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The phase diagram for the spinless Falicov-Kimball model on a hypercubic lattice is reexamined in
the limits of large and small dimensions (for the half-filled ion case). This model is identical to the ther-
modynamical problem of an annealed binary alloy with diagonal disorder. The phase diagram for the
infinite-dimensional case is remarkably similar to the conjectured phase diagram for the one-dimensional
case. The system orders in short-period phases, orders in long-period (possibly incommensurate) phases,
or segregates, depending on the interaction strength and the electron concentration. The analysis for
this simple model provides hope that recently proposed solutions for other interacting fermion models in
infinite dimensions will accurately represent the solutions in two and three dimensions.

I. INTRODUCTION

The Falicov-Kimball model! was introduced in 1969 to
describe the thermodynamics of metal-insulator transi-
tions in compounds that contained both itinerant and lo-
calized quasiparticles. The spinless version of the
Falicov-Kimball model is the simplest example of an in-
teracting fermionic system that displays numerous phase
transitions. The itinerant quasiparticles are called elec-
trons and the localized (static) quasiparticles are called
ions. The Hamiltonian is
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where the electronic hopping term is summed over all
nearest-neighbor pairs {j,k ) of a hypercubic lattice in d
dimensions, c; (c;) is the creation (destruction) operator

for a spinless electron at site j, W, is a classical variable”

that assumes the value 1 (0) if site j is occupied by (is not
occupied by) an ion, U is the electron-ion on-site
Coulomb interaction, y is the electronic chemical poten-
tial, and ( —E) is the ionic chemical potential. The hop-
ping integral #* defines the energy unit and will be chosen
to be one (all energies are measured in units of ¢*). The
thermodynamic limit is taken where the number of lattice
sites approaches mﬁnlty (N — 0 ) but the electron con-
centration (pe > Jﬂl(cj ¢; >/N) and the ion concentra-
tion (p;=3 j_lW /N) remam constant. The symmetric
case of half-filled ions (p; = 1) is the only case considered
in this contribution.

The spinless Falicov-Kimball model has a simple inter-
pretation as a thermodynamic model for an annealed
binary alloy. A site occupied by an ion (W,=1) is
mapped onto a site occupied by an ion type A4, a site not
occupied by an ion (W;=0) is mapped onto a site occu-
pied by an ion of type B, and U is mapped onto the
difference in interaction energies (U=U ,— Uy ) for ions
of type 4 and type B. The case of half-filled ions (p; =1)
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corresponds to the symmetric 509-50% binary alloy
problem.

The ionic configurations are ensemble averaged to
represent an annealed binary alloy. This ensemble
averaging is what makes the Falicov-Kimball model a full
many-body problem. For example, the ground state is
determined by the ionic configuration I'={ W;] that min-
imizes the electronic energy for fixed ion concentration

E(U,p,.,p;)=min |ET(U,p,)

1 g
pi= W » (2)
N =

where E'(U,p,) is the ground-state energy of the
Falicov-Kimball Hamiltonian (1) for the ionic
configuration T" at an interaction strength U and an elec-
tron concentration p,. The minimization procedure in (2)
determines the equivalence class of the ground-state ion
configuration I'y; as a function of the interaction
strength, the electron concentration, and the ion concen-
tration.

The Falicov-Kimball model is interesting because it il-
lustrates the competition between order-disorder phase
transitions and phase segregation driven entirely by elec-
tronic interactions.

Brandt and Schmidt? and Kennedy and Lieb® have
proven that for low enough temperatures* the ionic
configuration I' of the fully symmetric case (p, =p;=1)
is always ordered into a two-sublattice (blpartlte)
configuration with the A4 ions occupying one sublattice
and the B ions occupying the other sublattice (chessboard
configuration). Numerical studies’™’ have shown that
the zero-temperature phase diagram appears to be an or-
dered phase (commensurate or incommensurate) for
small interaction strength (and large enough electron
concentration), and a segregated phase (for almost all
electron concentrations) at large interaction strength.
This latter result is called the segregation principle and
follows physically from the fact that at large interaction
strength the electrons avoid the sites occupied by ions
and the ground state is determined entirely by the kinetic
energy of the electrons. The kinetic energy is minimized

9263 ©1993 The American Physical Society



9264

by placing the electrons in the largest possible “box” cor-
responding to the ions clustering on one side of the lat-
tice. The segregation principle has
rigorously proven® ' for the one-dimensional case.

Current interest has focused on the infinite-
dimensional model after the observation by Metzner and
Vollhardt!! that the many-body problem becomes local in
infinite dimensions [when the hopping integral is scaled
as in Eq. (1)]. Brandt and Mielsch'? have analyzed the
infinite-dimensional case determining regions in parame-
ter space where the system undergoes a second-order
phase transition from a homogeneous (high-temperature)
phase to an ordered (two-sublattice) periodic phase.
More recent work has analyzed the infinite-dimensional
model on a Bethe lattice,'®!* the zero-temperature phase
diagram,'® Fermi-liquid behavior in a long-range hopping
model,'® and preliminary results for 1/d corrections to
the infinite-dimensional model.!’

The Hamiltonian (1) exhibits two kinds of
symmetries—an A-B ion-interchange symmetry and an
electron-hole symmetry.> In the first case, one must con-
sider the 4-B interchanged ion configuration I'* defined
by {W/}={1—W,}. The ground states for these two
configurations are related by

E™(U,p,)=E"(—U,p,)+Up, , (3)

for all U and p,. In the second case, the unitary transfor-

mation ¢;—(—1)7¢; and ¢]—(—1)7c} [with ¢;=1(0)
for R; in sublattice one (two)] that changes the sign of the
electron operators on one of the two sublattices (of the bi-
partite lattice) is used to relate electron eigenvalues with
interaction U to corresponding hole eigenvalues with in-

teraction ( — U) yielding the result
EN(U,p,)=E"(—U,1—p,)+Up; . 4

These two symmetries are used to reduce the parameter
space in the calculation of phase diagrams.

This contribution reanalyzes the one-dimensional solu-
tions® and the infinite-dimensional solutions!? in order to
study the qualitative behavior of the spinless Falicov-
Kimball model as a function of dimension. Surprisingly,
the zero-temperature phase diagrams for both dimension-
al limits are remarkably similar displaying ordered phases
for small interaction strength and segregation for large
interaction strength. The model appears to have regions
where the periodic phases are described by a label that
varies both continuously and discontinuously with the
electron concentration. Section II introduces the
Green’s-function techniques that are employed to solve
the model exactly in both limits. Section III discusses the
infinite-dimensional case and Sec. IV briefly summarizes
the one-dimensional case. Conclusions and conjectures
are presented in Sec. V.

II. GREEN’S-FUNCTION TECHNIQUES

The spinless Falicov-Kimball model may be solved ex-
actly in both infinite dimensions and one dimension by
determining the local Green’s function defined by the ma-
trix element

recently been
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ij(a))E<j j> : (5)
It is sometimes convenient to write the local Green’s
function in terms of a (momentum-dependent) self-energy
=

ij(w)= z G(k,ﬁ)) ’
k

(6)
=3 [o+u—ek)—=(k,o)]7!,
k

where e(k)=—37_ cos(k; )/V'd is the band structure of
a hypercubic lattice in d dimensions and the momentum
summation extends over the entire Brillouin zone.

In infinite dimensions the hopping from one lattice site
to another is scaled to zero [see Eq. (1)]. Naively one ex-
pects all physical properties to become completely local
(and trivial) in this limit. However, the hopping integral
is scaled to zero in such a fashion that electrons (virtual-
ly) hop from one site to another while the self-energy for
the interacting single-particle Green’s function remains
site diagonal, has no momentum dependence, and is a
functional of the local Green’s function.!»!? The many-
body problem is solved by mapping onto an auxiliary
atomic problem in a time-dependent field (that mimics
the hopping of an electron onto a site at a time 7 and off
the site at a time 7). The effective action'®!® for this
atomic problem is

Sa= [l dr [P arenGsi(r—re(r)
+EW+U [Pdrctnenw, %)

with W the local ion-occupation number and G, the
“bare” Green’s function that contains all of the dynami-
cal information of the other sites in the lattice. The in-
teracting Green’s function is determined by

G, '=6"iw,) =G5 (in,)—3lia,) , ®

at each Matsubara frequency w, =(2n+1)7T. Since the
effective action (7) is quadratic in the electronic variables,
the time-dependent atomic problem can be solved for ar-
bitrary bare Green’s function G, and Eq. (8) employed to
determine the functional form of the self-energy in terms
of the Green’s function.!? The result is

U_ 1
2 26,

3,[G]l= {1—sgn(|w,| —o,)

XV 1—2(1—2p,[G)UG, + U*G?},
(9)

with the functional that determines the iohic concentra-
tion being
- -1
pilG]l= |1+ePEXUD TT (1—-UG,liw,)}
n=-—co

(10

The critical frequency o, is defined to be the frequency at
which the full Green’s function becomes pure imaginary
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[ReG(iw,.)=0]. In this contribution, the energy level E
in Eq. (10) is adjusted so that p;[G]=1-

Note that this representation for the self-energy 9 ) is
formally identical to the coherent-potential approxima-
tion'® with the exception that the dependence of the ion
concentration on the electronic Green’s functions is ex-
plicitly known (for more details on the comparison with
the coherent-potential approximation, see Ref. 17). It is

this crucial difference that allows for the correct evalua- |

tion of the derivatives of the self-energy with respect to
the Green’s function and produces an exact solution to
the annealed binary alloy problem in infinite dimen-
sions.!? Put in other words, the coherent-potential ap-
proximation is exact for all single-particle properties, but
not for two-particle properties.

The Green’s function is now determined by the self-
consistent equation (6). Converting the momentum sum-
mation into an integral over energy (since the self-energy
has no momentum dependence) yields

G,=F_ lio,+u—32,[G], (11)

with F,(z) the scaled complimentary error function of a
complex argument'®

1 = e
Fw(z - \/1—T f—wdyz-
=—z'sgn[Im(z)]\/1_7-e_22
Xerfe{ —isgn[Im(z)]z} . - (12)

The self-consistent equation (11) can be tested for solu-
tions that are pure imaginary. In this fashion an equation
for the critical frequency?® is determined:

U—4u*F, |io, +—;4/ Ur—4u*?

u* E,LL—?U . (13)

Note that the critical frequency o, vanishes unless U is
large enough and it approaches V' U2—4u*2?/2 in the
strong-interaction-strength limit (U — o0 ).

The electron concentration p, is a monotonic function
of the reduced chemical potential u* for every tempera-
ture 7. In the limit as T approaches zero, the electron
concentration satisfies

P T—0,u*)=1[1+0(u* — U /2)—6(—p*—U/2)]
+L [*doRe|Glio)
T Yo

io+p*

v |’
i+ u* 2 Y
(fo+p*) 2
(14)
with 6(z) the unit step function. When the reduced
chemical potential vanishes (u*=0), the electronic
“band” is half filled (p, =1); negative values of u* corre-

spond to electron concentrations of less than one-half.

pe=ff nf(wdo , E

The Green’s functions can now be employed to study

- the infinite-dimensional Falicov-Kimball model in the

high-temperature (disordered) regime. As the tempera-
ture is lowered, a second-order phase transition occurs
when the susceptibility for a charge-density-wave distor-
tion diverges. Both the transition temperature and the
symmetry of the ordered phase can be determined in the
finite-temperature formalism (see Sec. III for details).

In one dimension the zero-temperature Green’s func-
tions are determined by the renormalized perturbation ex-
pansion?®! in real space,

Gl w)=w+pu—3,(n) . (15)

The local self-energy is expressed in terms of two contin-
ued fractions,

ij(w)=UW’j+A+(w)+A_(w) , 16
At(w)= ! ) o
o= UW;y, 1
o—UW, ,—
jE2 w_UWjj::%_

that depend on the ion occupations (on the line) that lie
to the right or to the left of site j. The electronic density

~ of states n'(w) (for a given ion configuration I') is then

determined by

nr(w,)‘—:——%lm lim G(o+ie€) , a7

e—0

and the electron concentration and internal energy are re-
spectively given by
—
U,p.)= f

wwdo .

(18)

The ground-state energy is determined by comparing the
internal energy for each ion configuration I" to determine
the minimum energy (ground-state) configuration I';; as a
function of electron concentration and interaction
strength (see Sec. IV for details).

III. THE INFINITE-DIMENSIONAL CASE

At high temperatures the electrons and the ions are
uniformly distributed throughout the lattice for all elec-
tron concentrations—there is no long-range order. As
the temperature is lowered, the homogeneous (disor-
dered) phase becomes unstable to an ordered phase where
both the electronic charge density 3 ;exp(iq-R; )(cTc )
and the A-ion occupation ¥ ;expliq-R;}W; acquire
nonzero values (when modulated by the ordermg vector
q). If this transition is assumed to be a continuous
second-order phase transition, then it can be detected
when the charge-density-wave susceptibility (at the
relevant ordering wave vector) diverges. The static
charge-density-wave susceptibility is defined to be the
Fourier transform of the electron-electron correlation
function
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]tr b o TR Ry)

R;-R,

xlq, T)=
X deT<T CT(T)Cv(T)
0
Xcf(0)e, (0))

=T E X(q,za) )——T 2 X,,(q)

n=—co TH=*"&

(19)

for each ordering wave vector q. Dyson’s equation!? is
used to relate the full interacting susceptibility ¥, to the
bare susceptibility )?O

» 9%, [G
PACHS ACUSS ACUEDS %

m=-—co m

¥n(q), (20)

with the bare susceptibility defined by!?
Pq)=— 26,06,

VT V1—Xx¥q)
2

) e ¥
X . ) R
f—eo ta)n +u—=,—y
P io,tpu—=,—X(qly
® V1-X%q)

and all of the wave-vector dependence included in the
term X(q)E:}‘,}i= 1c0sq;/d. The mapping q—X(q) is a
many-to-one mapping that determines an equivalence
class of wave vectors in the Brillouin zone. “General”
J

_u? Uz = 7,(X)

@2n
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wave vectors are all mapped to zero, since cosq; can be
thought of as a random number between —1 and 1 for
general points in the Brillouin zone. Furthermore, all
possible values of X (—1<X <1) can be labeled by a
wave vector that lies on the diagonal of the first Brillouin
zone extending from the zone center (X =1) to the zone
corner (X=—1).
The ion-ion correlatlon functlons defined by

iq- (R —R;)

Xlon-lon( q.T)= TN Rk, e Wj Wi (22)

diverge at the same temperature [for the same value of
X(q)] as the electron-electron correlation functions.!?
Therefore, a divergence of the charge-density-wave sus-
ceptibility [x(q,T) in Eq. (19)] can be used to determine
the long-range order of the ions which is labeled by the
same parameter X. An ordering at the zone corner
[X=—1,Q=(m,w, ...}] corresponds to a two-sublattice
(chessboard) state with all of the A ions occupying one

,sublattlce [exp(iQ-R;)=1] and all of the B ions occupy-

ing the other sublattlce [exp(iQ- R =—1]. An ordering
at the zone center (X=1) corresponds to the segregated
phase where the A4 ions cluster together on one half of
the lattice (R; <0) and the B ions cluster together on the
other half of the lattice (R;=0). This latter situation
corresponds to the case where the A ions are immiscible
in the B ions and do not form a solid solution.

The derivatives of the self-energy with respect to the
local Green’s functions can be directly performed (for de-
tails, see Ref. 12). After some tedious algebra, one finds
that the susceptibility x(q,T) diverges at the temperature
T.(X) that satisfies

4,2 lGo.vu=r P—(U2 /) |[Gw, 1" —A {1 42G, 7, (X} -7, (X))~

=V, r
=—"h(T;X)

for each value of X. The parameters 17,(X) and A, in Eq.
(23) are defined by

—, Gy l'liw,)=ie, +u—A,

(24)

respectively. There are three values of X where the in-
tegral for ¥2(X) in Eq. (21) can be performed analytical-
Iy:'? X=—1, X=0, and X=1. The values of 7,(X) are
easily determined at these three special points,

77,,(X=—1)=7£,, » M,(X=0)=0
1 (25)
(X = m G ’

n

Note, in particular, that the vanishing of 5, for vanishing
X implies that the critical temperature is always zero at a
general wave vector [T,.(X =0)=0].

(23)

In the limit as the temperature gets large, A{T — 0;X)
approaches zero as the inverse fourth power of the tem-
perature, since every element of the summand [in Eq.
(23)] is asymptotically proportional to 1/w?%. In the limit
of small temperatures, #(T —0;X) diverges as C/T in
the weak-coupling limit (U—0) arising from the diver-
gence of the summation [in Eq. (23)] in the limit T'—0.
Therefore, a solution to the transcendental equation (23)
will always be found if the coefficient C of the low-
temperature divergence is positive. Expanding the func-
tion A(T—0;X) about the nonmteractmg limit in a
power series in U yields the following form:!

for the low-temperature behavior as a function of u*.
The coefficient C(u*;X) goes through zero at a critical
value of the reduced chemical potential p}(X). Calcula-
tion of C(u*;X) is straightforward near the special values
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of X, yielding the following behavior:

b

Clutix=—1=== [ dye™" |2ReF. (5 —1

uXX=—1)=0.250 ;
ClpsX=0)= —%L:ﬂ dy e ™’[y —y?ReF, ()],

pHX=~0)=0.534; (27)

" dye ’[y—ReF,(»],

2

pHX=1)=~0.613 .

Or, expressed in other words, in the limit as U —0 solu-
tions to the equation for the critical temperature (23) ex-
ist for the chessboard phase (X=-=1) in the range
0.36<p, <0.64; for the segregated phase (X=1) in
the range 0.0<p, <0.19 and 0.81 <p, <1.0; and for the

dT,(X)
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limit X—07(0%) in the range
(0.0=p,=0.22 and 0.78 <p, < 1.0).
Since all of the wave-vector dependence of y(q,T) is
included in the scalar X(q), one can study the divergence
of ¥(X,T) to determine the equivalence-class label X of
the wave vector of the first broken-symmetry phase into
which the system has a phase transition. One must exam-
ine the critical temperature as a function of X and deter-
mine at what value of X the critical temperature is a max-
imum (the critical temperature for all other values of X is
not physically relevant because the susceptibility must be
studied from the broken-symmetry phase to see if any ad-
ditional phase transitions occur as the temperature is
lowered below the maximum transition temperature).
The value of X =X, where T,.(X) is a maximum can lie
at the boundaries X =%1 or someplace in between. If
X nax does not lie on the boundary, then the derivative of
T.(X) with respect to X will vanish at X ,.. The deriva-
tive can be calculated by differentiating Eq. (23) with
respect to X and using the chain rule. The result is

0.22<p, <0.78

N XNiw, +u*—A,)

dXx

___|anT;x)
dT

The derivative of 77, (X) with respect to X can be easily
determined from the functional form of ¥5(X) in Eq. (21)
and the definition of 7, (X} in Eq. (24). The derivative of
h(T;X) with respect to T is easiest to perform numerical-
ly. ‘

The dependence of the transition temperature on X and
|u*| is plotted in Figs. 1 and 2 for the case U/t*=0.5
and U/t*=2.0, respectively. The horizontal axis
records the label X for the equivalence class of ordered
ion configurations and the vertical axis plots the transi-
tion temperature at a given value of X. The different
curves correspond to different values of the reduced
chemical potential {uz*|. The summations in Eq. (23) are
truncated at N ,,, = 1000 positive Matsubara frequencies.
This truncation provides a lower limit to the numerical
determination of transition temperatures. Typically the
calculation is accurate for transition temperatures T,(X)
larger than 1/N_,.. The results for U=0.5 (Fig. 1) are
representative of the weak-coupling regime where the
system orders in a chessboard phase for a range of elec-
tron concentrations near half filling [ T,.(X) has its max-
imum at X =—1]; orders in a series of phases with a con-
tinuously varying label X ,, for intermediate values of
the electron concentration [ T,(X) has its maximum at an
intermediate value —1<X<1)]; and then segregates
when the concentration becomes too small or too large
[T.(X) has its maximum at X =1]. The transition tem-
peratures for |u*|=0.5 are too small to be seen in Fig. 1.
The results for U/t*=2.0 (Fig. 2) are indicative of the
strong-coupling regime where the system orders in the
chessboard phase for concentrations near half filling and
then segregates when the concentration becomes too
small or too large without passing through any inter-
mediate (long-period) phases [T,(X) has its maximum

] nm o Lo, +u*—A, 2 —(U*/4)][liw, +p* — A ) {1+2G,1,(X)} —,(X) P

(28)

[

only at X=—1 or X=1]. Note that the transition tem-
peratures for negative values of X tend to be larger than
the transition temperatures for positive X.

The label X ,, (that determines the equivalence class
of the wave vector of the A-ion occupation for the
highest-temperature broken-symmetry phase) is deter-
mined as a function of U and p* by employing both Eq.
(23) and Eq. (28) to find the value X=X,  at which
T,(X) is a maximum. An approximation to the zero-
temperature phase diagram can now be made with the
following assumptions: (a) there are no first-order
(discontinuous) phase transitions; (b) the symmetry label
X nax Of the ordered state does not change as the tempera-
ture is lowered from T,(X,,.) to 0; and (c) the depen-
dence of the chemical potential ;£* on temperature can be
ignored in the range from T,.(X_,,) to 0. In this case,
one assumes the label X,  does not change as T—0 and
determines the electron concentration from Eq. (14) in
the zero-temperature limit. At least 5,000 (N ., =S5000)
positive Matsubara frequencies are utilized in the calcula-
tion. The electron concentration is restricted to p, <1 by
using the electron-hole symmetry (4)—the phase diagram
for the region p, = 1 is determined by rotating the phase
diagram for p, <3 by 180° about the point U=0, p,=1.
The phase diagram is further restricted to U =0 by using
the A-B interchange symmetry (3)—the phase diagram
for the region U =0 is determined by reflecting the region
U =0 in a mirror plane along the U =0 axis and by ap-
plying the conjugation operation to the ion configurations
(each configuration I" with p, =1 is either self-conjugate

*=F or forms a conjugation pair with another p;=1
configuration). The value of X ,, for the conjugate rep-
resentation is unchanged.
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The critical-phase line where the ordered-phase label
changes from positive X to negative X is difficult to deter-
mine directly because the transition temperature vanishes
at X =0. Using the relation 7,(X=0)=—2A2/G, al-
|

dT,(X)

G Yio)iot+p—3lio)—G  Yiw)]?
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lows the sign of the derivative of T,(X) to be determined
by evaluating the sign of the numerator of Eq. (28) in the
limit T—0. The result is expressed as an integral over
frequency,

sgn—- X=0=sgn "fo doRe

The (approximate) zero-temperature phase diagram for
the infinite-dimensional case appears in Fig. 3. The hor-
izontal axis measures the interaction strength from weak
coupling [U/(t+*+U)=0] to strong coupling
[U/(t*+U)=1]. The vertical axis plots the electron
concentration p,. The area with left cross hatching is the
region of stability for the segregated phase (X=1) and
the area with right cross hatching is the region of stabili-
ty for the chessboard phase (X = —1). The white region
is the area of the phase diagram where X, ,, varies con-
tinuousty from 1 to —1. Contour lines of constant X, ,,
(viewed as functions of p, and U) are plotted for
Xpax=—0.9, —0.8, —0.7, —0.6, —0.5, 0.0, and 0.5.
Note that the solution of Brandt and Mielsch'? neglected
all of the phase transitions besides the phase transition to
the chessboard phase.

The phase diagram in Fig. 3 corresponds closely to
physical intuition and previous results for this mod-
el.»357 The “Peierls” charge-density-wave distortion re-
quires a finite density of electrons in infinite dimensions
before the Fermi-surface effect can open up a large
enough gap for a periodic phase to be lower in energy
than the segregated phase. The critical concentration is
p.=0.159, corresponding to a chemical potential of
u*=—17 V2 [which can be determined by expanding the
derivative (at X =1) in Eq. (28) for small U and small T].
The chessboard phase is stable for a finite range of elec-
tron concentrations near half filling for all finite values of
U. The system orders in long-period (possibly incom-
mensurate) phases for intermediate electron concentra-
tions and small interaction strength (weak-coupling re-
gime). This arises from a Fermi-surface effect that opens
a gap at the Fermi level for the corresponding electron
filling. Finally the system tends toward segregation at
large interaction strength because the electron energy is
minimized by placing them in the largest possible box in
the strong-interaction regime.

It is interesting to note that there is a marked asym-
metry between positive and negative values of X for
phases labeled by a continuously varying value of X. The
negative values of X_,, span the range of electron con-
centrations from 0.22 <p, <0.5 in the limit U—0, while
positive values of X . span the much smaller range from
0.16<p.<0.22 in the same weak-coupling limit. The
reason for this asymmetry arises from the fact that the
segregated phase is stable for a large range of electron
concentrations (due to the significant band filling required
for a Peierls-like charge-density-wave distortion in
infinite dimensions). The asymmetry between positive
and negative values of X, should decrease as the
dimensionality is reduced.

[Zl0)+ G i) ][Z(iw)+ G Hio)—(U /2)][Zlio)+ G Nio)— U]

} . - {29)

0.04

50 0.02
[
0.014
0.00 T
-1.0 -0.8 -0.8 -04 -0.2 0.0
X{a)
7 4.0
_|(b)
4 1.0 0.8
QO
- 2.0
= 08
1.0 0.7
0.6
00 )i ] 1 {
0.0 0.2 04 0.6 0.8 10
X{q)

FIG. 1. Transition temperature T.(X) as a function of wave-
vector equivalence class X for the Falicov-Kimball model in
d=co with U/t*=0.5 (weak-coupling regime). Note that the
temperature scales are different for {a) negative and (b) positive
values of X. The curves are labeled by the absolute value of the
reduced chemical potential |u*|. Note that the maximum value
of T, occurs at X, = —1 for small values of the reduced chem-
ical potential |u*| <0.2, lies in the range —1<X,,, <0 for in-
termediate values 0.2 <|p*| <0.5, lies in the range 0 <X ,, <1
for intermediate values 0.5 <|u*} <0.7, and occurs at X,,,, =1
for large values [u*|>0.7. Note also that the curves for
[1*[=0.5 are too small to be seen. The weak-coupling regime
orders at intermediate values of X for a range of values of the
electron concentration.
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The accumulation point for the contours of constant X
at p,=0.312 (u*=0.580) and U=1.174 for all negative
values of X indicates that the transition temperatures uni-
Sormly approach zero [T.(X)—0] for all negative values
of X in the limit as p,—0.312 and U—1.174. This
phenomenon does not occur for positive values of X.

Recent interest has focused on Fermi-liquid theory for
interacting electronic models.!®* The Falicov-Kimball
model has a very simple picture of Fermi-liquid theory
when put in the language of noninteracting band theory.
At fixed interaction strength U, the system orders in a
segregated phase for a finite range of electron concentra-
tions, may order in a set of phases labeled by a continu-
ously varying parameter X (weak-coupling regime), and
then orders in the two-sublattice chessboard phase. In
the region where the ground state is either the segregated

0.08

-1.0 -0.8 -0.8 -04 -02 0.0

0.03

0.02

T

0.01

0.0 02 04 0.8 0.8 1.0
X{q)

FIG. 2. Transition temperature T.(X) as a function of wave-
vector equivalence class X for the Falicov-Kimball model in
d= o with U/t*=2.0 (strong-coupling regime). Note that the
temperature scales are different for (a) negative and (b) positive
values of X. The maximum value of 7, always occurs at
Xmax=—1 for small values of the reduced chemical potential
J*| <0.85 and occurs at Xp,,, =1 for large values |u*|>0.85.
The strong-coupling regime never orders at an intermediate
value of X for any value of the electron concentration.
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FIG. 3. Phase diagram of the spinless Falicov-Kimball model
for the symmetric case in the limit d = o. The area with left
cross hatching is the region of stability for the segregated phase
{X =1) and the area with right cross hatching is the region of
stability for the chessboard phase (X =—1). The white region
is the area of the phase diagram where X ,, varies continuously
from 1 to —1. Contour lines of constant X,,, are plotted for
Xoax=—0.9, —0.8, —0.7, —0.6, —0.5, 0.0, and 0.5. Note the
difference in stability for positive and negative values of X.

phase or the chessboard phase and 0<p, <1/2 there is
no gap at the Fermi level, so the system is a band metal
and a Fermi liquid (actually a Fermi gas, since the con-
duction electrons do not interact among themselves). In
the region where the ground state is labeled by the con-
tinuously varying parameter X, it is expected that the
Fermi level lies in a gap of the band structure producing
an insulator that is not a Fermi liquid. These results are
similar to those of Ref. 16 where an intermediate range of
electron concentrations produced an insulator in a long-
range hopping model.

IV. THE ONE-DIMENSIONAL CASE

The one-dimensional model does not display any
finite-temperature phase transitions. There are, however,
numerous level crossings in the ground state as a function
of electron concentration and interaction strength. The
zero-temperature phase diagram plots the equivalence
class of the ground-state configuration as a function of p,
and U. There has been recent interest in this mod-
el>87102223 angd the known results are summarized
below.

At small interaction strength the system undergoes a
Peierls distortion for all electron fillings with a gap open-
ing up at the Fermi level as the electron concentration is
varied. At large interaction strengths the system segre-
gates for all electron concentrations except p, =4. The
chessboard phase appears to be the ground state only at
P =1, and does not possess a finite area of stability in the
zero-temperature phase diagram. The system appears to
always pass through an intermediate set of (long-period)
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ordered phases in the transition from the chessboard
phase to the segregated phase. The segregated phase ap-
pears to be the only phase that is stable for a finite area of
the phase diagram.

It is interesting to test how the results for the infinite-
dimensional Falicov-Kimball model compare to the one-
dimensional results to see what the effects of dimensional-
ity are on the physics of the model. There is no exact
phase diagram for the one-dimensional model that in-
cludes all possible (long-period) ordered phases. Instead,
there are restricted phase diagrams that approximate the
full phase diagram but include only a finite number of
periodic phases as candidate ground states for the system.
In order to compare these restricted phase diagrams to
infinite-dimensional results one needs the analog of the
parameter X(q) that played such a crucial role in the
infinite-dimensional theory. The simplest analog is to
define X(q)=cosq,.., Where g, denotes the wave vec-
tor of the maximum Fourier coefficient in the Fourier ex-
pansion of the ground-state ion configuration I'y;={ W,}.
The perturbative analysis of Ref. 5 implies that in the
limit U-—0, X(gq) varies from 1 to —1 {(as the electron
concentration varies from 0 to 1). The mapping
I' > X(q) remains many to one, since the ground-state
ionic configuration Ty is determined by more than' just
its largest Fourier coefficient. The values of X(q) for all
of the ionic configurations with periods less than nine are
recorded in Table I. The ion configurations I'" are record-
ed in the alloy language where each lattice site is occu-
pied by an A4 or B ion. For example, 4 ABB denotes the
period-four configuration ... AABBAABB... on the
linear chain.

The restricted phase diagram of the one-dimensional
Falicov-Kimball model (in which the ground states are
labeled only by the parameter X) is plotted in Fig. 4. The
restricted (incoherent) phase diagram of Ref. 5 is used to
construct an approximate zero-temperature phase dia-
gram. The left cross-hatched region corresponds to the
area of the phase diagram where the segregated phase

TABLE I. The parameter X =cosk,, for all of the one-
dimensional ion configurations with p,-=% and periodicity
smaller than nine. The wave vector k_,, is defined to be the
wave vector of the maximum Fourier coefficient of the Fourier
transform of the ion configuration {W;}. In the case where
there is no unique maximum wave vector, the parameter X is

determined by averaging over all maximal wave vectors.
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FIG. 4. Approximate phase diagram for the spinless
Falicov-Kimball model for the symmetric case in d =1 (calcu-
lated from the restricted incoherent phase diagrams of Ref. 5).
The area with left cross hatching is the region of stability for the
segregated phase (X =1). The white region is the area of the
phase diagram where X, varies continuously from 1 to —1.
Contour lines of constant X, are plotted for intervals of 0.25
from —1 to 1 (the exact phase diagram is expected to have
smooth contour lines of constant X).

(X =1) is the ground state. The white region contains
the area where the label X varies continuously. Contours
with a constant value of X are plotted at equally spaced
intervals of size 0.25 in the range from 1 to —1. The con-
tours of constant X show discontinuous jumps at the ter-
mination points of the coherent phase lines. The con-
stant X contours should become smooth continuous lines
and the region where the ground state is labeled by the
continuously varying parameter X should extend to p, =0
as U~—0 in the exact phase diagram.

The similarity with the infinite-dimensional phase dia-
gram (Fig. 3) is striking. The label X appears to vary con-
tinuously from X=1 (segregated phase) to X=—1
(chessboard phase) as the electron concentration varies
over a range p8(U)<p, <1. The curvature of the lines
of constant X (viewed as a function of U) in the infinite-
dimensional model provides a possible explanation for

_ the mysterious “phase islands” present in the one-

dimensional model:® if the full phase diagram for the
one-dimensional model has lines of constant X that are
continuous and curved, then one expects phase islands to
appear (near the regions where the system segregates) in
any restricted (coherent) phase diagram that does not
sample at a continuous number of X values.

V. CONCLUSION

The “zero-temperaturé” phase diagrams for the spin-
less Falicov-Kimball model (annealed binary alloy) have

- been reexamined for the limiting cases of large and small



dimensions. The case of a 50%-50% A-B mixture was
considered. The results showed that the spinless
Falicov-Kimball model is only weakly dependent on the
dimensionality of the underlying lattice. Regions of pa-
rameter space were identified where the alloy segregates
into separate 4 and B phases, condenses into a two-
sublattice periodic arrangement (chessboard phase), and
where long-period phases labeled by a continuously vary-
ing parameter were favored. This third region of param-
eter space is quite interesting. It may possess a fractal
structure where the periodicity of the ground-state ion
configuration is adjusted to match each rational electron
concentration.>??

The infinite-dimensional phase diagram separates into
two distinct regions. In the weak-coupling regime, the
system lies in the segregated phase for a range of electron
concentrations from zero up to some finite concentration
PEE(U) that is a function of the interaction strength. As
the electron concentration is increased above this critical
concentration, the system orders in various long-period
(commensurate and incommensurate) phases until the
electron concentration is increased to an upper critical
concentration p®(U) where the system orders into the
chessboard phase. The critical concentration for segrega-
tion pi8(U) remains finite in the limit as U—0. In the
strong-coupling regime these two critical concentrations
are equal [p¥8(U)=pP(U)}] and the system changes
directly from the segregated phase to the chessboard
phase without any long-period phases intervening. The
segregation principle holds, in the sense that the critical
concentration approaches 1 as U— 0.

The one-dimensional phase diagram is not as well

known. It appears to be a singular limit of the infinite- .

dimensional phase diagram. The one-dimensional model
appears to always be in the weak-coupling regime, in the
sense that the transition from the segregated phase to the
chessboard phase appears to always pass through a re-
gion of long-period phases. The one-dimensional model
appears to have no finite area of the phase diagram where
the chessboard phase is stable; i.e., p@®(U)=1 for all U.
Finally, the critical concentration for segregation van-
ishes in the limit of small coupling [p}®(U)—0 as
U—0].

It is conjectured that the results for finite dimensions
lie in between these two extremes. The finite-dimensional
phase diagram will be qualitatively similar to the
infinite-dimensional phase diagram, with the following
changes: the strong-coupling regime will start at a larger
value of U; the area of the phase diagram where the
chessboard phase is stable will decrease; and the critical
concentration for segregation (in the limit U —0) will de-
crease.
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These conjectures can be tested by performing a sys-
tematic expansion of the self-energy in orders of (1/d) to
calculate the (perturbative) corrections due to finite
dimensionality. The simplest (uncontrolled) approxima-
tion'® is to replace the Gaussian noninteracting density of
states with the proper density of states for the dimen-
sionality of interest. Further corrections include taking
into account the additional (weak) momentum depen-
dence that the self-energy has to order (1/V/d ) (prelimi-
nary work along these lines has appeared in Ref. 17).
Other cases of interest would include generalizations to
examine the model on body-centered-cubic and face-
centered-cubic lattices.

The nonsymmetric case (p;7~1) is another interesting
case to examine. Once again, the segregated phase is ex-
pected to dominate the phase diagram. There should be
a region where the system is stabilized in long-period
phases labeled by the continuous parameter X (the weak-
coupling regime). In dimensions larger than one, there is
probably a strong-coupling regime where the system
changes from a commensurate (short-period) phase
directly to the segregated phase.

The solution of the spinless Falicov-Kimball model in
infinite-dimensions appears to be the best starting point
for understanding the phase diagram of the model in ar-
bitrary dimensions. The phase diagram for the one-
dimensional case appears to be a singular limit corre-
sponding to the “weak-coupling” regime of the infinite-
dimensional model. The phase diagram for the two- and
three-dimensional cases should be qualitatively similar to
the infinite-dimensional case incorporating both weak-
and strong-coupling regimes. It appears that an expan-
sion in powers of 1/d, starting from the infinite-
dimensional result, will rapidly converge. The success of
the large-dimensional limit for understanding the proper-
ties of the spinless Falicov-Kimball model suggests that
the infinite-dimensional solution and its 1/d corrections
may be successfully used to understand the physical
properties of other interacting models (such as the Hub-
bard model). Future work on the 1/d expansion for the
Falicov-Kimball model and other interacting fermionic
models will test these conjectures.
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