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Abstract We present a theory for the charge and heat transport in a multilayer made
of three sets of planes with strongly correlated electrons. The Mott insulator planes
make the left and right barrier; a few delta-doped planes which are close to the
metal-insulator transition make a conduction channel. In such a device, the currents
can only flow parallel to the interfaces. The electron dynamics is described by the
Falicov-Kimball model which can be solved for arbitrary large on-site correlation
with an inhomogeneous DMFT algorithm. The charge reconstruction induced by
the interfaces is taken into account by solving the Poisson equation. We derive the
current density operators of the model and compute the thermoelectric coefficients
by linear response theory. By tuning the number of electrons in the conducting chan-
nel we bring the chemical potential in the a region where the renormalized transport
density of states is very steep. This enhances the thermoelectric performance of the
device. The results are illustrated by showing the reconstructed charge profile, trans-
port density of states, the electrical resistance, the Seebeck coefficient, the Lorenz
number, and the figure-of-merit.

1 Introduction

Thermoelectric materials are attracting a lot of recent attention, because of their
potential for various applications and for so-called green technologies. The thermo-
electric devices directly convert the thermal energy into electrical energy or vice
versa. They are represented schematically in Fig. 1, where two thermal reservoirs at
different temperature and voltage are connected by two arms made of a p-type and
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n-type semiconductors. In a generator, the heat flow down the temperature gradient

Fig. 1 Schematic representation of a thermoelectric device attached to the reservoirs A and B which
are at temperatures TA = T , TB = T +∆T and voltages φA = φ , φB = φ ±∆φ , respectively. One
leg of the device is a p-type and the other an n-type thermoelectric material. The metallic plates c
and d ensure a good thermal and electrical contact of all the thermoelectric components with the
reservoirs. The straight arrows indicate the circulating charge current. The wiggly arrows indicate
the direction of the heat flow.

is accompanied the circulating electrical current. In a refrigerator, an applied voltage
drives the circular current, while the heat flows against the temperature gradient. In
both cases, the Carnot cycling relies on the electron fluid and does not require the
presence of any mechanical parts.

The applications of the thermoelectric devices are inhibited by their low effi-
ciency and the aim of current research is to produce the materials with better ther-
moelectric conversion. At high temperatures, the efforts are directed towards the
nano-structured semiconductors[2] with reduced heat conductivity. As regards the
low-temperature application, the focus is on the materials with strongly correlated
electrons, like heavy fermions, valence fluctuators, Kondo insulators and systems
with a Mott-Hubbard gap, which can have a large thermopower at low temperatures.

Here, we provide a theoretical description of a simple device built of several
conducting planes (the conducting channel) sandwiched between two sets of insu-
lating planes (the barriers). The electron dynamics in all the planes is described by
the Falicov-Kimball model and we choose the parameters in such a way that the
channel is a delta-doped Mott insulator and the barriers are undoped Mott insulators
with a large gap. In such a device, the charge and heat can flow in the direction
parallel to the interfaces but not in the perpendicular direction. We assume that the
channel and the barriers are made of different ions, so that the phonon scattering on
the interfaces is large and the phonon contribution to thermal conductivity is small.
Thus, we neglect the phonon contribution to thermal transport and consider only the
electron degrees of freedom. By solving the model by the inhomogeneous dynami-
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cal mean field theory (DMFT) we find that close to the Mott-Hubbard transition the
figure-of-merit becomes very large.

The paper is organized as follows. First, we define the transport coefficients us-
ing the phenomenological transport equations for the charge and the internal energy
currents parallel to the interfaces. Then, we introduce the microscopic model of
the multilayer and derive the appropriate current density operators. We formulate
briefly the linear response theory, compute the transport function by the inhomo-
geneous DMFT and find the solution that satisfies the Poisson equation. Finally,
we illustrate the self-consistent solution by showing the numerical results for the
transport coefficients and the figure of merit of the device.

2 Phenomenological equation

On a macroscopic level, thermoelectric phenomena are described by irreversible
thermodynamics which assumes a local thermodynamic equilibrium within a small
volume ∆V around any point x in the material. The macroscopic current density J(x)
and the internal energy current density JE (x) are described by the phenomenological
transport equations

J(x) = −N11(T )
(

∇φ +
T
e

∇
µ

T

)
−N12(T )

∇T
T

,

(1)

JE (x) = −N21(T )
(

∇φ +
T
e

∇
µ

T

)
−N22(T )

∇T
T

.

where ∇φ is the gradient of the electrical potential, ∇µ is the gradient of the chemi-
cal potential, ∇T is the temperature gradient, and e is the electrical charge, taken to
be negative for electrons and positive for holes. The transport coefficients Ni j(T ) can
either be taken from the experiment or computed for a given microscopic model[1].

The above form of transport equations is convenient for the microscopic calcula-
tions, because the coefficients Ni j(T ) are directly related to various current-current
correlation functions. If instead of the internal energy current we use the heat cur-
rent, JQ = JE −µJ/e, the transport coefficients are given by the electrical conduc-
tivity, σ , the Seebeck coefficient, α , and the thermal conductivity, κe, which are
related to the correlation functions in the following way,

σ(T ) = e2N11(T ) , (2)

α(T ) =
(

kB

e

)
N12(T )

T N11(T )
, (3)

κe(T ) =
(

kB

e

)2
σ(T )

T

[
N22(T )
N11(T )

− N2
12(T )

N2
11(T )

]
. (4)
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The efficiency of a particular thermoelectric material depends on the dimensionless
figure-of-merit, ZT = α2σT/κ , where κ = κe + κph is the overall thermal con-
ductivity due to the electronic and the lattice degrees of freedom. The electronic
figure-of-merit reads

ZT =
[N12(T )]2

N22(T )N11(T )− [N12(T )]2
, (5)

and an efficient thermoelectric conversion requires ZT > 1.

3 The model Hamiltonian of a correlated multilayer

We consider the multilayer device shown in Fig. 2. There are N insulating planes
in the left barrier, N insulating planes in the right right barrier and M conducting
planes in the central channel, perpendicular to the z-axis. The electron dynamics

-

6

z−axis

x,y

Fig. 2 The cross-section of a multilayer built by N planes in the left and right barriers (represented
by thin blue lines) and M planes in the central channel (represented by thick red lines).

is described by a spinless Falicov-Kimball model[3] with large on-site Coulomb
interaction. The Hamiltonian is[4, 5]

H = H0 +Hint−µN , (6)

where H0 is the one-particle Hamiltonian, Hint describes the on-site Falicov-
Kimball interaction, and N is the electron number operator. The one-particle
Hamiltonian has several terms, describing the conduction and localized states,

H0 = HT +Hoffset +Hcharge +Hf . (7)
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The kinetic-energy term due to the hopping of conduction electrons between the
neighboring lattice sites is

HT = ∑
r

hr
T , (8)

where the local kinetic-energy density is written as,

hr
T =−1

2 ∑
d
(tr+d

r c†
rcr+d + tr

r+dc†
r+dcr) , (9)

and the d summation runs over the nearest neighbors. This form of the local kinetic
energy ensures its hermiticity and the symmetry with respect to the left-right hop-
ping (the factor of one-half is due to each term appearing twice when we first sum
over d in hr

T and then over r in HT ). The second term of H0 describes the difference
in the offset of the band-centers in the barrier and the channel planes due to their
different chemical composition. Introducing the notation r = (α,s), where α labels
the planes and s the sites in the α-plane, we write the offset term as,

Hoffset =−∑
α

∑
s∈plane

∆ µα c†
αscαs . (10)

The mismatch of the electron bands caused by Hoffset gives rise to electronic
charge reconstruction and long-range Coulomb interactions. The consistency be-
tween the quantum-mechanical description of electrons in the multilayer, defined
by the Hamiltonian H , and the Maxwell equations is ensured by the third term of
H0, which reads

Hcharge = ∑
α

Vα ∑
s∈plane

c†
αscαs . (11)

The local potential Vα shifts the electro-chemical potential µ → µ −Vα on each
plane and is determined self-consistently from the Poisson equation with the equi-
librium charge distribution, ρα , on each plane[4]. This is obtained by subtracting
the contribution of the background ion cores to the net charge on each plane. The
number of planes in the barrier has to be large enough that the inhomogeneities due
to the channel planes have relaxed back to bulk values when sufficiently far from
the interface.

In addition to the conduction states described by the first three terms of H0 , we
also have on each lattice site a localized level that is either occupied or unoccupied
by an f -electron. The distribution of f -electrons is random but annealed. Because
the averaging over all possible configurations restores the translational symmetry,
we write the Hamiltonian of the localized states as,

Hf = ∑
α

∑
s∈plane

(Eαs−µ f ) f †
αs fαs (12)

where the chemical potential µ f determines the average number of f -electrons N f .
which is taken to be N f = 0.5 in this work.
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The interaction between the itinerant and localized electrons is described by

Hint = ∑
α

∑
s∈plane

Uα c†
αscαs f †

αs fαs , (13)

where Uα denotes the short range Coulomb interaction on plane α .

4 The current density operator

We now compute the uniform current density operator that is need for the lin-
ear response theory. We introduce the polarization operator, P̂ρ = ∑r r ρ̂r, where
ρ̂r = c†

rcr is the charge density operator at lattice site r and define the uniform dis-
placement current as ĵ0 = dP̂ρ/dt. The equation of motion then yields

ĵ0 = i[H ,Pρ ] = ∑
r

ĵloc
r , (14)

where we introduced the local current density operator

ĵloc
r = i r[HT , ρ̂r] = i r∑

r′
[hr′

T , ρ̂r] . (15)

and the summation over r′ runs over all the lattice sites. The last equation holds
because ρ̂r commutes with all the terms in the Hamiltonian except HT . To obtain
the current parallel to the planes we take r parallel to the planes and compute

ĵloc
r =

ier
2 ∑

r′
∑
d
[(tr′+d

r′ c†
r′cr′+d + tr′

r′+dc†
r′+dcr′),c

†
rcr] , (16)

which has the only non-vanishing terms for r′ = r and r′ = r−d. This gives,

ĵloc
r =

ie
2 ∑

d

{
tr+d
r r [c†

rcr+d,c
†
rcr]+ tr

r+d r [c†
r+dcr,c

†
rcr]
}

(17)

+
i
2 ∑

d

{
tr+d
r (r+d)[c†

rcr+d,c
†
r+dcr+d]+ tr

r+d(r+d)[c†
r+dcr,c

†
r+dcr+d]

}
,

=
ie
2 ∑

d
d (tr+d

r c†
rcr+d− tr

r+d c†
r+dcr) (18)

and the uniform current is obtained by summing ĵloc
r over all the sites,

ĵ0 = ∑
α

∑
s

ĵsα , (19)

where α is the plane index and s is the lattice vector within the plane, i.e., r = (α,s).
Introducing the two-dimensional Fourier transform cqα = ∑s eiq·scsα/L, where q is



Thermal transport of a delta-doped multilayer with strongly correlated electrons 7

the 2-D reciprocal lattice vector for plane α , we obtain the Fourier transform of the
local current density operator,

ĵpα = ∑
q

vqc†
p+q,α cqα . (20)

Here, we introduced the in-plane velocity vq = ∇qεq and the unperturbed dispersion
εq. In the long-wavelength limit, the summing over all the planes yields the total
current,

ĵ0 = lim
p→0

∑
α

ĵpα = ∑
qα

vqc†
qα cqα . (21)

The calculation of the local energy current proceeds along exactly the same lines
but requires more complicated commutators since now the potential energy terms
do not commute with the energy polarization operator. Then a similar calculation
provides for the energy current that is simply related to ĵsα . We do not show an
explicit expression for the energy or heat current operator here, because we can
evaluate all relevant expectation values by employing the Jonson-Mahan theorem,
as described below.

5 The linear response theory

The transport coefficients of a multilayer described by our model are obtained by
computing the quantum-mechanical averages,

Ji(x) = Tr{ρφ ĵi
0(x)}, (22)

where ĵi
0 is the current density operator along the i-axis, ρφ is the density matrix

of the particles moving in an external potential φ(x, t) which grows continuously
from t = −∞ up to t = 0, with the characteristic switching-on time τφ = 1/ω . The
vector x denotes the center of the small but macroscopic region which is considered
to be in thermal equilibrium. The electrical field E =−∇φ is applied parallel to the
multilayer planes and varies in space on the scale λq ' 1/q, such that for q→ 0 the
perturbation is uniform over the sample. The current response for t ≥ 0 is obtained
from the gradient expansion of the density matrix [1] which gives

Ji(x) = eωt
∑

j

∫
dx′ E j(x′)

∫
∞

0
dt ′e−ωt ′

∫
β

0
dβ
′〈ĵ j(x′,−t ′− iβ ′)ĵi(x)〉0 , (23)

where 〈· · ·〉0 denotes the thermodynamic average with respect to the unperturbed
density matrix ρ̂0 and index j labels the coordinate axes. The static conductivity is
obtained by Fourier transforming Eq. (23) and taking the q→ 0 limit before the
ω → 0 limit. This gives
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σ
i j = lim

ω→0
σ

i j(ω) =V lim
ω→0

∫
∞

0
dt ′e−ωt ′

∫
β

0
dβ
′〈ĵ j

0(−t ′− iβ ′)ĵi
0〉0 , (24)

where ĵ j
0 is the uniform current density operator derived in the previous section.

Using the basis which diagonalizes the Hamiltonian, we can write Eq. (24) as

σ
i j = lim

ω→0
σ(ω) =V πβ ∑

mn
eβ (Ω−En)〈n|ĵ j

0|m〉〈m|ĵ
i
0|n〉δ (En−Em) . (25)

This is equivalent to Kubo formula,

σ
i j =− lim

ω→0

Im N i j(ω)

ω
, (26)

where N i j(ω) is the Fourier transform of the retarded correlation function,

N i j(t− t ′) =−i Θ(t− t ′)〈ĵ j
0(t
′)ĵi

0(t)− ĵi
0(t)ĵ

j
0(t
′)〉0 . (27)

The equivalence of expression (26) to (25) is seen at once by using the basis which
diagonalizes H and writing the Fourier transform of N i j(t− t ′) as,

N i j(ω) = eβΩ
∑
mn

< n|ĵ j
0|m >< m|ĵi

0|n >
e−βEn − e−βEm

ω +En−Em + iδ
. (28)

The imaginary part is then

Im N i j(ω) = (1− e−βω)∑
mn

eβ (Ω−En)〈n|ĵ j
0|m〉〈m|ĵ

i
0|n〉δ (ω +En−Em) (29)

and dividing by ω and taking the ω→ 0 limit yields the same result as given by the
Luttinger formula in Eq. (25). The advantage of the Kubo formula is that the retarded
Green’s function can be obtained by analytically continuing the time-ordered one
from the imaginary to the real frequency axis[7].

6 The transport function

To find the transport coefficients we assume the equivalence of the x and y coordinate
axes, drop the axis label, and consider the imaginary-time current-current correla-
tion function which is periodic on the interval τ ∈ (0,β ). Its Fourier transform is
defined for Bosonic Matsubara frequencies, iνl = 2πn/β ,

N (iνl) =
∫

β

0
dτeiνlτ〈Tτ ĵ0(τ)ĵ0(0)〉

= ∑
αβ

∫
β

0
dτeiνlτ〈Tτ ĵ0α(τ)ĵ0β (0)〉
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= ∑
αβ

Nαβ (iνl) . (30)

Using the definition of the uniform current density on plane α we write the non-local
correlation function as,

Nαβ (iνl) = e2
∑
q

∑
p

(vq)
2

2

∫
β

0
dτeiνlτ〈Tτ c†

qα(τ)cqα(τ)c
†
pβ

cpβ 〉 , (31)

and evaluate it by the Wick’s theorem, neglecting the vertex corrections. Because of
translational invariance within the planes, the 2−D momentum q is a good quantum
number, and the single particle Greens’s function can be written in the mixed (α,q)
representation as, Gq

αβ
(τ) =−〈Tτ c†

qα(τ)cqβ 〉. Taking into account that the Green’s
function is even, while the velocity is odd in ′b f q, we write

Nαβ (iνl) = −e2
∑
q

(vq)
2

2

∫
β

0
dτeiνlτ Gq

αβ
(τ)Gq

βα
(−τ) . (32)

The above derivation is exact in infinite dimensions, where the vertex corrections
vanish and holds in two dimensions when we use the approximation of a local self-
energy. The τ-integration is performed by substituting the Fourier transform

Gq
αβ

(τ) = T ∑
n

e−iωnτ Gq
αβ

(iωn)

which gives

N
αβ

(iνl) = −e2
πT ∑

q

(vq)
2

2 ∑
n

Gq
αβ

(iωn)G
q
βα

(iωn + iνl). (33)

The analytic continuation of N
αβ

(iνl) from the imaginary to real axis is now
straightforward[7]. We first write the summation over Matsubara frequencies as an
integral over the contour C which has contributions at the poles of the Fermi func-
tion f (ω) = 1/[1+ exp(βω)] which lie at the Fermionic Matsubara frequencies.
The contours are then deformed to lines parallel to the real axis, with the Green’s
functions evaluated with either retarded (R) or advanced (A) functions. The result is

N
αβ

(iνl) = −
e2

2i

∫
∞

−∞

dω f (ω)∑
q

(vq)
2

2
[GqR

αβ
(ω)−GqA

αβ
(ω)]GqR

αβ
(ω + iνl)

− e2

2i

∫
∞

−∞

dω f (ω)∑
q

(vq)
2

2
[GqR

αβ
(ω)−GqA

αβ
(ω)]GqA

αβ
(ω− iνl) , (34)

where (R) and (A) label the retarded and advanced Green’s functions. Since the
retarded and advanced Green’s function have well defined analytic properties in the
upper and lower part of the complex ω-plane, respectively, they can be analytically
continued just by replacing ω± iνl −→ ω± (ν + iδ ). This gives
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N
αβ

(ν) = −e2

2i ∑
q

(vq)
2

2

∫
∞

−∞

dω f (ω)[GqR
αβ

(ω)−GqA
αβ

(ω)]GqR
αβ

(ω +ν)

− e2

2i ∑
q

(vq)
2

2

∫
∞

−∞

dω f (ω +ν)[GqR
αβ

(ω +ν)−GqA
αβ

(ω +ν)]GqA
αβ

(ω), (35)

where the integration variable in the second integral has been shifted by ω→ω +ν .
Taking the imaginary part and dividing by ν yields

lim
ν→0

Im N
αβ

(ν)

ν
= e2

∑
q

(vq)
2

2ν

∫
∞

−∞

dω lim
ν→0

[
f (ω) Im GqR

αβ
(ω) Im GqR

αβ
(ω +ν)

− f (ω +ν) Im GqR
αβ

(ω +ν) Im GqR
αβ

(ω)
]
.

(36)

Thus, the static conductivity matrix can be written as,

σαβ =− lim
ν→0

Im N
αβ

(ν)

ν
= e2

∑
q

(vq)
2

2

∫
∞

−∞

dω

(
−∂ f (ω)

∂ω

)
[Im GqR

αβ
(ω)]2. (37)

The retarded single-particle Green’s function depends on the planar momentum
through the plane-wave energy εq, so that the q-summation can be performed by
introducing the transport density of states (DOS)

ρ
2D
tr (ε) = ∑

q
vq

2
δ (ε− εq) . (38)

This is easily found for the square lattice by solving the differential equation

dρ2D
tr (ε)

dε
=−ε

4
ρ2D(ε),

and using the boundary condition ρ2D
tr (−D) = 0, where −D is the bottom of the

conduction band, and ρ2D(ε) is the density of states for nearest-neighbor hopping
on a square lattice. The result for ρ2D

tr is plotted in Fig.3, which shows that even
though ρ2D is logarithmically singular, the transport DOS is a smooth function for
all the band energies.

The static conductivity for transport parallel to the multilayer planes can be writ-
ten as a sum

σ(T ) = ∑
α

σα , (39)

where σα is the planar conductivity

σα = e2
∫

∞

−∞

dω

(
−∂ f (ω)

∂ω

)
Λ

α
tr (ω) , (40)
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Fig. 3 Two dimensional density of states (dashed line) and the transport density of states (full line)
for the square lattice are plotted versus energy.

and we introduced the transport function for plane α ,

Λ
α
tr (ω) = ∑

β

∫
dε ρ

2D
tr (ε)[Im G

αβ
(ε,ω)]2 . (41)

Since the Falicov-Kimball model satisfies the Jonson-Mahan theorem [6, 5], the
other transport integrals are obtained by integrating the same transport function,

Nmn(T ) = ∑
α

∫
∞

−∞

dω

(
−∂ f (ω)

∂ω

)
ω

m+n−2
Λ

α
tr (ω) . (42)

7 The Green’s functions of a multilayer

We now calculate the transport function for the Hamiltonian in equation (6). From
the definition of the Green’s function, (z−H)G = 1, we obtain the secular equation
in real space,

zG
αβ

(p− r)−∑
γs

Hαγ(p− s)Gγβ (s− j) = δαβ δ (r−p) , (43)
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where p,s,r are the 2-D lattice vectors and we used the translational invariance in
the (x,y) direction. Restricting the hopping matrix elements to nearest neighbors,
we write the non-interacting (U = 0) Green’s function as

zG0
αβ

(p− r) −∑
s

Hαα(p− s)G0
αβ

(s− j)

−∑
s

[
Hαα−1(p− s)G0

α−1β
(s− j)+Hαα+1(p− s)G0

α+1β
(s− j)

]
= δαβ δ (r−p) . (44)

Substituting the in-plane Fourier transform, G0
αβ

(iq,z) = ∑r Gαβ (r,z)exp{q · r},
we find the q-component of the non-interacting Green’s function,

∑
γ

[
[z+µ− ε

‖
α(q)]δαγ + tα−1

α δα−1,γ + tα+1
α δα+1,γ

]
G0

γβ
(q,z) = δαβ , (45)

where we introduced the mixed representation and used the fact that the matrix
element for the hopping to the neighboring planes is the same for each point on
the plane. By definition, the inverse matrix of G0

αγ is given by the square bracket
in Eq. (45). The renormalized Green’s function follows from the Dyson equation,
which reads in the mixed representation

Gαβ (q,z) = G0
αβ

(q,z)+∑
γ

G0
αγ(q,z)Σγγ(z)Gγβ (q,z) . (46)

The self energy is different on each plane but, in the spirit of the DMFT approxi-
mation, it is assumed to be diagonal in planar indices and independent of the two-
dimensional momentum. The matrix elements Gαβ (q,z) satisfy the EOM which is
obtained by multiplying Eq. (46) from the left by the inverse matrix of G0

αβ
which

yields[
z+µ−Σα(z)− ε

‖
α(q)

]
G

αβ
(q,z)+ tα−1

α G
α−1β

(q,z)+ tα+1
α G

α+1β
(q,z) = δαβ ,(47)

where ε
‖
αq = ∑r tα

α (r)exp{iq ·r} is the dispersion for plane α . The diagonal Green’s
function can be written as

Gαα(q,z) =
1

Lα(q,z)+Rα(q,z)−
[
z+µ−Σα(z)− ε

‖
α(q)

] . (48)

where we introduced two auxiliary functions

Lα−n(q,z) =−tα−n+1
α−n

G
α−n+1,α(q,z)
Gα−n,α(q,z)

(49)

and
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Rα+n(q,z) =−tα+n−1
α+n

G
α+n−1,α(q,z)
Gα+n,α(q,z)

. (50)

The index α runs from the first (α = 0) to the last (α = N) plane of the multilayer
and n in Eqs. (49) and (50) satisfies 0 ≤ α − n ≤ N and 0 ≤ α + n ≤ N, respec-
tively. Functions Lα−n and Rα−n satisfy the recursion relations which follow from
the EOM for the off-diagonal matrix elements G

αβ
. Setting in Eq. (47) β → α and

α → α−n and using Eq. (49) gives

Lα−n(q,z) = z+µ−Σα−n(z)− ε
‖
α−n(q)−

tα−n−1
α−n tα−n

α−n−1

Lα−n−1(q,z)
, (51)

while setting β → α and α → α +n and using (50) gives,

Rα+n(q,z) = z+µ−Σα+n(z)− ε
‖
α+n(q)−

tα+n+1
α+n tα+n

α+n+1

Rα+n+1(q,z)
. (52)

We now assume that far enough from the central planes the Green’s functions be-
come independent of the plane index, so that Lα−n(q,z)' L0(q,z) and Rα+n(q,z)'
RN(q,z). In this asymptotic regime, Eqs. (51) and (52) become quadratic equations
for L0 and RN with the solutions

L0(q,z) =
z+µ−Σ0(z)− ε

‖
0 (q)

2
±
√

[z+µ−Σ0(z)− ε
‖
0 (q)]2−4t2

0 , (53)

and

RN(q,z) =
z+µ−ΣN(z)− ε

‖
N(q)

2
±
√
[z+µ−ΣN(z)− ε

‖
N(q)]2−4t2

N , (54)

If we know Σα(z) on each plane, we can generate all other auxiliary functions
L1,L2, . . .LN and RN−1,RN−2, . . .R0 from L0 and RN . For example, L1 and RN−1
are obtained by setting n = α−1 in Eq. (51) and n = N−α−1 in Eq. (52). Know-
ing Lα , Rα , and Σα(z) for each plane we get the planar Green’s function Gαα(z)
from Eq. (48).

8 The inhomogeneous DMFT solution

We now consider the DMFT solution for the multilayer described by the Falicov-
Kimball model with N insulating (barrier) planes on the left and on the right, and
M metallic (channel) planes in-between. The channel planes are made metallic by
delta-doping a Mott insulator, i.e., the channel planes are close to the insulating
phase. The first plane in the multilayer is indexed by α = 0 and the last one by
α = 2N +M.
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The single particle Green’s function which determines the transport function is
calculated by the inhomogeneous dynamical mean-field (DMFT) theory[8, 4, 5].
The hopping is taken as tα

α = tα±1
α = t, such the dispersion and velocity are the same

on all planes and given by ε (q) = −t [cos(qxax)+ cos(qyay)] and v(q) = ∇ε (q),
respectively. Functions Gαα(q,z), Lα−n(q,z), and Rα−n(q,z) depend on q only via
ε (q) which allows us to write the local Green’s function for each plane as an integral
over a 2-dimensional density of states,

Gα(z) =
∫

dε ρ2D(ε)
1

Lα(ε,z)+Rα(ε,z)− [z+µ−Σα(z)− ε ]
. (55)

where

ρ2D(ε) = ∑
q

δ (ε− ε (q)) . (56)

For a simple square lattice, ρ2D(ε) is logarithmically singular.
The DMFT solution for the 2N + M planes is obtained by identifying Gα(z)

in Eq. (55) with the Green’s function of a single-site Falicov-Kimball model and
defining the effective medium as,

[G0α(z)]−1 = [Gα(z)]−1 +Σα(z) . (57)

The above equations define the mapping between the lattice problem and 2N +M
inter-connected single-site Falicov-Kimball problems, where the self-energy Σα(z)
describes the renormalization of the effective conduction electron at site α by the
Falicov-Kimbal interaction. The mapping is exact in infinite dimensions, where the
self-energy functionals of the lattice and the single-site model are defined by identi-
cal momentum-independent skeleton diagrams. In a multilayer, the mapping holds
only if we neglect the momentum-dependence of all the self-energy diagrams. In
that case we can use the well-known solution of the single-site Falicov-Kimball
model with N f localized f -electrons per site and write

Gα(z) = (1−N f )G0α(z)+
N f

[G0α(z)]−1−Uα

. (58)

If we use G0α(z) given by Eq. (57) and Gα(z) given by Eq. (58) to recalculate the
self energy,

Σα(z) = [G0α(z)]−1− [Gα(z)]−1 , (59)

we can find the DMFT solution of the lattice problem by iterating Eqs. (55 – 59) to
the fixed point. From the stable solution for Σα(z) we can calculate Lα and Rα and
find Gα(ε ,z) for each plane and obtain the transport function of a given plane from
Eq. (41). Finally, Eq. (40) yields the conductivity due to all the planes.
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9 The numerical results

The numerical results are obtained for a multilayer with 31 planes in the left and
the right barrier and 5 planes in the central channel. The Coulomb interaction is
set to UB = UC = 8 and the concentration of the scattering sites (the number of f -
electrons) is set to N f = 1/2. The calculations are performed for several offsets
of the band-centers in the barriers and the channel. In all the cases the barriers are
Mott insulators and the offset in the central channel makes it a bad metal close to
the metal-insulator transition. The bulk transport coefficients obtained for the same
band-offsets as in the central channel are computed, for comparison, as well. The
energy and temperature are measured in units of the hopping.

0 10 20 30 40 50 60 70

plane index α

0

0,001

0,002

0,003

0,004

V
α
, 
  
ρ

α

31 planes in the
      right barrier

31 planes in the 
     left barrier

5 planes in the 
central channel

Fig. 4 (Color online) The reconstructed charges and the planar potentials plotted versus the plane
index α . The first barrier plane is at α = 0, the first channel plane is at α = 31, the last channel
plane is at α = 36, and the last barrier plane is at α = 66. The results for ∆ µB = 0.75 and two values
of ∆ µC are shown. The full and the dashed-dotted lines show the local charge, while the dashed
and the long-dashed lines show the local potential obtained for ∆ µC = 0.85 and ∆ µC = 0.95,
respectively.

The electronic charge reconstruction and the planar potentials, obtained for
N = 41 and M = 5, are shown in Fig. 4 as a function of the planar index α . We
show the results for the offsets chosen to be ∆ µB = 0.75 in the barriers and two val-
ues of ∆ µC in the channel planes. A nonzero ∆ µB can be thought of as a gate voltage
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Fig. 5 (Color online) The upper panel shows the transport density of states ρα
tr plotted versus

frequency ω for various planes, as indicated in the figure. The lower panel shows the low-frequency
part of ρα

tr . The Coulomb interaction in the barriers and channel planes is U = 8. The offsets are
∆ µB = 0.75 in the barriers and ∆ µC = 0.75 in the channel planes. The first barrier plane is at α = 0,
the last plane in the left barrier is at α = 31. There are 5 channel planes.
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applied to the entire device, while ∆ µB 6= ∆ µC yields a chemical potential mismatch
between the Mott insulator and the conducting channel. The deviation of ρα from
the bulk values depends on that mismatch, as indicated in Fig. 4, which shows that
ρα and Vα increase rapidly with the difference between ∆ µB and ∆ µC. A homoge-
neous bulk material with the offset ∆ µC ≤ 0.85, is a half-filled Mott insulator. The
spectral function of the bulk material obtained for ∆ µC = 0.95 is also be gapped but
the chemical potential is in the upper Hubbard band, close to the gap-edge, which
defines a ’delta-doped’ Mott insulator. The potential and the charge satisfy the Pois-
son equation: the charge deviates most strongly from the bulk values close to the
interface, where the curvature of the local potential changes sign. The potential has
the maximum in the center of the barrier and decays very slowly to the bulk values
(Vbulk = 0) as we go away from the interface. The self-consistency of the solution
requires a large number of the planes in the barrier, which makes the calculations
numerically demanding. (For details regarding the effect of the screening length on
the charge reconstruction see Ref. [4].)

The overall features of the transport DOS of the multilayer, calculated for the
offsets ∆ µB = 0.75 and ∆ µC = 0.90 are shown in the Figs. 5, where we plot ρα

tr
for several multilayer planes, as indicated in the figure. The Coulomb interaction is
large enough to open the gap in ρα

tr (ω) in the barriers and channel planes. A bulk
material with the same band-center offset as the barrier planes is a Mott insulator.
The bulk material with the offset as the channel planes is a ’delta doped’ Mott in-
sulator. Such a ’bad metal’ has the chemical potential in the upper Hubbard band,
where ρbulk

tr (ω) 6= 0 and the slope of ρbulk
tr (ω) is very steep. These features are pre-

served in the multilayer, except for the distortion of ρα
tr close to the interface. For

a constant concentration of f -electrons, the transport density of states is indepen-
dent of temperature. The low-energy part of ρα

tr is shown in Fig. 5. The distortion of
ρα

tr (ω) for the planes in the vicinity of the interface is clearly seen. (The interface is
located between the barrier plane α = 31 and the first channel plane α = 32.) The
enhancement of the slope of the transport DOS by the Coulomb correlations has a
drastic effect on the transport properties of the multilayer.

Using the fact that ρα
tr (ω) is temperature-independent, except for a temperature

dependent shift of the chemical potential, which we take as the origin of the energy
axis, we calculate the transport function by integrating the transport function in
Eq. (42). This procedure does not conserve the number of conduction electrons at
each temperature and but provides, none-the-less, an insight in the effects of doping
and correlation.

The temperature dependence of the electrical resistance is shown in Fig. 6 for
several values of ∆ µB and ∆ µC (indicated in the figure). The resistivity drops
sharply, when the chemical potential in the channel planes shifts away from the gap
and cuts the upper Hubbard band. This is indicated by the dashed, dot-dashed and
double-dot-dashed lines in Fig. 6 which are obtained for ∆ µC = 0.94 (good metal),
∆ µC = 0.90 (bad metal), ∆ µC = 0.85 (delta-doped Mott insulator). The correspond-
ing results for a homogeneous system exhibit the same behavior, as indicated by the
full lines in Fig. 6. Note, a sharp increase in the resistance, when a bulk system is
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Fig. 6 (Color online) Electrical resistance (in arbitrary units) is plotted as a function of temperature
for a multilayer with 31 planes in the barrier and 5 planes in the conducting channel. The offsets of
the band centers in the barrier planes and the channel planes are indicated in the figure (nonsolid
lines). The corresponding results for a homogeneous system are shown as well (solid lines).

transformed in the multilayer by an additional shift of the band-offsets in the barrier
planes.

The thermopower and the effective Lorenz number of the same device are shown
in Fig. 7. As expected, the thermopower increases when the electrical conductance
of the system drops. Close to the metal-insulator transition, where the slope of the
transport DOS at the chemical potential is very large, the thermopower of the multi-
layer also becomes very large. The effective Lorenz number shows large deviations
from the universal value at low temperatures.

Using the same parameters as in Figs. 6 and 7 we obtain ZT which is shown in
Fig. 8. Close to the metal-insulator transition, where the thermopower is large and
the Lorenz number deviates from the universal value, we also find a large enhance-
ment of the figure-of-merit, given by α2/L . Fig. 8 shows that the ZT of a multilayer
(dashed and dashed-dotted lines) is smaller than the corresponding value of the bulk
material with the same band-offset as used for the channel (full lines). However,
the advantage of the multilayer is that the presence of the interface can impede the
phonon transport and improve the overall performance of the nano-structured device
with respect to the bulk.
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Fig. 7 (Color online) Thermopower in units of [kB/e] and the Lorenz number in units of [kB/e]2

are plotted as a function of temperature for the same parameters as in Fig. 6.
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Fig. 8 (Color online) ZT of the device is plotted as a function of temperature for the same param-
eters as in Fig. 6.

10 Summary and conclusions

We presented a theory for the charge and heat transport in a multilayer consisting of
several correlated metallic planes (channel) sandwiched between two semi-infinite
Mott insulators (barriers). The electron dynamics of such a system is described by
the Falicov-Kimball model which can be solved for large on-site correlation by the
inhomogeneous DMFT. The self energy of conduction electrons has always a large
imaginary part, due to the incoherent scattering on f -electrons, and the multilayer
described by that model is never a Fermi liquid. The mismatch of the electronic
states in the barrier and the channel planes gives rise to an electronic charge recon-
struction which is most pronounced for the planes closest to the interface. We com-
puted the heat and charge currents parallel to the interfaces by the linear response
theory and found the transport coefficients of the device.

By varying the offset of the energy band in the conduction channel, we tuned
the position of the chemical potential with respect to the band edge of the upper
Hubbard band. For large correlation, we found the renormalized transport DOS
with a large gap and, for an appropriate offset, obtained a large slope of the DOS
at the chemical potential. For a delta-doped Mott insulator, i.e., for the channel
planes close to the metal-insulator transition, we obtained a surprisingly large See-
beck coefficient and a much enhanced figure-of-merit. The enhancement is entirely
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caused by the electron correlations and similar effects could not be found for non-
interacting electrons.

Even though the purely electronic ZT is smaller in multilayers than in the bulk
(computed for the bulk with the same band-offset as in the channel planes), the
presence of the interfaces might impede the phonon transport in the multilayers and
lead to an improved performance. For different ionic masses in the barrier and the
channel planes, the scattering of phonons on the interfaces might greatly reduce the
heat transport. In such a device, the proximity of the metal insulator transition might
enhance the power factor and lead to ZT much larger than one.
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