence compounds of r
earth and transition-metal oxides. For such systems the c
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sical variableswx describe localizedf electrons and the spin
less fermions are the itinerantd electrons. Later, the mode
has been considered to study ordering in mixed-vale
systems,4 order-disorder transitions in binary alloys,5 and
itinerant magnetism.6 It was reinvented by Kennedy an
Lieb6 as a primitive model of matter to study the origin
crystalline order. In their interpretation, classical partic
represent ions and the quantum particles are the itine
electrons (U,0 corresponds to the attraction between el
trons and ions!. We adopt this last interpretation here. D
spite the simplicity of the Hamiltonian, the Falicov-Kimba
model has been the object of many investigations and tu
out to have a rich phase diagram. We refer the interes
reader to the recent reviews.7

The Falicov-Kimball model has been extensively stud
in one and two dimensions for large couplingU8–10 and in
one dimension for smallU.11,9,12Here, we briefly summarize
the situation for the periodic ground states that appear
largeU, since this is the subject of the present investigat
when the dimension is infinite. We define the electron d
sity to be re5(x^cx

†cx&/uLu and the ion density to ber i

5(xwx /uLu with uLu the number of lattice sites in the lattic
L. In one dimension, for rational densitiesre5r i
5p/q (p,q relatively prime integers! the ground states hav
period q, with p ions arranged in the ‘‘most homogeneo
way’’ within each period forU.Uc(q).8 As a function of
chemical potential, the ground states are organized accor
to a Farey tree structure.13 We stress that it is still an ope
problem to determine if the complete Farey tree appears
finite U, i.e., if one can findUc independent ofq. In two
dimensions, periodic ground states are known to exist15,14,10

for U large and densities12 , 1
3 , 1

4 , 1
5 , and 2

9 . Surprisingly,

however, for rational densities in the open intervals ]1
5 , 2

9 @

and ]2
9 , 1

4 @ the ground state is a mixture of periodic states16

This phase separation can be traced back to frustration
fects present on the two-dimensional square lattice.16,17

In the limit of infinite dimension, Brandt and Mielsch18

computed exactly the staggered susceptibility for the hyp
cubic lattice and were able to find the transition temperat
Tc between the high-temperature disordered phase an
low-temperature ordered chessboard phase. They found
©2001 The American Physical Society11-1
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Tc behaves as 1/U for U→` andU2 ln U21 for U→0, and
that the transition is second-order Ising-like. Freericks
studied incommensurate and segregated phases on the h
cubic lattice,19 and more recently, we have studied20 phase
separation on the Bethe and hypercubic lattices for infin
coupling strengthU5` and for finite21 U.

In the present contribution, we address the question of
existence of general periodic crystalline ground states, in
limit of infinite dimension, for periods that are greater th
two. We have developed a formalism to investigate the pr
lem whenL is a Bethe lattice of infinite coordination num
ber. We prove that besides the period-two chessboard p
studied previously by many authors, there exist higher pe
phases~most likely period-three! at T50. Our study sug-
gests that even higher periods also exist, much like thos
one dimension. We also show that the period-three phas
stable for low temperatures but has a generically first-or
phase transition to higher period phases as a function of t
perature. At this point, we wish to stress that it is not obvio
that the Bethe lattice with an infinite coordination number
equivalent to the hypercubic latticeZd with d→` ~espe-
cially for the higher period phases!. For example, while it is
clear how to define the susceptibility for a general wave v
tor k in Zd, we have not succeeded in doing so for high
period phases on the Bethe lattice except for the alre
known uniform and staggered cases~if indeed the transition
is actually first order, then this exercise yields no useful
formation anyway!. Furthermore, loops in the hypercubic la
tice may introduce frustration effects that can destroy cr
talline order~recall the two-dimensional case15! that are not
present on the Bethe lattice. The main reasons we have
sen to study the Bethe lattice is that the self-consistent e
tions are more tractable and we are able to resolve this
troversy about the existence of higher period phases.

Specifically, forL we take a tree of coordination numb
Z and perform the scalingtxy→txy* /AZ in Eq. ~1!. Under
some reasonable assumptions, we obtain an exact s
equations describing period-q states in the limit whenuLu
→` and Z→`. The picture that we have in mind for th
period-q configurations is as follows. One selects a spec
site 0~the level zero site or the root of the tree! connected to
Z level 1 sites, which are in turn connected toZ(Z21) level
2 sites and so on. The ion configurations that we find
ordered periodically along the levels of the tree. In the lim
Z→`, we find regions of phase space where the segrega
homogeneous, and period-two phases are not the gro
state, because a restricted phase diagram shows re
where period-three phases are stabilized, organized qua
tively in the same way as in the one- or two-dimensio
cases. Crystalline states of ion density other than1

2 therefore
exist on the Bethe lattice, a fact that had not been establis
previously ~and in fact has been assumed by many not
occur!.

The paper is organized as follows. In Sec. II we give
derivation of the self-consistent equations for the periodq
states whenZ→`. Our equations are exact and valid for a
coupling strengthU and inverse temperatureb. In Sec. III
we formulate the ground-state problem by deriving a se
16511
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limiting equations whenb→` that are valid for allU. Sec-
tion IV contains a numerical study of the finite-temperatu
equations for moderate values ofU and shows the existenc
of higher period phases at low temperatures. Finally, we c
clude with open questions that could be investigated wit
the present formalism in Sec. V.

II. FORMALISM ON THE BETHE LATTICE

In this section we derive the exact equations satisfied
the Green functions in the limit of an infinite coordinatio
number for a Bethe lattice. We begin by considering a fin
treeL with coordination numberZ and rescale the hoppin
term in the Hamiltonian in Eq.~1! as txy→txy* /AZ. The
imaginary time Green function is defined fort.0 andy,z
PL as

Gyz
L ~t!52

1

ZL
(

$wx50,1%
ebm iNiTrcy~t!cz

†~0!

3e2b[H($wx%)2meNe] , ~2!

whereNi5(xPLwx is the total ion number,Ne5(xPLcx
†cx

the total electron number, andm i ,me are their respective
chemical potentials. In Eq.~2!,

cy~t!5et[H($wx%)2meNe]cye
2t(H[ $wx%)2meNe] . ~3!

It is convenient to use Grassmann variablesc̄x(t), cx(t),
xPL, tP@0,b# to describe the electronic degrees of fre
dom. The Green function in Eq.~2! can be represented by th
functional integral

Gyz
L ~t!52^cy~t!c̄z~0!&L

52
1

ZL
(

$wx50,1%
ebm iNi

3E Dc̄Dccy~t!c̄z~0!e2SL($wx%), ~4!

where SL($wx%) is the action corresponding to the Ham
tonian in Eq.~1!

SL~$wx%!5 (
y,zPL

E
0

b

dt8c̄y~t8!

3F dyz

]

]t8
2

tyz*

AZ
1dyz~Uwy2me!Gcz~t8!.

~5!

Since the Grassmann variables satisfy antiperiodic bound
conditions cy(b)52cy(0) and c̄y(b)52c̄y(0), their
Fourier modesc̄y( ivn),cy( ivn) are defined by

cy~t!5 (
n52`

`
e2 ivnt

Ab
cy~ ivn!,
1-2
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c̄y~t!5 (
n52`

`
eivnt

Ab
c̄y~ ivn!, ~6!

with vn5(2n11)pb21 the Matsubara frequencies. I
terms of this new set of Grassmann variables, the actio
Eq. ~5! becomes

SL~$wx%!5 (
n52`

`

Sn
L~$wx%!, ~7!

where

Sn
L~$wx%!5 (

y,zPL
F ~2 ivn2me1Uwy!dyz2

tyz*

AZ
G

3c̄y~ ivn!cz~ ivn!. ~8!

Our basic quantity of interest is thenth Fourier mode of
the local Green function

Gyy
L ~ ivn!52^cy~ ivn!c̄y~ ivn!&L , ~9!

where the average is the same as in Eq.~2!.
The first step in establishing the equations for the infin

dimensional limit is to express the local Green functi
Gyy

L ( ivn) in terms of the Green function associated with t
lattice L(y) obtained fromL by removing the sitey. Given
y, thenth Fourier component of the actionSn

L($wx%) can be
written in terms of the actionSn

L(y)($wx%) associated with
L(y) and a local piece associated to the sitey

Sn
y5~2 ivn2me1Uwy!c̄y~ ivn!cy~ ivn!, ~10!

as

Sn
L~$wx%!5Sn

L(y)~$wx%!

1Sn
y2 (

zPL,tyz* Þ0

tyz*

AZ
@c̄y~ ivn!cz~ ivn!

1c̄z~ ivn!cy~ ivn!#. ~11!

Let ZL(y) and ^2&L(y) be the partition function and the av
erage corresponding toSn

L(y)($wx%). We have

Gyy
L ~ ivn!52

ZL(y)

ZL
(

wy50,1
ebm iwy

3E Dc̄yDcycy~ ivn!c̄y~ ivn!e2Sn
y

3K expH (
n52`

`

(
z,tyz* Þ0

tyz*

AZ
@c̄y~ ivn!cz~ ivn!

1c̄z~ ivn!cy~ ivn!#J L
L(y)

. ~12!

Since L is a tree of coordination numberZ, L(y) is the
union of Z disjoint treesL(y;z) associated to eachz such
16511
in

-

that tyz* Þ0. We note that forL(y;z) the sitez has coordina-
tion numberZ21 while all other sites have coordinatio
numberZ. The disjointness of the treesL(y;z) implies

K expH (
n52`

`

(
z,tyz* Þ0

tyz*

AZ
@c̄y~ ivn!cz~ ivn!

1c̄z~ ivn!cy~ ivn!#J L
L(y)

5 )
z,tyz* Þ0

K expH (
n52`

` tyz*

AZ
@c̄y~ ivn!cz~ ivn!

1c̄z~ ivn!cy~ ivn!#J L
L(y;z)

. ~13!

Each average in the product is in fact a Gaussian integra
that only the second moment is needed

1
2^@c̄y~ ivn!cz~ ivn!1c̄z~ ivn!cy~ ivn!#@c̄y~ ivm!cz~ ivm!

1c̄z~ ivm!cy~ ivm!#&L(y;z)

52c̄y~ ivn!cy~ ivn!Gzz
L(y;z)~ ivn!dnm . ~14!

From Eqs.~12!–~14! we deduce

Gyy
L ~ ivn!52

1

ZL,e f f
(

wy50,1
ebm iwy

3E Dc̄yDcycy~ ivn!c̄y~ ivn!e2 (
n52`

`

Sn,e f f
L (wy),

~15!

with the local effective action associated with the single s
y

Sn,e f f
L ~wy!5F2 ivn2me1Uwy

1
1

Z (
z,tyz* Þ0

tyz* 2Gzz
L(y;z)~ ivn!G c̄y~ ivn!cy~ ivn!,

~16!

and the associated normalization factor

ZL,e f f5
ZL

ZL~y!
5 (

wy50,1
ebm iwyE Dc̄yDcye

2 (
n52`

`

Sn,e f f
L (wy).

~17!

Proceeding in a similar way, one can derive expressions
the average number of ions at sitey in terms of the local
effective action in Eq.~16!

^wy&L5
ebm i

ZL,e f f
E Dc̄yDcye

2 (
n52`

`

Sn,e f f
L (1), ~18!
1-3
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and

12^wy&L5
1

ZL,e f f
E Dc̄yDcye

2 (
n52`

`

Sn,e f f
L (0). ~19!

Using Eqs.~18! and~19!, the expression in Eq.~15! becomes

Gyy
L ~ ivn!52~12^wy&L!^cy~ ivn!c̄y~ ivn!&0

2^wy&L^cy~ ivn!c̄y~ ivn!&1 , ~20!

where the last two averages are with respect toSn,e f f
L (0) and

Sn,e f f
L (1), respectively. These are again Gaussian integ

that yield
d

e
-
ri

ly,
t

sid

tie

e

r

n

16511
ls

Gyy
L ~ ivn!5

@12^wy&L#

ivn1me2
1

Z (
z

tyz* 2Gzz
L(y;z)~ ivn!

1
^wy&L

ivn1me2U2
1

Z (
z

tyz* 2Gzz
L(y;z)~ ivn!

.

~21!

From Eq.~18! we also find
^wy&L5F 11e2bm i )
n52`

` ivn1me2
1

Z (
z

tyz* 2Gzz
L(y;z)~ ivn!

ivn1me2U2
1

Z (
z

tyz* 2Gzz
L(y;z)~ ivn!

G 21

. ~22!
can
is-
, it
sis.

he
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o-
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-

Formulas~21! and ~22! constitute an exact set of couple
equations for the local Green function for a finite latticeL
with coordination numberZ. We now proceed to take th
thermodynamic limit and then the limit of an infinite
coordination number. These two steps are not done in a
orous way and rely on some reasonable assumptions.

We assume that the thermodynamic limits ofGyy
L ( ivn),

Gzz
L(y;z)( ivn), and^wy&L exist and denote them, respective

by Gyy( ivn), Gzz* ( ivn), and ^wy& ~note the * superscrip
does not indicate complex conjugation here!. Furthermore,
we assume that the thermodynamic limit can be taken in
the infinite product appearing in Eq.~22!, so that^wy& is
given by Eq.~22! with Gyy

L(y;z)( ivn) replaced byGzz* ( ivn).
These assumptions imply that the infinite-volume quanti
satisfy Eqs.~21! and ~22!.

In order to take the infinite-coordination number limit, w
first assume that in this limit the Green functionGzz* ( ivn),
where the sitez has coordination numberZ21, becomes
equal toGzz( ivn), where the sitey has coordination numbe
Z,

lim
Z→`

Gzz* ~ ivn!5Gzz~ ivn!. ~23!

In fact this assumption is justified to some extent in Appe
dix A where the first terms of an expansion ofGzz

L(y;z) in
powers of 1/Z are analyzed. From now on we setx050 and
call x1 theZ sites of level 1,x2 theZ(Z21) sites of level 2,
and so forth. We assume that whenZ→`, for each integerq
there exist limiting functions

lim
Z→`

Gxjxj
~ ivn!5gj~ ivn!, j 50,1, . . . ,q21, ~24!

and
g-

e

s

-

lim
Z→`

^wxj
&5a j , j 50,1, . . . ,q21, ~25!

describing period-q solutions. Using Eqs.~21! and ~22! we
see that the set of equations describing the period-q phases
are

gj~ ivn!5
12a j

ivn1me2t* 2gj 11~ ivn!

1
a j

ivn1me2U2t* 2gj 11~ ivn!
, ~26!

with gq( ivn)5g0( ivn) and

a j5F11e2bm i )
n52`

`
ivn1me2t* 2gj 11~ ivn!

ivn1me2U2t* 2gj 11~ ivn!
G21

.

~27!

These equations are valid for finite temperatures and
only be solved by employing the numerical procedures d
cussed in Sec. IV. In the zero-temperature limit however
is possible to develop a restricted-phase diagram analy
This is the subject of the next section.

But before proceeding, we first want to remark that in t
caseq51, our formalism becomes equivalent to the usu
self-consistent method. In the later formulation, for an hom
geneous phase, one has to solve a set of three-cou
equations.2

g0~ ivn!5E
22t*

2t*
der~e!

1

ivn1me2S~ ivn!2e
, ~28!

with r(e)5A4t* 22e2/2pt* 2 the local noninteracting den
sity of states andS( ivn) the local self-energy,
1-4
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g0~ ivn!5
~12a0!

G0
21~ ivn!

1
a0

G0
21~ ivn!2U

, ~29!

and

G0
21~ ivn!5g0

21~ ivn!1S~ ivn!, ~30!

where G0( ivn) is called the effective medium and can b
interpreted as the Green function with the local correlatio
removed. The algorithm for determining the homogene
solution is to start with a trial self-energy and use Eq.~28! to
determine the local Green function. The effective medium
then determined from Eq.~29!, and a new trial self-energy i
then found from Eq.~30!. This loop is iterated until conver
gence is reached. In the present case, these equations c
reduced to Eq.~26! for q51. Indeed, the integral can b
done exactly and yields

g0~ ivn!5
ivn1me2S~ ivn!

2t* 2

2
A@ ivn1me2S~ ivn!#224t* 2

2t* 2
, ~31!

~the branch of the square root is chosen to preserve the
lyticity of g0). Eliminating the self-energy between th
equation and Eq.~30! we find

G0
21~ ivn!5 ivn1me2t* 2g0~ ivn!. ~32!

Finally, replacing this last expression in Eq.~29! gives Eq.
~26! for q51.

III. GROUND-STATE EQUATIONS

In the zero-temperature limitb→`, the Matsubara fre-
quencies vn5(2n11)pb21 form a continuum vP]
2`,`@ and as long as the chemical potentials are held fix
Eq. ~27! becomes

a j5u@Xj~me ,m i !#, ~33!

where

Xj~me ,m i !5m i2E
2`

` dv

2p
$ ln@ iv1me2t2gj 11~ iv!#

2 ln@ iv1me2U2t2gj 11~ iv!#%, ~34!

and u(x)51 for x.0,u(x)50 for x,0. The functions
gj ( iv) satisfy Eqs.~26! and ~27! with ivn replaced byiv.
To solve the zero-temperature equations we proceed as
lows. First, we suppose that there exists a period-q solution
corresponding to a given sequence (a0 ,a1 , . . . ,aq21)
wherea i50,1. We will find that noninteger values fora j are
possible only at discrete values of the chemical potenti
We solve the set of equations shown in Eq.~26! for this
sequence that yields the functionsg0 ,g1 , . . . ,gq21. Finally,
we computeX0(me ,m i),X1(me ,m i), . . . ,Xq21(me ,m i) and
then employ Eq.~34! to find the domain of chemical poten
tials satisfying Eq.~33!. Once a phase has been shown to
16511
s
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thermodynamically accessible, we next calculate the inter
ing density of statesr int(e)52( j 50

q21Imgj (e)/(pq). We
will assume in the above analysis thate is measured with
respect to the original band structure, so the chemical po
tial lies ate5me , not the conventional location ate50. In
this convention, we then have that

re5E
2`

me
der int~e!, ~35!

and

Egs~re!5E
2`

me
deer int~e!. ~36!

The first equation is used to determine the electron chem
potential for a given electron density and the second de
mines the ground-state energy of the given period-q configu-
ration. To form a restricted phase diagram, we then comp
the ground-state energies for a number of different candid
phases, to find which phase is the ground state. Such
analysis does not rigorously establish the true ground s
unless all possible candidate states are compared, but it
allow us to prove the existence of higher period phases, if
can find regions of parameter space where the ground sta
not the segregated phase, the homogeneous solution, o
period-two phase, which is what we find to be the case
low.

The interacting density of states for the homogene
phase is found from the solution of a simple cubic equati
as first shown by Van Dongen and Leinung.22 We do not
repeat that analysis here. The segregated phase is foun
performing a Maxwell construction for the two states cor
sponding to segregation—the state witha050 and the state
with a051. The former has a density of states equal to
noninteracting density of states, the latter has the nonin
acting density of states, but is shifted uniformly upwards
energy byU. We form a mixture of the two ground-stat
energies, weighted by 12r i for a050 and r i for a051,
with the chemical potential chosen so that the average e
tron filling is equal tore . Since the segregated phase atT
50 involves the mixture of only the empty and full lattice
is easy to incorporate this phase into our ground-state an
sis. Note that in the large-U limit, the full lattice will be
unoccupied~if U.4t* ), so the electron concentration fo
the empty lattice becomesre /(12r i).

For q52, a050, anda151, the ground-state equation
become

g0~ iv!5
1

iv1me2t* 2g1~ iv!
, ~37!

g1~ iv!5
1

iv1me2U2t* 2g0~ iv!
, ~38!

for the Green functions on levels 0 and 1 and
1-5
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X0~me ,m i !5m i2E
2`

` dv

2p
$ ln@ iv1me2t* 2g1~ iv!#

2 ln@ iv1me2U2t* 2g1~ iv!#%, ~39!

X1~me ,m i !5m i2E
2`

` dv

2p
$ ln@ iv1me2t* 2g0~ iv!#

2 ln@ iv1me2U2t* 2g0~ iv!#%, ~40!

with X0(me ,m i),0 andX1(me ,m i).0. Equations~37! and
~38! reduce to two quadratic polynomials forg0( iv) and
g1( iv). The physical solutions are~we setz5 iv1me)

g0~v!5
1

2t* 2 Fz2U2Az2U

z
~z22Uz24t* 2!G ,

~41!

and

g1~ iv!5
1

2t* 2 Fz2A z

z2U
~z22Uz24t* 2!G , ~42!

where the square root is chosen to lie in the upper half pl
for v.0 and in the lower half plane forv,0. It is a simple
exercise to find regions where the solutions are thermo
namically consistent.

The density of states is nontrivial for these systems
was first examined by Van Dongen.23 For both levels, there
are two bands: the first runs frome5(U2AU2116t* 2)/2 to
e50 and the second from e5U to e5(U
1AU2116t* 2)/2 ~note we are plotting these results in a
absolute energy scale, so that the chemical potential lie
e5me). Examples are plotted in Fig. 1 for a few select
values ofU. As expected, the density of states for each of
levels ~level 0, solid line; level 1, dotted line! has a diver-

FIG. 1. Interacting density of states atT50 for the period-two
charge-density-wave phase at three different values ofU: ~a! U
50.25t* ; ~b! U5t* ; and~c! U54t* . The solid line is the density
of states for level 0 and the dotted line is for level 1. Note how
interchange of levels and a reflection aboutU/2 is a symmetry
operation. AsU increases, the density of states becomes two d
functions of weight 0.5 centered atv50 andv5U.
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gence at one of its band edges, which comes from the pil
of states from the gap formation of the ordered phase. N
that asU becomes large, the bands narrow significantly, a
approach delta functions asU→`. The filling in the lower
band is always equal to 1/2 for allU.0. This lack of depen-
dence~of the filling in the lower band! on U turns out to
generically not be the case for higher periods. Note also
symmetry between the levels and a reflection plane cent
at U/2.

We will also be interested in the period-two phase w
a051/3 anda151. This is a phase wherem i must be ad-
justed so that the exponent in Eq.~27! vanishes linearly inT
as T→0. Since this can only be done for one of the io
densities, the other must be either zero or one. We cons
the case ofa151 here, because we want to examine t
ground-state phase diagram for the caser i52/3. The analy-
sis of the density of states is only slightly more complicat
than that given above for ther i51/2 case, so we do no
provide the details here. The interacting density of state
no longer symmetric though.

We setq53 anda051,a151,a250 in the ground-state
equations. The casesa051,a150,a251, and a050,a1
51,a251 lead to the same result. For the Green functio
we now have three coupled equations:

g0~ iv!5
1

iv1me2U2t* 2g1~ iv!
,

g1~ iv!5
1

iv1me2U2t* 2g2~ iv!
,

g2~ iv!5
1

iv1me2t* 2g0~ iv!
. ~43!

Each Green function is again the solution of a quadra
equation that yields~we setz5 iv1me)

g0~ iv!5
z@ t* 22~z2U !2#2AR~z!

2t* 2@ t* 22~z2U !2#
,

g1~ iv!5
~z2U !@ t* 22z~z2U !#2t* 2U2AR~z!

2t* 2@ t* 22z~z2U !#
,

g2~ iv!5
z@ t* 22~z2U !2#2AR~z!

2t* 2@ t* 22z~z2U !#
, ~44!

where

R~z!52@2t* 21~U2t* !z2z2#@2t* 21~U1t* !z2z2#

3@ t* 22~z2U !2#, ~45!

and the sign of the square root is chosen to have the co
analyticity properties ofg. It is easy to find values ofm i
where X0(me ,m i).0, X1(me ,m i).0, andX2(me ,m i),0,
which is the domain where the ion density is equal to 2/3

The interacting density of states is quite differe
for the period-three phases. There are three ba

n

ta
1-6
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located in the following regions: ~lower
band! (U2t* 2AU222Ut* 19t* 2)/2<e<(U1t*
2AU212Ut* 19t* 2)/2; ~middle band! U2t* <e<(U
2t* 1AU222Ut* 19t* 2)/2; and ~upper band! U1t* <e
<(U1t* 1AU212Ut* 19t* 2)/2. In addition, the Green
functions for levels 1 and 2 have poles~i.e., delta-function
contributions to the density of states! that have weight
U/AU214t* 2 and are located ate5@U1AU214t* 2#/2 (e
5@U2AU214t* 2#/2) for level 1 ~level 2!, respectively.
The results are plotted in Fig. 2 for some representative c
of U. The functional forms for levels 1 and 2 are identic
except for the delta functions—hence the dotted~level 1! and
dashed curves~level 2! overlap except at the delta function
whose weight is indicated by the height of the thick lines
the figure. Note that asU→`, the delta function contribu-
tions become more important for levels 1 and 2, while le
0 generates two delta functions, each of weight 1/2 atU
6t* . In the period-three case, the pileup of density of sta
is only seen at level 0—levels 1 and 2 have bounded de
ties of states except for the delta function contributions. I
interesting to note that in this case, the filling in the low
band plus the lower delta function~all contributions withe
,0) ranges from 0.19 550 whenU→0 to 1/3 whenU→`.
This means that asT→0 the electron filling for the period
three phase withr i52/3 ~with the electronic chemical poten
tial lying in the gap of the electronic density of states! will
range from 0.19 550 to 1/3 as a function ofU.

We now can construct a restricted ground-state phase
gram, for the case ofr i52/3, by comparing the ground-sta
energies of the homogeneous, segregated, period-two,
period-three phases as a function ofre and U. This phase
diagram is plotted in Fig. 3. Notice how the period-thr
phase is stabilized over a wide range of parameter spac

FIG. 2. Interacting density of states for the period-three char
density-wave phase at three values ofU: ~a! U50.25t* ; ~b! U
5t* ; and ~c! U54t* . Note how the density of states splits in
three bands and two delta functions. The solid line is for level 0,
dotted for level 1, and the dashed for level 2. The densities of st
are identical for levels 1 and 2 except for the delta function con
butions, which are located between the upper two bands~level 1! or
the lower two bands~level 2!. The height of the thick lines denote
the weight of the delta functions in the total density of states, wh
approach 1/3 asU→`.
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weak coupling, stretching from approximatelyre50.1955 to
re50.4095, which narrows asU increases to the pointre
51/3 in the strong-coupling limit. The existence of th
higher-period ground-state phase proves that higher-pe
phases exist on the infinite-coordination Bethe lattice, si
the period-two, homogeneous, and segregated phases a
the ground state. Since this is a restricted phase diagram
cannot rule out the possibility of higher-period phases po
bly being stable and taking over more of the phase diagr
if they were included in the analysis~in fact, we expect them
in regions where the homogeneous phase is stable!.

In principle, the same computations can be carried ou
higher order inq, but the equations become cumbersom
and we leave such an analysis for a future publication.

IV. FINITE-TEMPERATURE ANALYSIS

The finite-temperature analysis for these higher per
phases becomes complicated because no simple varian
the iterative schemes for the homogeneous and period
phases appears to converge for period three and higher, s
alternate computational strategy is needed. We begin by
scribing how to proceed for the period-two phase and th
for the period-three phase. We do not perform any fini
temperature calculations on higher period phases.

We begin with the general equations for the period-t
phase at finite temperature:

g0~ ivn!5
12a0

ivn1me2t* 2g1~ ivn!

1
a0

ivn1me2U2t* 2g1~ ivn!
, ~46!

-

e
es
i-

h

FIG. 3. Restricted ground-state phase diagram forr i52/3. The
homogeneous, segregated, period-two~with a051/3 anda151),
and period-three phase~with a051, a151, anda250), are com-
pared to each other and their regions of stability plotted in
figure. Note the wide region of stability of the period-three pha
Note further, that asU→`, the ground state is the segregated pha
for re1r i,1, as expected.
1-7
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g1~ ivn!5
12a1

ivn1me2t* 2g0~ ivn!

1
a1

ivn1me2U2t* 2g0~ ivn!
,

where the fillings on the two levelsa0 anda1 are unequal in
the ordered phase, but are generally not equal to zero or
at finite temperature. Substituting the value forg1 into the
right-hand side of the equation forg0 in Eq. ~46! produces an
equation forg0. This is a quintic polynomial that has fou
unphysical roots~wrong sign of the imaginary part ofg0)
and one physical root, so there is never any ambiguity
determining which root to use. The quintic equation is co
plicated, but is summarized below, where we use the sh
hand notation ofg05t* 2g0( ivn) andz5 ivn1me :

g0@z~z2g0!~z2U2g0!2~z2$12a1%U2g0!#

3@~z2U !~z2g0!~z2U2g0!2~z2$12a1%U2g0!#

5~z2g0!~z2U2g0!@~z2$12a0%U !~z2g0!

3~z2U2g0!2~z2$12a1%U2g0!]. ~47!

The strategy for solving these equations is to first fix
average ion densityr i5(a01a1)/2 and then to choose
trial difference in ion densitydr i5a02a1. This determines
trial values for botha0 anda1. Next we solve Eq.~47! for
g0( ivn) by choosing the unique physical root. Theng1( ivn)
is determined from the second equation in Eq.~46!. Now we
calculate the chemical potential for the ions using the infin
product in Eq.~27! with j 50 and we call that chemica
potentialm i0. We perform the same calculation withj 51 to
determinem i1. In general, these two chemical potentials w
not be equal becausedr i was not chosen to be equal to th
correct value for the thermodynamic state at the given te
perature, so we adjustdr i until we find a solution where the
two ‘‘chemical potentials’’ for the levels 0 and 1 are equ
This then is the solution to the thermodynamic proble
Note that in the ordered phase there are always two n
trivial solutions with dr i>0: ~i! the first hasdr i50 and
corresponds to the homogeneous phase and~ii ! the second
hasdr i.0 and corresponds to the ordered phase. We ne
found any multiple solutions within the ordered phase, a
this algorithm was generically quite stable.

We find that this solution method is relatively quick and
works better than the iterative techniques when one is c
to the phase transition, since one is controlling the value
the order parameterdr i externally and not relying on deve
oping it in an iterative algorithm~which can become subjec
to critical slowing down!. Comparing solutions forTc to the
period-two phase with more conventional techniques ba
either on calculating the susceptibility in the homogene
phase or calculating the ordered phase using an itera
scheme, all agree to five decimal places, so we have co
dence that this technique works well for determining so
tions to the coupled ordered-phase equations.
16511
ne

n
-
rt-

e

e

-

.
.
n-

er
d

se
f

d
s
ve
fi-
-

We use the same procedure to solve for the orde
phases of the period-three solutions. The equations for
Green functions are

g0~ ivn!5
12a0

ivn1me2t* 2g1~ ivn!

1
a0

ivn1me2U2t* 2g1~ ivn!
,

g1~ ivn!5
12a1

ivn1me2t* 2g2~ ivn!

1
a1

ivn1me2U2t* 2g2~ ivn!
,

g2~ ivn!5
12a2

ivn1me2t* 2g0~ ivn!

1
a2

ivn1me2U2t* 2g0~ ivn!
. ~48!

Substituting the equation forg2 into the equation forg1 and
then substituting the resultant relation forg1 into the equa-
tion for g0 produces a single equation forg0 that depends on
the ion concentrations in each level. It is an order-nine po
nomial that, once again, shows only one physical solution
the Green function. The equation is cumbersome and
algebra is straightforward, so we will not display the equ
tion here.

We adopt the same algorithm for solving this proble
First, we fix the average ion fillingr i5(a01a11a2)/3.
Then we choosea0 to be equal to a fixed value, and w
choose a trial value fora1, which also determines the tria
value fora2. We adjusta1 so that the ‘‘chemical potentials’
for the ions determined by Eq.~27! with j 50 and j 51 are
equal. We then calculate the ‘‘chemical potential’’ for level
by using Eq.~27! with j 52. If this value is not equal to the
chemical potential determined for levels 0 and 1, then
adjusta0 and start the procedure all over again. It is qu
challenging to find the regions of parameter space that y
nontrivial solutions and we are generically guided by t
solutions found atT50 as our starting point, we then slowl
raise the temperature to see how those solutions evolve.
strategy involves calculating these results on a grid of po
for a0 anda1 until we reach a region where a solution to th
equations is possible, and then we use one-dimensional r
finders to zero in on the correct values of the ion filling
Calculations are much easier to perform at fixed values of
electronic chemical potential, rather than adjusting t
chemical potential as a function of temperature to keep
electron filling constant. We illustrate solutions in both cas
of fixed re and fixedme .

Once the fillings on each level and the chemical potent
have been determined, we can make the analytic contin
tion of the Green-function equations~26! by simply taking
ivn→v1 id. This produces a series of equations on the r
1-8
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axis that can also be solved directly~in essence, we simply
use the same polynomial equation, but now evaluated on
real axis!. This allows us to determine the Green functio
on the real axis, and therefore, the average interacting
sity of states

r int~e!52
1

qp
Im(

j 50

q21

gj~e!. ~49!

Once the density of states has been determined, then we
directly calculate the free energy, which assumes the follo
ing generalization of the original Falicov-Kimball form:3,24

F5mere1TE
2`

`

der int~e!ln
eb(e2me)

11eb(e2me)

1
T

q (
j 50

q21

@a j ln a j1~12a j !ln~12a j !#. ~50!

We find when we calculate the ordered period-th
phases, they are stable only for relatively low temperatu
Hence, the ion density on each of the levels changes o
slightly from the values atT50. Hence, the density of state
is only slightly modified as a function of temperature. We
not plot the temperature dependence here because it
mild. Instead, we plot the free energy as a function of te
perature. Figure 4 is calculated at a constant chemical po
tial (me50.84 861,re'0.332), chosen to lie in the regio
where the period-three phase is stable, at a coupling stre
U53. This value was chosen because it is large enough
the system behaves as it does in the strong-coupling li
but is small enough that the transition temperature does
become too small. The figure shows the homogeneous
energy, the period-two free energy, and the period-three

FIG. 4. Free energy for candidate low-energy phases aU
53t* , r i52/3, andme50.84 861 ~corresponding tore'0.332).
The solid curve is the period-three solution, the dashed is
period-two, and the dotted is the homogeneous phase. Note how
period-two phase intersects the homogeneous phase curve wit
same slope, as expected for a second-order phase transition
how the period-three phase must have a phase transition to a h
period phase at an intermediate temperature~most likely first order!
because the free energy cannot be discontinuous atTc and the free
energy is not multivalued.
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energy. There are two period-three solutions, but only one
them is thermodynamically stable at any given temperatu
Note how the period-two free energy matches the slope
the homogeneous free energy at the point that they tou
This is characteristic of a second-order phase transition.
the other hand, the stable branch of the period-three
energy intersects neither the period-two nor the homo
neous phases before it curves back on itself and joins
unstable branch. This implies that there must be ano
higher period thermodynamically stable phase that is pre
at an intermediate range of temperatures, and has a p
transition ~most likely! to the period-two phase before be
coming homogeneous at the highest temperature. Clearly
phase diagram in this region of parameter space is quite c
plicated. We have not determined which alternate phases
stable in this intermediate temperature range.

Our second example is at a weaker value of the coup
strength,U51, which is presented in Fig. 5. In this case, t
period-two phase is never stable, because the electron fi
is too low to sustain the chessboard phase~note the distance
to the period-two phase in the ground-state phase diagra
Fig. 3!. Instead, there is a direct phase transition from
period-three phase to the homogeneous phase. This p
transition is also first order, as can be seen from the m
match of the slopes of the free energies at the point wh
they cross. Note that this calculation was performed a
constant electron filling ofre50.26 698.

V. CONCLUSION

We have used two techniques to show the existence
higher period phases on the infinite-coordination Bethe
tice. The first was a restricted phase diagram analysis aT
50, which showed that higher period phases must exist
the Bethe lattice. The second was an examination of the
tem at finite temperature, where we were able to see
generically, the phase transition to the period-three phas
first order and that higher period phases must be stabilize

e
the
the
and
her

FIG. 5. Free-energy plot for the period-three and homogene
phases forU5t* , r i52/3, andre50.26 698. Note how the phas
transition is clearly first-order here. The period-two phase is ne
stable, because the electron density is too close to zero. There
need for additional higher period phases to be stable here, bu
cannot rule out that possibility.
1-9
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strong coupling and intermediate temperatures, in order
the system to have the proper thermodynamics. This w
has discussed a long-standing controversy about whethe
not these higher period phases can exist on the Bethe la
We have left open the question of a more complete stud
these systems, to see if the behavior in the one-dimensi
lattice is also seen here, such as a Farey-tree structure.
possible that the techniques we developed here could als
applied to the hypercubic lattice, but the results are likely
be much different there, as the hypercubic lattice can sus
second-order phase transitions to incommensurate and h
period phases.
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APPENDIX: LARGE COORDINATION-NUMBER LIMIT
OF THE GREEN FUNCTION

Here we show that the difference betweenGzz* ( ivn) and
Gzz( ivn) in Eq. ~23! is O(Z21) and compute the first cor
rection. We rewrite the local effective action~16! associated
to sitez in the following form:

Sn,e f f
L ~wz!5Sn,e f f

L(y;z)~wz!1
tzy*

2

Z
Gyy

L(z;y)~ ivn!c̄z~ ivn!cz~ ivn!.

~A1!

For Eq.~17! we have to orderZ21

ZL,e f f5ZL(y,z),e f fF12
tzy*

2

Z (
n52`

`

Gyy
L(z;y)~ ivn!

3^c̄z~ ivn!cz~ ivn!&e f f
L(y,z)G , ~A2!
ev
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where^c̄z( ivn)cz( ivn)&e f f
L(y,z) is defined as in Eq.~15! but

with Sn,e f f
L(y;z)(wz) replacingSn,e f f

L (wy). Therefore, to leading
order

ZL,e f f
21 5ZL(y,z),e f f

21 F12
tzy*

2

Z

3 (
n52`

`

Gyy
L(z;y)~ ivn!Gzz

L(y;z)~ ivn!G . ~A3!

From Eqs.~15!, ~A1!, and~A3! we get

Gzz
L ~ ivn!5F12

tzy*
2

Z (
n52`

`

Gyy
L(z;y)~ ivn!Gzz

L(y;z)~ ivn!G
3F ^cz~ ivn!c̄z~ ivn!&e f f

L(y,z)2
tzy*

2

Z

3 (
m52`

`

Gyy
L(z;y)~ ivm!

3^c̄z~ ivm!cz~ ivm!cz~ ivn!c̄z~ ivn!&e f f
L(y,z)G ,

~A4!

so that to leading order we find

Gzz
L ~ ivn!5Gzz

L(y,z)~ ivn!2
tzy*

2

Z
@Gzz

L(y,z)~ ivn!#2Gyy
L(z,y)~ ivn!.

~A5!

Assuming that the thermodynamic limits exist, we find
lowest order

Gzz* ~ ivn!5Gzz~ ivn!1
t* 2

Z
@Gzz~ ivn!#2Gyy~ ivn!,

~A6!

which justifies the procedure outlined in the main text.
tat.
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