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Higher period ordered phases on the Bethe lattice
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We solve for period-three ordered phases on the infinite-coordination Bethe lattice. The model we have
chosen to analyze is the spinless Falicov-Kimball mad&hough we believe these results should have more
general validity. Contrary to the belief of many researchers in the field, the Bethe lattice can support higher
period ordered phases even though there is no “momentum space” associated with the lattice. These higher
period phases can be rigorously shown to appear at zero temperature and a numerical analysis indicates that
their thermodynamic phase transition from the homogeneous, period-two, or higher period ordered phases is
generically a first-order transition.
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. INTRODUCTION sical variablesv, describe localized electrons and the spin-
) o less fermions are the itineradtelectrons. Later, the model

Phase diagrams of quantum statistical models are much,s peen considered to study ordering in mixed-valence
less understood than their classical counterparts. This is b%‘ystemé“, order-disorder transitions in binary alloysand
cause the quantum fluctuations make both low-temperaturg,aorant magnetisrfi. It was reinvented by Kennedy and
and ground-state pr_opertie_s difficult to determine. During thq jop8 a5 a primitive model of matter to study the origin of
last decellde, starting with the work of Metzner andcystaliine order. In their interpretation, classical particles
Vollhardt,” progress has been made in the limit of infinite rehresent jons and the quantum particles are the itinerant
dimensions. As in classical statistical mechanics, it turns outjactrons U<0 corresponds to the attraction between elec-
that, in this limit, the lattice problem has a mean-field char-qns and ions We adopt this last interpretation here. De-
acter, with the order parameter being self-consistently relategpite the simplicity of the Hamiltonian, the Falicov-Kimball
to a local mean field. The self-consistent equations generally,oge| has been the object of many investigations and turns
correspond to an effective single-siter few-sites system ,, 15 have a rich phase diagram. We refer the interested
that represents a significant simplification with respect to th@asder to the recent reviews.
original problem. However, an important difficulty related to  The Falicov-Kimball model has been extensively studied
quantum fluctuations is that these equations remain dynamjz, one and two dimensions for large couplit§=2° and in
cal (or more precisely, frequency dependeaitd are there-  one gimension for small.2**!?Here, we briefly summarize
fore difficult to solve. As a consequence, in practice, one Cafe sjtyation for the periodic ground states that appear for
compare only a limited number of broken-symmetry candi-5r46 1, since this is the subject of the present investigation

date phases and it is possible to miss the true ground-stafg,an, the dimension is infinite. We define the electron den-
and low-temperature behavior. A thorough review of thesesity to be p,=3 <CTC y/|A| and the ion density to be,
e X XX |

methods in the field of strongly correlated electronic models_ W, /| A| with | A| the number of lattice sites in the lattice

haTnatIrrlgsad;/ ae[?pe:reédeim'nethe infinite-dimensional I'm'tforA' In one dimension, for rational densitiep.= p;
IS paper we exami intinite-cl : Ml =p/q (p,q relatively prime integepsthe ground states have

a simple model that has both quantum and classical degrees’. ; ; : “
of freedom, namely the Falicov-Kimball modelt is defined %v%;/(’)’dvai’thvivr:tz;cko?)Ser?c:ga?ograd;g t? CT) 8”;0832‘23?3%%”3?%
Q).

?: a}ﬁgt?nllztstlscije\rr%?g:és?]g%emaak?rféticg Z'::f and isggds chemical potential, the ground states are organized according
Y- Sp 99 Y40 a Farey tree structuré.We stress that it is still an open

g?hpepr'n%emz_irtrr]'é:éy.zst;; {c;:\'-ys}'tés'r?tebrgggoﬁf/getanget;yigera roblem to determine if the complete Farey tree appears for
WISE. : e | : W ~ inite U, i.e., if one can findU. independent ofy. In two

ferr_nlons and static partl_cle(a)ns) whose configurations are dimensions, periodic ground states are known to Exi4f°
defined by the occupation numbeng=0,1 for xe A. In 1

. L : for U large and densitieg, 3, %, &, and 3. Surprisingly,
terms of creation and annihilation operatefs c, of fermi- H gf onal d d e Sh 9. SUIPnsingly
ons, the Hamiltonian is owever, for rational densities in the open intervals [

and 2, [ the ground state is a mixture of periodic stales.
This phase separation can be traced back to frustration ef-
H{wyj) = _XEA teyCxCy+ ng/\ W, iCx, @D fects l:[))resent oFr)1 the two-dimensional square latficé.
' In the limit of infinite dimension, Brandt and Mielsth
for a given configuratiofw,} of ions. This model was in- computed exactly the staggered susceptibility for the hyper-
troduced in 1969 by Falicov and Kimbalto study metal- cubic lattice and were able to find the transition temperature
insulator transitions in mixed-valence compounds of rarel, between the high-temperature disordered phase and a
earth and transition-metal oxides. For such systems the clalw-temperature ordered chessboard phase. They found that
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T. behaves as W/ for U—« andU2InU ! for U—0, and  limiting equations wherB—« that are valid for allU. Sec-
that the transition is second-order Ising-like. Freericks hagion IV contains a numerical study of the finite-temperature
studied incommensurate and segregated phases on the hypeguations for moderate values dfand shows the existence
cubic lattice!® and more recently, we have studifgphase of higher period phases at low temperatures. Finally, we con-
separation on the Bethe and hypercubic lattices for infiniteclude with open questions that could be investigated within

coupling strengtiy =2 and for finité* U. the present formalism in Sec. V.
In the present contribution, we address the question of the
existence of general periodic crystalline ground states, in the Il. FORMALISM ON THE BETHE LATTICE

limit of infinite dimension, for periods that are greater than In thi . derive th ‘ i tisfied b
two. We have developed a formalism to investigate the prob- h this section we derive the exact equations satistied by
) . P g the Green functions in the limit of an infinite coordination
lem whenA is a Bethe lattice of infinite coordination num- number for a Bethe lattice. We bedin by considering a finite
ber. We prove that besides the period-two chessboard phasy ' gin by 9

tudied iouslv b th th ist hiah 135%e A with coordination numbeE and rescale the hopping
studied previously by many autnors, there exist Ngher penogy ., iy the Hamiltonian in Eq(l) as txyﬂtjy/\/z The

phases(most likely period-threeat T=0. Our study sug- . . . . _
gests that even higher periods also exist, much like those iﬁnaglnary time Green function is defined fo>0 andy,z

one dimension. We also show that the period-three phase is
stable for low temperatures but has a generically first-order

1
phase transition to higher period phases as a function of tem- GQZ( T)=— R > eB“iNiTrcy( T)CZ(O)
perature. At this point, we wish to stress that it is not obvious A {wy=0.1;
that the Bethe lattice with an infinite coordination number is w @ BIH{W) ~ 1Nl ®)

equivalent to the hypercubic lattica® with d—= (espe-

cially for the higher period phased-or example, while it is whereN;=3,_\w, is the total ion numberNe:EXEACiCx

clear how to define the Susceptlblllty for a general wave VeC‘the total electron number' andi Mo are their respective
tor k in Z9, we have not succeeded in doing so for higherchemical potentials. In Eq2),

period phases on the Bethe lattice except for the already

known uniform and staggered cag@sindeed the transition ey T):eT[H({Wx})_MeNelcye_ T(H[{wy}) — meNel | (3)

is actually first order, then this exercise yields no useful in-

formation anywa)/. Furthermore, |00pS in the hypercubic lat- It is convenient to use Grassmann Varia%T)’ U (7),
tice may introduce frustration effects that can destroy CrySXeA, TE[O,ﬂ] to describe the electronic degrees of free-

talline Ol’del’(l’ecall the two-dimensional Ca’|§$ that are not dom. The Green function in E@) can be represented by the
present on the Bethe lattice. The main reasons we have ch@nctional integral

sen to study the Bethe lattice is that the self-consistent equa-
tions are more tractable and we are able to resolve this con- Ay —
troversy about the existence of higher period phases. Gy 7)== (Why(7) Y2(0))
Specifically, forA we take a tree of coordination number 1
Z and perform the scaling,,—t}/\Z in Eq. (1). Under N {WZM} efuilli
some reasonable assumptions, we obtain an exact set of o
equations describing periagl-states in the limit whenA | — — e
—o and Z—o. The picture that we have in mind for the Xf DyD gy (7),(0)e (v, (4)
periodq configurations is as follows. One selects a special
site O(the level zero site or the root of the tiemnnected to  where S*({w,}) is the action corresponding to the Hamil-
Z level 1 sites, which are in turn connecteda(Z—1) level  tonian in Eq.(1)
2 sites and so on. The ion configurations that we find are
ordered periodically along the levels of the tree. In the limit B —
Z—, we find regions of phase space where the segregated, S ({Wx}) = EA fo d7’'¢y(7")
homogeneous, and period-two phases are not the ground g

state, because a restricted phase diagram shows regions x
where period-three phases are stabilized, organized qualita- X| 6yz—— %-‘r Oy AUWy— ) [,(7").
tively in the same way as in the one- or two-dimensional ar z

cases. Crystalline states of ion density other thaherefore (5)
exist on the Bethe lattice, a fact that had not been established
previously (and in fact has been assumed by many not tdSince the Grassmann variables satisfy antiperiodic boundary
occun. conditions ¢, (B8)=—#,(0) and ¢, (B8)=—#y(0), their
The paper is organized as follows. In Sec. Il we give arq rier modes?(iw ), . (iw,) are defined by
derivation of the self-consistent equations for the perjod- y oy

states wheZ —o. Our equations are exact and valid for any © e
coupling strengthJ and inverse temperatugg. In Sec. Il (1) = 2 =y,
we formulate the ground-state problem by deriving a set of Y == B Yyllen
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_ glen__ thatt’y‘zaﬁo. We note that for\ (y;z) the sitez has coordina-
‘/’y(T):n;w Tﬁ‘ﬁy(""n)= 6 tion numberz—1 while all other sites have coordination
numberZ. The disjointness of the trees(y;z) implies
with w,=(2n+1)7B~ ! the Matsubara frequencies. In
terms of this new set of Grassmann variables, the action i p{
ex

w v
Eq. (5) becomes > X Lz[wy(iwn)wz(iwn)

n=-= z,t§2¢o
sfwd)= 2 Siwd), (7) — _
X n=—oo X +l/fz(|wn)¢y(|wn)]
where A(y)
\ - i = II <exp| S S i tition)
Sn({Wx}):y;E:A (_|wn_/~Le+UWy)5yz_E z,t}’fz#o n=—oo \/Z y noranTn
X (i wn) (i wp). 8 - .
dylienialion) ® Vi) wyuwn)]] > . 13
Our basic quantity of interest is theth Fourier mode of Aly;2)
the local Green function Each average in the product is in fact a Gaussian integral so
A = that only the second moment is needed
ny('“)n): _<‘/’y(|wn)‘//y(|wn)>Aa (9) o . .
where the average is the same as in €. [y (i n) (i 0n) + thy(i 0q) ihy (1 0) 1 ¢y (1 @) (i 01y)
The first step in establishing the equations for the infinite- lt .
dimensional limit is to express the local Green function Yaliom) Py(iom Dagy:
A : : ; i i — ‘2) /s
Gy, (iwy) in terms of the Green function associated with the =~ Pyli o) (] wn)GZAZ(y,z)(I ©1) S (14)

lattice A (y) obtained fromA by removing the sitg. Given
y, thenth Fourier component of the acti@) ({w,}) can be ~From Egs.(12)—(14) we deduce
written in terms of the actiors® ({w,}) associated with

A(y) and a local piece associated to the site G iw,)=— eBuiWy
_ e Z) eff wy=0.1
S%Z(_i""n_:Uvedl'UWy)‘ﬂy(iwn) ‘ﬁy(iwn)u (10 o
as X J’ DEyD lpywy(i wn)Ey(i C’)n)e7 nzw §n\’e“(wy),
Sh(fw,) =SV {wy}) (15)
ty, — _ with the local effective action associated with the single site
+S¥_ 2 _[wy(lwn)(ﬂz('wn) y
ze Aty #0 z
+ i)ty (ioy)]. (1D Sner(Wy)=| —iw— petUw,
Let Zyy, and(—zﬁ(y) gﬁ(we partitisvn er:nction and the av- 1
erage correspondin w,}). We have ), — . .
g P g ({ X}) + Z *2 t;ZZGQZ(y’Z)(l wn)l ¢y(| wn)(ﬂy(l wp),
G (iwy)= — ZAwy) S ehuiny 2ty,#0
yy\! @n Zy w=ou (16)

- o , and the associated normalization factor
X f D ‘//yD ‘//y’/’y(l wp) 'r//y(l wn)eisn

Z, =S
yz o . AY)  wy=01
X ex n—E E _Z[wy(lwn)d/z(lwn) (17)
=% zt* 0
v Proceeding in a similar way, one can derive expressions for
the average number of ions at sifein terms of the local

+ (i wn) Py (i wn)]] > : (12)  effective action in Eq(16)
A(y)

Since A is a tree of coordination numbet, A(y) is the (Wy)\ =
union of Z disjoint treesA(y;z) associated to eachsuch Y

e.Bl"'i

[ DBDue 2 S, ag

Zy eff
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d _
an Gl (iwn)= [1—(wy)s]

1 — C A iw,+ u —EE t*2GAV D (jw,)
1- (W) =5—— | DyDyye” 2 e, (19) e 7 £ lyz 2z "
Z eff

Using Eqgs(18) and(19), the expression in Eq15) becomes + (Wy)a
1 . '
fon+pue—U— b Zz t*ZZGé\z(y’Z)(i wp)

Ghyiwn) = = (1=(Wy) \ )ty (i 0) Py (i wp) Yo y

—(Wy) A (i 0p) (i @)1, (20) (21)

where the last two averages are with respeamgff(O) and
Sﬁeff(l), respectively. These are again Gaussian integrals
that yield From Eq.(18) we also find

. 1 2,
o lop+ pe— 7 ; t;‘ZZGé\Z(YJ)U )

(wyyy=| 1+e P ] T . (22)
n=—ow ),
lopt pe—U— 7 Zz t;zzGé\z(y’Z)(l wp)
|
Formulas(21) and (22) constitute an exact set of coupled lim <Wx->:aja j=01,...9-1, (25)
equations for the local Green function for a finite lattite Zow !

with coordination nhumbeZ. We now proceed to take the describing periody solutions. Using Eqs21) and (22) we

thermodynamic limit and then the limit of an infinite- . - :
coordination number. These two steps are not done in a rigztra(;a that the set of equations describing the pegighases

orous way and rely on some reasonable assumptions.

We assume that the thermodynamic limits @ (i wp), 1w
GoY (i w,), and(wy), exist and denote them, respectively, gj(iwp) = - *2J .
by Gyy(iwn), Gifiw,), and(w,) (note the * superscript fon+ pe=t"7gj11(iwp)
does not indicate complex conjugation herEurthermore, o
we assume that the thermodynamic limit can be taken inside + J . (26)
the infinite product appearing in E§22), so that(w,) is iwn+,ue—U—t*zgj+1(iwn)
given by Eq.(22) with Gi};y'z)(iwn) replaced bYGy{iwn).  \itn 9e(i©n) = goli©y) and
These assumptions imply that the infinite-volume quantities e "
satisfy Egs.(21) and (22). oot wa—1t*20: . (i
In order to take the infinite-coordination number limit, we ~ a;=| 1+e~##i IT - OnT fe *9;1( w.n)
first assume that in this limit the Green functi@ (i w,), n=-=lwntpe—U—1°gj 1(iwn)
where the sitez has coordination numbeZ—1, becomes (27)
equal toG,{iwy), where the sitg has coordination number  hege equations are valid for finite temperatures and can
Z, only be solved by employing the numerical procedures dis-
e _ cussed in Sec. IV. In the zero-temperature limit however, it
lim Gz {iwn) =Gy wn). (23 is possible to develop a restricted-phase diagram analysis.

Z—o

This is the subject of the next section.

In fact this assumption is justified to some extent in Appen- But before proceeding, we first want to remark that in the
dix A where the first terms of an expansion 6f.¥'? in  caseq=1, our formalism becomes equivalent to the usual
powers of 1Z are analyzed. From now on we sgt=0 and  self-consistent method. In the later formulation, for an homo-
call x, the Z sites of level 1 x, theZ(Z—1) sites of level 2, geneous phase, one has to solve a set of three-coupled
and so forth. We assume that when- o, for each integeq equations.

there exist limiting functions

2t*
iwy)= d - . , (28
lim Gy (iwn)=gj(iwn), J=0,1,...a-1, (29 Goli n) szt* P o T e Sl e %O
o with p(e€)=4t*?— e%/27t*? the local noninteracting den-
and sity of states and. (i w,) the local self-energy,
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thermodynamically accessible, we next calculate the interact-

1-ap) a
goliw,) = (_1 - o 4 — 0 , (29 ing density of stateSpim(e):—E}L’(}Imgj(e)/(wq). We
Gg (iwy) Gg (iwy)—U will assume in the above analysis thatis measured with
and respect to the original band structure, so the chemical poten-
tial lies ate= u., not the conventional location &=0. In
Go Hiwn)=gg Hiwy) +3(iwy), (30)  this convention, we then have that

where Gy(iwy,) is called the effective medium and can be u

interpreted as the Green function with the local correlations pe:J' edepim(e), (35
removed. The algorithm for determining the homogeneous —w

solution is to start with a trial self-energy and use &) to

determine the local Green function. The effective medium isand

then determined from E¢29), and a new trial self-energy is

then found from Eq(30). This loop is iterated until conver- e

gence is reached. In the present case, these equations can be Egs(pe) = f_mdffpint(f)- (36)
reduced to Eq(26) for g=1. Indeed, the integral can be

done exactly and yields The first equation is used to determine the electron chemical

. . potential for a given electron density and the second deter-
lont pe— 2 (iwp) mines the ground-state energy of the given pedambnfigu-
2t*2 ration. To form a restricted phase diagram, we then compare
i i the ground-state energies for a number of different candidate
Vliop+ pe—2(iwp) ]~ 4t*2 phases, to find which phase is the ground state. Such an
- 5 , (31 vsis d . )
ot* analysis does not rigorously establish the true ground state
) unless all possible candidate states are compared, but it does
(the branch of the square root is chosen to preserve the angtiow us to prove the existence of higher period phases, if we
lyticity of go). Eliminating the self-energy between this can find regions of parameter space where the ground state is

Joliwy) =

equation and E¢30) we find not the segregated phase, the homogeneous solution, or the
—1,. , w2 period-two phase, which is what we find to be the case be-
Gy (iwp) =iwpt pe—t"“goli wy). (32 low.
Finally, replacing this last expression in EQ9) gives Eq. The interacting density of states for the homogeneous
(26) for q=1. phase is found from the solution of a simple cubic equation,

as first shown by Van Dongen and LeinuifgWe do not
repeat that analysis here. The segregated phase is found by
performing a Maxwell construction for the two states corre-

In the zero-temperature limjg—oo, the Matsubara fre- sponding to segregation—the state withp=0 and the state
quencies w,=(2n+1)7B"1 form a continuum we] with @p=1. The former has a density of states equal to the
—oo0,00[ and as long as the chemical potentials are held fixedponinteracting density of states, the latter has the noninter-
Eq. (27) becomes acting density of states, but is shifted uniformly upwards in

energy byU. We form a mixture of the two ground-state
a;=0[ Xj(pe, i) ], (33 energies, weighted by -1p; for ag=0 andp; for ap=1,
with the chemical potential chosen so that the average elec-
tron filling is equal top.. Since the segregated phaseTat
© dw =0 involves the mixture of only the empty and full lattice it
xj(Me:Mi):,U«i_f z{ln[inr,ue—tzng(i )] is easy to incorporate this phase into our ground-state analy-
o sis. Note that in the large- limit, the full lattice will be
—|n[iw+,ue—U—tzgj+1(iw)]}, (34  unoccupied(if U>4t*), so the electron concentration for
the empty lattice becomegs,/(1—p;).
and 6(x)=1 for x>0,6(x)=0 for x<0. The functions Forq=2, ap=0, anda;=1, the ground-state equations
gj(iw) satisfy Egs.(26) and (27) with i w, replaced byi o. become
To solve the zero-temperature equations we proceed as fol-
lows. First, we suppose that there exists a pegablution

Ill. GROUND-STATE EQUATIONS

where

corresponding to a given sequenceg(ay, .. .,aq 1) Joliw)= 1 ’ (37)
wherea;=0,1. We will find that noninteger values fes; are o+ pue—t*2g1(iw)

possible only at discrete values of the chemical potentials.

We solve the set of equations shown in ER6) for this

sequence that yields the functiogg, g, . . . .9q-1. Finally, gy(iw)= 1 (39)

we computeXo(ue i), X1(tte i), - - - Xq-1(te i) and fo+ pe—U—1*2gg(iw)’
then employ Eq(34) to find the domain of chemical poten-
tials satisfying Eq(33). Once a phase has been shown to befor the Green functions on levels 0 and 1 and
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FIG. 1. Interacting density of states B=0 for the period-two
charge-density-wave phase at three different valuet):.ofa) U
=0.28*; (b) U=t*; and(c) U=4t*. The solid line is the density
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gence at one of its band edges, which comes from the pileup
of states from the gap formation of the ordered phase. Note
that asU becomes large, the bands narrow significantly, and
approach delta functions d$—c0. The filling in the lower
band is always equal to 1/2 for all>0. This lack of depen-
dence(of the filling in the lower bangdon U turns out to
generically not be the case for higher periods. Note also the
symmetry between the levels and a reflection plane centered
atU/2.

We will also be interested in the period-two phase with
ap=1/3 anday=1. This is a phase wherg; must be ad-
justed so that the exponent in E7) vanishes linearly im
as T—0. Since this can only be done for one of the ion
densities, the other must be either zero or one. We consider
the case ofa;=1 here, because we want to examine the
ground-state phase diagram for the case2/3. The analy-
sis of the density of states is only slightly more complicated
than that given above for thg;=1/2 case, so we do not

of states for level 0 and the dotted line is for level 1. Note how anProvide the details here. The interacting density of states is

interchange of levels and a reflection abdif2 is a symmetry

no longer symmetric though.

operation. AsU increases, the density of states becomes two delta We setq=3 andap=1,@;=1,a,=0 in the ground-state

functions of weight 0.5 centered at=0 andw=U.

> do 5
Xo(Me'Mi):Mi_f_wz{m['w*‘ﬂe_t* g1(iw)]

—Infiw+pe—U—t*?gy(io)]}, (39

< dw ) o
Xl(ﬂev#i)zﬂi_f_wZ{ln[mH'l-Le_t Joliw)]

—Infiw+pe—U—t*2go(io)]}, (40

with Xo(se,ui) <0 andX;(ue,ui)>0. Equationg37) and
(38) reduce to two quadratic polynomials fop(iw) and
01(iw). The physical solutions areve set{=iw+ u.)

1 (U .
go(w)ZZt*z[é—U—\/T(iz—Ué“—M 2)J,
(41)
and
)= ——| - | 2-U¢—-4t*2)|, (42
gl(lw)_Zt*z { éV_U(é’ ¢ )|

where the square root is chosen to lie in the upper half plane

for >0 and in the lower half plane fap<<0. It is a simple

equations. The casesy=1,a0;=0,a,=1, and ag=0,a;
=1,a,=1 lead to the same result. For the Green functions
we now have three coupled equations:

1
i = ’
Goll ) i+ ue—U—1t*2g;(iw)
(iw) -
I = L
Gulle o+ ue—U—1*2g,(iw)
_ 1
Oo(iw)= (43)

ot pe—t*gglio)”
Each Green function is again the solution of a quadratic
equation that yield¢we set{=iw+ ue)

_ ==V VR

207 t* 2= ({~U)?]

go(iw)

({=U)[t*?=¢{(¢-U)]-t*2U—R()

aulte)= 20217 —{({-U)] |
t*2—({-U)*]- VR
oy AV RE

2 t*2—{({— V)]

exercise to find regions where the solutions are thermodywhere

namically consistent.

The density of states is nontrivial for these systems and R({)=—[2t*?+(U—t*){—Z|[2t*2+ (U +t*){— (7]

was first examined by Van DongéhFor both levels, there
are two bands: the first runs froes= (U — \U?+ 16t*?)/2 to
e=0 and the second frome=U to e=(U

X[t*2=({=U)?], (49)

and the sign of the square root is chosen to have the correct

+U%+16t*2)/2 (note we are plotting these results in an analyticity properties ofy. It is easy to find values of;
absolute energy scale, so that the chemical potential lies athere Xo(xe,ui)>0, X;i(we,ui)>0, and X,(ue,ui) <0,
€=ue). Examples are plotted in Fig. 1 for a few selectedwhich is the domain where the ion density is equal to 2/3.
values ofU. As expected, the density of states for each of the The interacting density of states is quite different

levels (level 0, solid line; level 1, dotted linenas a diver-

for the period-three phases. There are three bands

165111-6



HIGHER PERIOD ORDERED PHASES ON THE BETHE LATTICE PHYSICAL REVIEW@ 165111

T ™ " (q)] o 0.5 T T 1
% QU
= 7] C Period—two phase
\3/ T O 04F ~~ E
Q . = ™~ -
L 5 ~
! (b)] + —— .
* C 0.3 [ Period-three phase
% — ;
3 ] o _
< v T 8 0.2 - H;n.n;geneoue phase
T 1 } ©) c
* O
—~~ f - _b 0.1 F Segregated phase ]
3 . . O
Q . . o
[EPET B A L 0 P TP SR R B
2 4 6 0 0.2 0.4 0.6 0.8 1

U/(U+t")

FIG. 2. Interacting density of states for the period-three charge- G- 3- Restricted ground-state phase diagrampfer2/3. The
density-wave phase at three values\f () U=0.258*%; (b) U  nomogeneous, segregated, period-twath «o=1/3 anda;=1),
—t*; and (c) U=4t*. Note how the density of states splits into a1d period-three phaswith ao=1, a,=1, anda,=0), are com-

three bands and two delta functions. The solid line is for level 0, thd®@red to each other and their regions of stability plotted in the

dotted for level 1, and the dashed for level 2. The densities of statefégure' Note the wide region of stability of the period-three phase.

are identical for levels 1 and 2 except for the delta function contri-Note further, that atJ -, the ground state is the segregated phase
butions, which are located between the upper two bélegs! 1) or for pe+pi<1, as expected.
the lower two bandglevel 2. The height of the thick lines denotes
the weight of the delta functions in the total density of states, whichyegk coupling, stretching from approximately=0.1955 to
approach 1/3 ab) — . pe=0.4095, which narrows ab increases to the poini,
=1/3 in the strong-coupling limit. The existence of this
higher-period ground-state phase proves that higher-period
> 5\ 1. . . phases exist on the infinite-coordination Bethe lattice, since
- ‘iU +22Ut* +9*t* )/%’2 (mlddle band U-—t S'Ef(u the period-two, homogeneous, and segregated phases are not
—t* U —2L2Jt + 97 %)/2; zand (upper bandl U+t*<e 1o ground state. Since this is a restricted phase diagram we
<(U+t*+JU+2Ut* +9t*9)/2. In addition, the Green cannot rule out the possibility of higher-period phases possi-
functions for levels 1 and 2 have polés., delta-function 1y peing stable and taking over more of the phase diagram,
contributions to the density of stajeshat have weight it they were included in the analysii fact, we expect them
U/\JU?+4t*? and are located at=[U+U?+4t*?]/2 (¢ in regions where the homogeneous phase is stable
=[U—JUZ+4t*2)/2) for level 1 (level 2, respectively. In principle, the same computations can be carried out to
The results are plotted in Fig. 2 for some representative casefigher order ing, but the equations become cumbersome,
of U. The functional forms for levels 1 and 2 are identical, gnd we leave such an ana|ysis for a future pub"cation_
except for the delta functions—hence the dottestel 1) and
dashed curvedevel 2) overlap except at the delta functions,
whose weight is indicated by the height of the thick lines in IV. FINITE-TEMPERATURE ANALYSIS
the figure. Note that abl—<, the delta function contribu-
tions become more important for levels 1 and 2, while level The finite-temperature analysis for these higher period
0 generates two delta functions, each of weight 1/2Jat phases becomes complicated because no simple variant on
+t*. In the period-three case, the pileup of density of state$he iterative schemes for the homogeneous and period-two
is only seen at level 0—levels 1 and 2 have bounded densPhases appears to converge for period three and higher, so an
ties of states except for the delta function contributions. It isalternate computational strategy is needed. We begin by de-
interesting to note that in this case, the filling in the lowerscribing how to proceed for the period-two phase and then
band plus the lower delta functidi@all contributions withe ~ for the period-three phase. We do not perform any finite-
<0) ranges from 0.19 550 when—0 to 1/3 whenU—o.  temperature calculations on higher period phases.
This means that a§— 0 the electron filling for the period- ~ We begin with the general equations for the period-two
three phase witlp; = 2/3 (with the electronic chemical poten- Phase at finite temperature:
tial lying in the gap of the electronic density of statesll
range from 0.19 550 to 1/3 as a functionf

We now can construct a restricted ground-state phase dia- ) 1-ag
gram, for the case gf,=2/3, by comparing the ground-state Jo(iwn) =+ T2
energies of the homogeneous, segregated, period-two, and ot pe— 1701 (iwy)
period-three phases as a functiongf and U. This phase @
diagram is plotted in Fig. 3. Notice how the period-three + - - , (46)
phase is stabilized over a wide range of parameter space in fwn+ pe—U—1t*?g;(iwy)

Frequency (w/t)

located in the following regions: (lower
band (U—t* —JU?—2Ut* + 9t*?)2< e< (U +t*
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We use the same procedure to solve for the ordered

l-«a
g1(iwp)= - *; - phases of the period-three solutions. The equations for the
o+ pe=t*“go(i wy) Green functions are
aq 1-«
+ . _ 0
- P ) (fw,) = - )
fog+ pe= U —t*“go(iwp) Jolten |wn+Me_t*zgl(|wn)
where the fillings on the two levels, anda, are unequal in ag
the ordered phase, but are generally not equal to zero or one +

e A . o+ pe—U—t*2g (iw,)
at finite temperature. Substituting the value fgrinto the fon+pe—U—t*7g(iwp)

right-hand side of the equation fgg in Eq. (46) produces an

equation forgy. This is a quintic polynomial that has four 9y(iwy) = 17ay
unphysical rootgwrong sign of the imaginary part ajg) 3 oyt we—t*2g5(i wp)
and one physical root, so there is never any ambiguity in
determining which root to use. The quintic equation is com- @y
plicated, but is summarized below, where we use the short- + i+ pe—U—t*2g,(i @)
hand notation ofjy=t*2g,(i w,) and{=iw,+ we: nee "
(_ ) 1_ Ao
_ —U—a)—(¢—f1— - iw,)=
9ol {({—90)({—U—go)—({—{1—a}U—go)] gallwn fn+ ot 2go(i )
X[({=U)({=9o)({—U—go)—({—{1-a}U—go)]
_ + 22 (489)
=({=90)(4~U=go)l ({—{1-ag}U)({~ o) ot e U— g
X({—U—-0go)—({—{1-ai;}U—go)l. (47)  Substituting the equation fay, into the equation fog, and

then substituting the resultant relation fgy into the equa-

The strategy for solving these equations is to first fix thetion for g produces a single equation fgg that depends on
average ion density; = (ap+ @1)/2 and then to choose a the ion concentrations in each level. It is an order-nine poly-
trial difference in ion densityp;= ag— a4. This determines nomial that, once again, shows only one physical solution for
trial values for bothay and a;. Next we solve Eq(47) for  the Green function. The equation is cumbersome and the
go(iwy) by choosing the unique physical root. Thei(i w,,) algebra is straightforward, so we will not display the equa-
is determined from the second equation in Ef). Now we  tion here.
calculate the chemical potential for the ions using the infinite We adopt the same algorithm for solving this problem.
product in Eq.(27) with j=0 and we call that chemical First, we fix the average ion filling;=(aq+ a1+ a5)/3.
potentialw;y. We perform the same calculation wigee1 to  Then we choosey, to be equal to a fixed value, and we
determineu;. In general, these two chemical potentials will choose a trial value for;, which also determines the trial
not be equal becausgp; was not chosen to be equal to the value fora,. We adjusix, so that the “chemical potentials”
correct value for the thermodynamic state at the given temfor the ions determined by E@27) with j=0 andj=1 are
perature, so we adjusdip; until we find a solution where the equal. We then calculate the “chemical potential” for level 2
two “chemical potentials” for the levels 0 and 1 are equal. by using Eq.(27) with j=2. If this value is not equal to the
This then is the solution to the thermodynamic problem.chemical potential determined for levels 0 and 1, then we
Note that in the ordered phase there are always two noradjusta, and start the procedure all over again. It is quite
trivial solutions with 8p;=0: (i) the first hasép;=0 and challenging to find the regions of parameter space that yield
corresponds to the homogeneous phase (@hdhe second nontrivial solutions and we are generically guided by the
hasép;>0 and corresponds to the ordered phase. We nevesolutions found al =0 as our starting point, we then slowly
found any multiple solutions within the ordered phase, andaise the temperature to see how those solutions evolve. Our
this algorithm was generically quite stable. strategy involves calculating these results on a grid of points

We find that this solution method is relatively quick and it for @y and a4, until we reach a region where a solution to the
works better than the iterative techniques when one is closequations is possible, and then we use one-dimensional root-
to the phase transition, since one is controlling the value ofinders to zero in on the correct values of the ion fillings.
the order parametea®p; externally and not relying on devel- Calculations are much easier to perform at fixed values of the
oping it in an iterative algorithnwhich can become subject electronic chemical potential, rather than adjusting that
to critical slowing dowi. Comparing solutions fof . to the  chemical potential as a function of temperature to keep the
period-two phase with more conventional techniques basedlectron filling constant. We illustrate solutions in both cases
either on calculating the susceptibility in the homogeneou®f fixed p, and fixed .
phase or calculating the ordered phase using an iterative Once the fillings on each level and the chemical potentials
scheme, all agree to five decimal places, so we have confirave been determined, we can make the analytic continua-
dence that this technique works well for determining solu-tion of the Green-function equatiori26) by simply taking
tions to the coupled ordered-phase equations. iw,— w+i8. This produces a series of equations on the real
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FIG. 4. Free energy for candidate low-energy phased)at FIG. 5. Free-energy plot for the period-three and homogeneous

=3t*, p,=2/3, and u.=0.84 861 (corresponding tgp,~0.332). phases fol =t*, p;=2/3, andp,=0.26 698. Note how the phase
The solid curve is the period-three solution, the dashed is thdransition is clearly first-order here. The period-two phase is never
period-two, and the dotted is the homogeneous phase. Note how ti§éable, because the electron density is too close to zero. There is no
period-two phase intersects the homogeneous phase curve with tR€€d for additional higher period phases to be stable here, but we
same slope, as expected for a second-order phase transition, af@not rule out that possibility.
how the period-three phase must have a phase transition to a higher
period phase at an intermediate temperatarest likely first ordey  energy. There are two period-three solutions, but only one of
because the free energy cannot be discontinuods ahd the free  them is thermodynamically stable at any given temperature.
energy is not multivalued. Note how the period-two free energy matches the slope of
the homogeneous free energy at the point that they touch.
axis that can also be solved directiy essence, we simply This is characteristic of a second-order phase transition. On
use the same polynomial equation, but now evaluated on thge other hand, the stable branch of the period-three free
real axig. This allows us to determine the Green functionsenergy intersects neither the period-two nor the homoge-
on the real axis, and therefore, the average interacting defreous phases before it curves back on itself and joins the
sity of states unstable branch. This implies that there must be another
higher period thermodynamically stable phase that is present
at an intermediate range of temperatures, and has a phase
transition (most likely) to the period-two phase before be-
coming homogeneous at the highest temperature. Clearly, the
Once the density of states has been determined, then we cgRase diagram in this region of parameter space is quite com-
directly calculate the free energy, which assumes the followplicated. We have not determined which alternate phases are
ing generalization of the original Falicov-Kimball forfr stable in this intermediate temperature range.
Our second example is at a weaker value of the coupling
* strengthU =1, which is presented in Fig. 5. In this case, the
F:“epe“LTfwdef’i"t(e)ln1+eﬁ(e—%) period-two phase is never stable, because the electron filling
is too low to sustain the chessbhoard phasate the distance
a-t to the period-two phase in the ground-state phase diagram of
+ a Z [a@jIna;+(1-aj)in(l-e))]. (50  Fig. 3. Instead, there is a direct phase transition from the
1=0 period-three phase to the homogeneous phase. This phase
We find when we calculate the ordered period-threetra”Sition is also first order, as can b_e seen from.the mis-
phases, they are stable only for relatively low temperaturedn@tch of the slopes of the free energies at the point where
Hence, the ion density on each of the levels changes onlf§ €Y cross. Note that this calculation was performed at a
slightly from the values af =0. Hence, the density of states constant electron filling op=0.26 698.
is only slightly modified as a function of temperature. We do
not plot the temperature dependence here because it is so
mild. Instead, we plot the free energy as a function of tem-
perature. Figure 4 is calculated at a constant chemical poten- We have used two techniques to show the existence of
tial (ue=0.84861p.,~0.332), chosen to lie in the region higher period phases on the infinite-coordination Bethe lat-
where the period-three phase is stable, at a coupling strengtite. The first was a restricted phase diagram analysis at
U=3. This value was chosen because it is large enough that 0, which showed that higher period phases must exist on
the system behaves as it does in the strong-coupling limithe Bethe lattice. The second was an examination of the sys-
but is small enough that the transition temperature does ndem at finite temperature, where we were able to see that
become too small. The figure shows the homogeneous fregenerically, the phase transition to the period-three phase is
energy, the period-two free energy, and the period-three frefirst order and that higher period phases must be stabilized at

1 !
pint(€)=— q—wlm;0 gj(e). (49)

eB(ffl’ve)

V. CONCLUSION
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strong coupling and intermediate temperatures, in order fofyhere (i,(i w,) Piwy))2¥? is defined as in Eq(15) but

the system to have the proper thermodynamics. This worlgith Sh A (wy) repIacingSﬁeff(wy). Therefore, to leading
has discussed a long-standing controversy about whether gfder ’

not these higher period phases can exist on the Bethe lattice.

We have left open the question of a more complete study of 1 1 t;‘yz
these systems, to see if the behavior in the one-dimensional Zpeti=Za(y,pef 1~ VA

lattice is also seen here, such as a Farey-tree structure. It is
possible that the techniques we developed here could also be - _ ,
applied to the hypercubic lattice, but the results are likely to X Z Gy ™ (i) G (i wy)
be much different there, as the hypercubic lattice can sustain e

second-order phase transitions to incommensurate and highefom Egs.(15), (A1), and(A3) we get

period phases.

. (A3

*2 ®

t " )
Gofiwy) = [ 1- = n;w G (1 w,) GAY (i wp)
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Xm;w G\ (i )
APPENDIX: LARGE COORDINATION-NUMBER LIMIT
OF THE GREEN FUNCTION

I | o) Il )Y AD
Here we show that the difference betweB#(i w,) and X1 0m) Y (1 0) Py(i 0p) Y1 ) ) e

G,{iwy,) in Eq. (23) is O(Z~1) and compute the first cor-

rection. We rewrite the local effective actioh6) associated _ ' (Ad)
to sitez in the following form: so that to leading order we find
A A(y;2) Gy A@Y (o VT ; GMliwy) =GV (iw )—ﬁ[GA(y'Z)(iw 112G ()
Sheff(W2) =S gt (W,) + ?ny Yiwy) P(io,) b(1w,). z n 2z n 7 L2z n vy n)-
(A1) (A5)
For Eq.(17) we have to ordeZ ! Assuming that the thermodynamic limits exist, we find to
' lowest order
;yz - *2
— A(zZy) . . . .
ZA,eff_ZA(y,z),eff 1= 'z n;w Gy)sz y)(l @n) G;z(l ) =G fiwp) + 7[6220 wn)]szy(| wp),
(A6)

Xl wg) i 00) Y22, (A2)  which justifies the procedure outlined in the main text.
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