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Dynamical mean field theory is employed to calculate the properties of multilayered inhomogeneous devices
composed of semi-infinite metallic lead layers coupled via barrier planes that are made from a strongly
correlated material(and can be tuned through the metal-insulator Mott transition). We find that the Friedel
oscillations in the metallic leads are immediately frozen in and do not change as the thickness of the barrier
increases from one to 80 planes. We also identify a generalization of the Thouless energy that describes the
crossover from tunneling to incoherent ohmic transport in the insulating barrier. We qualitatively compare the
results of these self-consistent many-body calculations with the assumptions of non-self-consistent Landauer-
based approaches to shed light on when such approaches are likely to yield good results for the transport.
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I. INTRODUCTION

The fields of strongly correlated materials and of nano-
technology are being united by work that investigates what
happens when correlated materials are placed into inhomo-
geneous environments on the nanoscale. This can be accom-
plished by careful growth of strongly correlated materials
with molecular beam epitaxy or pulsed laser deposition, or it
may be an intrinsic property of some strongly correlated sys-
tems that display either nanoscale phase separation, or
nanoscale inhomogeneity. There are fundamental questions
about these systems—what happens to the properties of the
system when it has inhomogeneities on the nanoscale and
how does this spatial confinement modify the quantum-
mechanical correlations?

We investigate a special case of a correlated nanostruc-
ture, where we can carefully control the quantum confine-
ment effects. We take a semi-infinite ballistic-metal lead and
couple it to another semi-infinite ballistic-metal lead via a
strongly correlated barrier material(which is from one to 80
atomic planes thick). As the barrier is made thinner, the
strongly correlated system is being confined in one spatial
direction between the metallic leads. But the metallic leads
induce a proximity effect on the barrier, which can deconfine
the correlated system. Indeed, we will see that systems with
a single-plane barrier still display upper and lower Mott
bands, but they also have a low-energy low-weight peak to
the density of states that arises from the proximity-effect
induced states that are localized near the interfaces of the
leads and the barrier. As the barrier is made thicker, this peak
becomes a dip, which decreases exponentially with the thick-
ness.

We employ dynamical mean field theory(DMFT) in this
work. This allows us to self-consistently calculate the prop-
erties of the inhomogeneous system, including Friedel-type
oscillations in the leads, and the proximity-effect on the bar-
rier. We do not need to make any assumptions about the kind
of transport through this device, be it ballistic, diffusive, tun-
neling, or incoherent(via thermal excitations), since the
DMFT automatically incorporates all kinds of transport

within its formalism.1 We are, however, making one approxi-
mation in this approach—namely, we make the assumption
that the self-energy remains local, even though it can vary
from plane to plane in the multilayered nanostructure. Such
an approximation should work fine for these inhomogeneous
systems, since the coordination number remains the same
throughout the device(and we are working in three dimen-
sions). This is to be contrasted with more conventional ap-
proaches to tunneling, which assume a single-particle ap-
proach and employ a phenomenological potential to describe
the barrier region.2 The wave functions, transmission, and
reflection coefficients can be calculated, and then the trans-
port analyzed, as in a Landauer-based approach. In the
DMFT calculations, we determine the potential self-
consistently(i.e., the self-energy) from the microscopic pa-
rameters of the Hamiltonian, and the potential can vary with
the energy of the scattering states. It is not clear that a simple
phenomenological potential can reproduce the same kind of
behavior via a conventional tunneling approach.

We assume each of the multilayer planes has translational
invariance in the perpendicularx and y directions. This al-
lows us to use a mixed basis, Fourier transforming the two
perpendicular directions tokx and ky, but keeping thez di-
rection in real space. Then for each two-dimensional band
energy, we have a quasi-one-dimensional problem to solve,
which has a tridiagonal representation in real space, and can
be solved with a renormalized perturbation expansion.3 It is
this mixed-basis representation(introduced by Potthoff and
Nolting1 ) that allows us to solve this problem. By iterating
our many-body equations, we can achieve a self-consistent
solution.

In addition to single-particle properties, we also evaluate
z-axis transport, perpendicular to the multilayers. Thouless
introduce the idea of using the dwell time within the barrier
to define a quantum energy scale" / tdwell, which turned out to
describe the dynamics and transport of both ballistic metal
and diffusive metal barriers.4,5 The concept has been applied
widely to the quasiclassical theory of Josephson junctions as
well.6 If we do not focus on the time spent within the barrier,
but instead try to extract an energy scale from the resistance
of a device, then we can generalize the Thouless energy to
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the case of an insulating barrier, where the transport arises
from either tunneling or incoherent(thermally activated) pro-
cesses. We find that when this energy scale is on the order of
the temperature, then we have a crossover from tunneling to
incoherent transport. A short communication of this work has
already appeared.7

The organization of this paper is as follows: in Sec. II, we
present a detailed derivation of the formalism and the nu-
merical algorithms used to calculate properties of nanostruc-
tures. In Sec. III, we describe the single-particle properties,
focusing on the density of states and the self-energy. In Sec.
IV, we generalize the concept of the Thouless energy, which
is applied to charge transport in Sec. V. We end with our
conclusions in Sec. VI.

II. FORMALISM AND NUMERICAL ALGORITHMS

The Hamiltonian we consider involves a hopping term for
the electrons and an interaction term for the sites within the
barrier region(interactions can be added in the metal if de-
sired to convert the leads from a ballistic metal to a diffusive
metal, but we do not do so here). For the interaction, we
employ the Falicov-Kimball model8 which involves an inter-
action between the conduction electrons with localized par-
ticles (thought of asf-electrons or charged ions) when the
conduction electron hops onto a site occupied by the local-
ized particle. The Falicov-Kimball model has a non-Fermi
liquid ground state in the metallic regime, because the elec-
trons see static charge scatterers, which always produce a
finite lifetime, so it has no quasiparticle resonance associated
with it, as seen in other strongly correlated models like the
Hubbard and periodic Anderson model. It also has a Mott-
type metal-insulator transition, that sets in when the correla-
tion strength is large enough. Our choice of using the
Falicov-Kimball model is pragmatic, since the DMFT can be
easily solved for this system. We expect the results in the
insulating phase to resemble other correlated insulators,
since the most important property of an insulator is the size
of its gap. On the metallic side, the Falicov-Kimball model is
good for describing the crossover from ballistic to diffusive
transport in dirty metals, but it is unable to describe the co-
herent quasiparticle formation, with a renormalized Fermi
energy seen in pure systems. We feel it is nevertheless an
interesting model to consider for examining systems near a
Mott transition. We consider spinless electrons here, but spin
can be included trivially by introducing a factor of 2 into
some of the results. The Hamiltonian is

H = − o
i j

ti jci
†cj + o

i

UiSci
†ci −

1

2
DSwi −

1

2
D , s1d

where tij is a Hermitian hopping matrix,Ui is the Falicov-
Kimball interaction, andwi is a classical variable that equals
one if there is a localized particle at sitei and zero if there is
no localized particle at sitei (a chemical potentialm is em-
ployed to adjust the conduction-electron concentration).
Since we are considering multilayered heterostructures, we
assume that the hopping matrix is translationally invariant
within each plane, as well as the Falicov-Kimball interaction.

We let thez direction denote the direction where the system
is allowed to have inhomogeneity. Then our translational in-
variance in the parameters requires thatUi =Uj if Ri −R j has
a vanishingz component. Similarly,tij = ti8 j8 if Ri −Ri8 and
R j −R j8 both have a vanishingz component, andRi −R j
=Ri8−R j8. But this requirement is quite modest, and allows
for many complex situations to be considered.

We denote the planes with a givenz component by a
greek labelsa ,b ,g , . . .d. Then our requirement on the inter-
action is thatUa has a definite value for each planea. The
hopping matrix can have one valueta

i for the hopping within
the plane, and different valuesta,a+1 andta−1,a for hopping to
the plane to the right and for hopping to the plane to the left,
respectively. For simplicity, we will only consider nearest-
neighbor hopping here, and we assume the lattice positions
Ri all lie on the points of a simple cubic lattice(but we do
not have full cubic symmetry).

Because of the translational invariance within each plane,
we can perform a Fourier transform in thex and y coordi-
nates to the mixed basiskx, ky, anda (the z component in
real space). We define the two-dimensional band structure,
for each planea, by

ea
2dskx,kyd = − 2ta

i fcoskx + coskyg. s2d

The Green’s function, in real space, is defined by

Gijstd = − kTt cistdcj
†s0dl, s3d

for imaginary timet. The notationkOl denotes the trace
Tr exps−bfH−mNgdO divided by the partition function
Z=Tr exps−bfH−mNgd and the operators are expressed
in the Heisenberg representationOstd=expstfH−mNgdO
3exps−tfH−mNgd. The symbolTt denotes time ordering of
operators, with earliert values appearing to the right andb
is the inverse temperaturesb=1/Td. We will work with the
Matsubara frequency Green’s functions, defined for imagi-
nary frequenciesivn= ipTs2n+1d. The Green’s function at
each Matsubara frequency is determined by a Fourier trans-
formation

Gijsivnd =E
0

b

dt eivntGijstd. s4d

We also will work with the analytic continuation of the time-
ordered Green’s functions to the real axis(retarded or ad-
vanced Green’s functions), with ivn→v± i0+. We use the
symbolZ to denote a general variable in the complex plane
(although we will mainly be interested in eitherZ= ivn or
Z=v+ i0+). Finally, we work in the mixed basis described
above, where we Fourier transform thex andy components
to momentum space, to giveGabsk ,Zd, where Ri has az
component equal toa andR j has az component equal tob
(k is a two-dimensional wave vector).

With all of this notation worked out, we can write the
equation of motion for the Green’s function in real space,1

which satisfies
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Gij
−1sZd = sZ + mddi j − SisZddi j + tij . s5d

Now we go to a mixed basis, by Fourier transforming in the
x andy directions to find

Gab
−1sk,Zd = fZ + m − SasZd − e2dskdgdab + taa+1da+1b

+ taa−1da−1b, s6d

with SasZd the local self-energy for planea. Finally, we use
the identity ogGagsZdGgb

−1sZd=dab to get the starting point
for the recursive solution to the problem,

dab = Gabsk,ZdfZ + m − SbsZd − eb
2dskdg + Gab−1sk,Zdtb−1b

+ Gab+1sk,Zdtb+1b. s7d

The equation of motion in Eq.(7) has a tridiagonal form with
respect to the spatial componentz, and hence it can be solved
by employing the renormalized perturbation expansion.3 We
illustrate the solution exactly here. The equation withb=a is
different from the equations withbÞa. The former is solved
directly via

Gaask,Zd =
1

Z + m − SasZd − ea
2dskd +

Gaa−1sk,Zd
Gaask,Zd

ta−1a +
Gaa+1sk,Zd
Gaask,Zd

ta+1a

, s8d

and the latter equations can all be set into the form

−
Gaa−n+1sk,Zdta−n+1a−n

Gaa−nsk,Zd
= Z + m − Sa−nsZd − ea−n

2d skd

+
Gaa−n−1sk,Zdta−n−1a−n

Gaa−nsk,Zd
, s9d

for n.0, with a similar result for the recurrence to the right.
We define the left function

La−nsk,Zd = −
Gaa−n+1sk,Zdta−n+1a−n

Gaa−nsk,Zd
s10d

and then determine the recurrence relation from Eq.(9),

La−nsk,Zd = Z + m − Sa−nsZd − ea−n
2d skd −

ta−na−n−1ta−n−1a−n

La−n−1sk,Zd
.

s11d

We solve the recurrence relation by starting with the result
for L−`, and then iterating Eq.(11) up ton=1. Of course we
do not actually go out infinitely far in our calculations. We
assume we have semi-infinite metallic leads, hence we can
determineL−` by substitutingL−` into both the left- and
right-hand sides of Eq.(11), which produces a quadratic
equation forL−` that is solved by

L−`sk,Zd =
Z + m − S−`sZd − e−`

2d skd
2

±
1

2
ÎfZ + m − S−`sZd − e−`

2d skdg2 − 4t−`
2 .

s12d

The sign in Eq.(12) is chosen to yield an imaginary part less
than zero forZ lying in the upper half plane, and vice versa
for Z lying in the lower half plane. IfL−` is real, then we
choose the root whose magnitude is larger thant−` (the prod-
uct of the roots equalst−`

2 ). In our calculations, we assume

that the left function is equal to the valueL−` found in the
bulk, until we are within 30 planes of the first interface[for
a ballistic-metal leadS−`sZd=0]. Then we allow those 30
planes to be self-consistently determined withLa possibly
changing, and we include a similar 30 planes on the right-
hand side of the last interface, terminating with the bulk
result to the right as well.

In a similar fashion, we define a right function and a
recurrence relation to the right, with the right function

Ra+nsk,Zd = −
Gaa+n−1sk,Zdta+n−1a+n

Gaa+nsk,Zd
s13d

and the recurrence relation

Ra+nsk,Zd = Z + m − Sa+nsZd − ea+n
2d skd −

ta+na+n+1ta+n+1a+n

Ra+n+1sk,Zd
.

s14d

We solve the right recurrence relation by starting with the
result for R`, and then iterating Eq.(14) up to n=1. As
before, we determineR` by substitutingR` into both the left-
and right-hand sides of Eq.(14), which produces a quadratic
equation forR` that is solved by

R`sk,Zd =
Z + m − S`sZd − e`

2dskd
2

±
1

2
ÎfZ + m − S`sZd − e`

2dskdg2 − 4t`
2 . s15d

The sign in Eq.(15) is chosen the same way as for Eq.(12).
In our calculations, we also assume that the right function is
equal to the valueR` found in the bulk, until we are within
30 planes of the first interface[for a ballistic-metal lead
S`sZd=0]. Then we allow those 30 planes to be self-
consistently determined withRa possibly changing, and we
include a similar 30 planes on the left-hand side of the last
interface, terminating with the bulk result to the left as well.
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Using the right and left functions, we finally obtain the
Green’s function

Gaask,Zd =
1

Lask,Zd + Rask,Zd − fZ + m − SasZd − ea
2dskdg

,

s16d

where we used Eqs.(11) and (14) in Eq. (8). The local
Green’s function on each plane is then found by summing
over the two-dimensional momenta, which can be replaced
by an integral over the two-dimensional density of states
(DOS),

GaasZd =E dea
2d r2dsea

2ddGaasea
2d,Zd, s17d

with

r2dsea
2dd =

1

2p2ta
i a2KS1 −Î1 −

sea
2dd2

s4ta
i d2D , s18d

andKsxd the complete elliptic integral of the first kind. Ifta
i

varies in the nanostructure, then changing variables toe
=ea

2d/ ta
i in Eq. (17) produces

GaasZd =E
−4

4

de
1

2p2a2KS1 −Î1 −
e2

16
DGaasta

i
e,Zd,

s19d

so that we can take thee variable to run from −4 to 4 for the
integration on every plane, and we just need to introduce the
correspondingta

i e substitution(for ea
2d) into the left and right

recurrence relations. In the bulk limit, where we useta= t, we
find that the local Green’s function found from Eqs.(17) and
(16) reduce to the well-known expressions for the three-
dimensional Green’s functions on a simple cubic lattice,3

with a hopping parametert.
Once we have the local Green’s function on each plane,

we can perform the DMFT calculation to determine the local
self-energy on each plane.9,10 We start with Dyson’s equa-
tion, which defines the effective medium for each plane,

G0a
−1sZd = Ga

−1sZd + SasZd. s20d

The local Green’s function for theath plane satisfies

GasZd = s1 − w1d
1

G0a
−1sZd + 1

2U
+ w1

1

G0a
−1sZd − 1

2U
, s21d

with w1 equal to the average filling of the localized particles
[note that this above form is slightly different from the usual
notation,10 because we have made the theory particle-hole
symmetric by the choice of the interaction in Eq.(1), so that
m=0 corresponds to half-filling in the barrier region and in
the ballistic metal leads]. Finally, the self-energy is found
from

SasZd = G0a
−1sZd − Ga

−1sZd. s22d

The full dynamical mean field theory algorithm can now
be stated. We begin by(i) making a choice for the self-
energy on each plane. Next, we(ii ) use the left and right

recurrences in Eqs.(11) and(14) along with the bulk values
found in Eqs.(12) and (15) and a choice for the number of
self-consistently determined planes within the metal leads
(which we choose to be 30 to the left and the right of the
barrier interfaces) to calculate the local Green’s function at
each plane in the self-consistent region from Eqs.(16) and
(19). Once the local Green’s function is known for each
plane, we then(iii ) extract the effective medium for each
plane from Eq.(20), (iv) determine the new local Green’s
function from Eq.(21), and(v) calculate the new self-energy
on each plane from Eq.(22). Then we iterate through steps
(ii )–(v) until the calculations have converged.

For all of the calculations in this work, we will assume the
hopping matrix is unchanged in the metallic leads and the
barrier, so alltaa±1 and allta

i are equal tot, which we take as
our energy unit. We also work at the particle-hole symmetric
point of half-filling for the conduction electrons and the lo-
calized electrons. This yieldsw1=1/2 andm=0.

There are a number of numerical details that need to be
discussed in these computations. First, one should note that
the recurrence relations in Eqs.(11) and(14) always preserve
the imaginary part ofR or L during the recursion. Hence the
recursion is stable whenR or L is complex. On the other
hand, when they are real, we find that the large root is stable.
Since this is the physical root, the recursion relations are
always stable. Second, the integrand can have a number of
singularities in it. When we calculate the Matsubara Green’s
functions, the only singularity comes from the logarithmic
singularity in the two-dimensional DOS. We remove that sin-
gularity from the integration by using a midpoint rectangular
integration scheme for 0.5, ueu,4, and we change the vari-
ables for the regionueu,0.5 from e to x3=e, which is finite
asx→0, and which has a finite slope asx→0; this allows a
midpoint rectangular integration scheme foruxu, s0.5d1/3 to
accurately determine this second piece of the integral. When
we calculate the real frequency Green’s functions, we have
the logarithmic singularity, but we also can have a square-
root singularity at theath plane in the denominator of the
integrand when ImSasvd=0 and uv+m−ReSasvd−eu=2.
We definea=v+m−ReSasvd+2 and b=v+m−ReSasvd
−2. Then, if a,−4 or b.4, the only singularity lies ate
=0 as before. Whenb,−4, but −4,a,4, then there is a
singularity ate=a; whena.4, but −4,b,4, then there is
a singularity ate=b; and when −4,a, b,4, there are sin-
gularities ata andb. The singularities are easy to transform
away by using sine and hyperbolic cosine substitutions like
e=v+m−ReSasvd−2 sinu and e=v+m−ReSasvd
−2 coshu into the respective pieces of the integrands where
a singularity lies. We simply determine where all possible
singularities lie(for each plane), set up an appropriate grid
for the e variable that takes the different changes of integra-
tion variable into account, and compute the associated
weight functions for the integrations, in order to perform the
integration over the two-dimensional DOS. Third, we find
that when the correlations in the barrier are strong enough
that we are in the Mott insulator for the bulk material, and
the barrier is sufficiently thick, then the self-energy develops
a sharp structure, where the real part goes through zero over
a small range close tov=0, and the imaginary part picks up
a large delta-function-like peak aroundv=0. In order to
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properly pick up this behavior in the self-consistent solu-
tions, we need to use a very fine integration grid(we used up
to one million points for the calculations reported here) to
perform the integration over the two-dimensional DOS. Such
a fine grid is only needed for frequencies close tov=0, but
one needs to have a fine enough frequency grid inv to pick
up the sharp peak behavior in the self-energy(we use a step
size of 0.001 when there is a sharp structure in the self-
energy). For ordinaryv points, we typically used an integra-
tion grid of 5000 points. Fourth, these equations are easy to
parallelize on the real-frequency axis, because the calcula-
tions for each value of frequency are completely independent
of one another, so we simply use a master-slave approach
and send the calculations at different frequencies to each of
the different slaves until all frequencies are calculated. This
approach has an almost linear scale up in the parallelization
speed.

In addition to these single-particle properties, we also are
interested in transport along thez axis (perpendicular to the
multilayered planes). The resistance of the nanostructures
can be calculated by a Kubo-based linear response
formalism11 (i.e., a current-current correlation function). We
begin with the current operator at theath plane,

j z = o
a

j za,

j za =
ieat

"
o

i in 2d plane
scai

† ca+1i − ca+1i
† caid. s23d

This operator sums all of the current flowing from theath
plane to thea+1 plane.

The current-current correlation function is defined to be

Pabsinld =E
0

b

dt einltkTt j za
† stdj zbs0dl, s24d

with inl = ipT2l the Bosonic Matsubara frequency and with
the dc conductivity matrix determined by the analytic con-

tinuation of Eq.(24) to the real frequency axis via

sabsnd = lim
n→0

Re
i"Pabsnd

n
. s25d

In the spirit of the DMFT, we evaluate the two-particle cor-
relation function in Eq.(24) by the bare bubble with no
vertex corrections. In homogeneous systems in infinite di-
mensions, this procedure is exact, but it is only approximate
for our inhomogeneous three-dimensional system(and even
for inhomogeneous systems in infinite dimensions); never-
theless, we expect the corrections to be small. Substituting
Eq. (23) into Eq.(24), evaluating the contractions in terms of
the single-particle Green’s functions, performing the integra-
tion overt to convert to the Matsubara frequency represen-
tation, and performing a Fourier transform over the 2d spa-
tial coordinates, yields the following result after some
straightforward algebra:

Pabsinld = Seat

"
D2

To
m

a2o
k

f− Gb+1a+1sk,ivmd

3Gabsk,ivm + inld

+ Gba+1sk,ivmdGab+1sk,ivm + inld

+ Gb+1ask,ivmdGa+1bsk,ivm + inld

− Gbask,ivmdGa+1b+1sk,ivm + inldg. s26d

Now we need to perform the analytic continuation from the
imaginary to the real frequency axis.12 This is done by first
converting the summations over the Matsubara frequencies
into contour integrals that enclose all of the Matsubara fre-
quencies and are multiplied by the Fermi-Dirac distribution
function fsvd=1/f1+expsbvdg which has a pole at each
Matsubara frequency. Then the contours are deformed to go
along lines parallel(but just above or just below) the real
axis, and the real axis shifted by −inl. At this point we re-
place fsv− inld by fsvd and then analytically continueinl

→n+ i0+. The algebra is once again straightforward but
somewhat tedious. The final result is

Pabsnd = −
1

p
Seat

"
D2

a2o
k

hfsvdfGabsk,v + ndIm Gb+1a+1sk,vd + Gab+1sk,v + ndIm Gba+1sk,vd + Ga+1bsk,v + nd

3ImGb+1ask,vd − Ga+1b+1sk,v + ndIm Gbask,vdg + fsv + ndf− Gb+1a+1
* sk,vdIm Gabsk,v + nd

+ Gba+1
* sk,vdIm Gab+1sk,v + nd + Gb+1a

* sk,vdIm Ga+1bsk,v + nd − Gba
* sk,vdIm Ga+1b+1sk,v + ndgj. s27d

The last step is to evaluate the dc conductivity matrix, which becomes

sabs0d =
2e2

h
a4t2E de r2dsed E dvS−

df

dv
DfIm Gba+1se,vdIm Gab+1se,vd + Im Gb+1ase,vdIm Ga+1bse,vd

− Im Gb+1a+1se,vdIm Gabse,vd + Im Gbase,vdIm Ga+1b+1se,vdg. s28d
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The conductivity matrix has the dimensionse2/ha2, which is
the inverse of the resistance unit, divided by two factors of
length, and is the correct unit for the conductivity matrix(the
mixed-basis Green’s functionGab has dimensions 1/ta2).

Since the conductivity matrix is not as familiar as the
scalar conductivity used for homogeneous problems, we will
briefly derive how one extracts the resistance of the nano-
structure from the conductivity matrix. The key element that
we use is that the current density that flows through each
plane is conserved, because charge current can neither be
created nor destroyed in our device. The continuity equation,
then says that the current density through theath plane,Ia, is
related to the electric field,Eb, between thebth and b+1
plane via

Ia = ao
b

sabs0dEb = I , s29d

where we set the current density on each plane equal to a
constant valueI. Inverting this relation to determine the elec-
tric field gives

Eb =
1

a
o
a

fs−1s0dgbaI . s30d

The voltage across the nanostructure is just the sum of the
electric field between each plane, multiplied by the inter-
plane distance(we assume a constant dielectric constant
throughout), so we can immediately determine the
resistance-area product(specific resistance) from Ohm’s law

Rna
2 =

V

I
= o

ab

fs−1s0dgba. s31d

One needs to pursue a similar type of analysis to examine the
thermal transport properties(thermopower and thermal resis-
tance), but it is somewhat more complicated, because the
thermal current is not conserved from one plane to another
plane, as is the charge current. We will present results for
such a calculation elsewhere(at half-filling, where we re-
strict ourselves in this paper, there is no thermopower by
particle-hole symmetry).

The only mathematical issue associated with this analysis
is that we have assumed the conductivity matrix is invertible.
In general, this is not true when there is no scattering in the
metallic leads. In this case, we need to truncate the conduc-
tivity matrix to consider only the block that covers all of the
planes in the barrier and the first metallic plane to the left
and to the right of the barrier. This matrix is always invert-
ible, and allows calculations to be performed easily(if we
were to include a larger matrix, we find that the resistance
does not increase as we increase the number of planes within
the metallic leads that we include in the conductivity matrix
block that is inverted, at least until we run into precision
issues for the calculations). Of course, if the metallic leads
have scattering, there are no numerical issues associated with
the matrix inversion(except when the matrix is made too
large and the system has approached the bulk limit, see be-
low), but we need to decide how far down the metallic leads
we will perform the actual measurement, since the voltage
grows with the thickness of the metallic leads included in the

calculation(when there is scattering in the leads).
In order to calculate the dc conductivity matrix in Eq.

(28), we need to evaluate the off-diagonal components of the
Green’s functions. This is easy to do using the renormalized
perturbation expansion, and the right and left functions. We
find two recurrence relations

Gaa−nse,vd = −
Gaa−n+1ta−n+1a−n

La−nse,vd
s32d

(defined forn.0) and

Gaa+nse,vd = −
Gaa+n−1ta+n−1a+n

Ra+nse,vd
s33d

(also defined forn.0). The other off-diagonal Green’s func-
tions are found from the symmetry relationsGaa−n=Ga−na

andGaa+n=Ga+na.
The computation of the junction resistance for a given

temperature is relatively simple to perform. First, one must
calculate all of the local self-energies for each plane, using
the algorithm described above. Then, for each frequencyv,
one can calculate all of the Green’s functions that enter into
the formula forsabs0d. It is best to evaluate the integral over
v for many different temperatures “at the same time” since
the only thing that changes with temperature(when at half-
filling, where the chemical potential is fixed and does not
vary with T) is the Fermi factor derivative. Since evaluating
at each frequency is independent of every other frequency,
this algorithm is also “embarrassingly parallel.”

One final comment is in order about the formalism for
calculating the junction resistance. Namely, how does it re-
late to a Landauer approach to the resistance? In the Land-
auer approach2 one does not calculate a conductivity matrix,
but instead determines the transport directly by evaluating
the Green’s functionGab wherea lies at the left interface
and b lies at the right interface. We believe one can show
that these two approaches are completely equivalent if one
uses the same self-energies for the inhomogeneous structure
to calculate the Green’s functions that enter into the transport
calculation. We will examine this relationship in a future
paper.

In a homogeneous(bulk) noninteracting system, we find
that the Green’s functions satisfy

Gaa±nse,vd =
− i

Î4t2 − sv + m − ed2

3 F−
v + m − e

2
+ i

Î4t2 − sv + m − ed2

2
Gn

s34d

when e lies within the bandfuv+m−eu,2g. Note that
Im Gabse ,vd is not always negative whenaÞb. This occurs
because we are using a mixed basis, and the imaginary part
of the Green’s function does not have a definite sign in this
basis. We can substitute these Green’s functions into the ex-
pression for the conductivity matrix, to evaluate the result for
the bulk. We find the matrix has all of its matrix elements
equal to each other, and they assume the value
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sabs0d =
e2

ha2E
−2

2

de r2dsed < 0.63
e2

ha2 , s35d

for the case of half-fillingm=0 (since every matrix element
is the same, the conductivity matrix is not invertible, but the
resistance can still be calculated). This result will lead to
precisely the Sharvin contact resistance13–15 when we con-
vert the conductivity into a resistance(the resistivity of a
ballistic metal vanishes, but the resistance is nonzero).

III. SINGLE-PARTICLE PROPERTIES

We perform our calculations at half-filling(m=0, kci
†cil

=1/2, andw1=kwil=1/2). This has a number of advantages.
First, because the chemical potential is the same for the me-
tallic leads and the barrier, there is no electrochemical force
that reorganizes the electrons to a screened dipole layer at
each of the interfaces, instead the filling remains homoge-
neous throughout the system. Second, the chemical potential
is fixed as a function of temperature, so there is no need to
perform imaginary-axis calculations to determine the chemi-
cal potential as a function of temperature. We usually calcu-
late the Matsubara Green’s functions anyway, to test the ac-
curacy of the real-axis Green’s function, by comparing the
Matsubara Green’s functions calculated directly with those
calculated from the spectral formula via the real-axis DOS
(usually the accuracy is better than three decimal points for
every Matsubara frequency). Third, we can perform calcula-
tions of the resistance at all temperatures in parallel, because
the chemical potential does not vary with temperature(recall,
the DOS of the Falicov-Kimball model is temperature inde-
pendent for the DMFT solution16 ). Fourth, the particle-hole
symmetry of the DOS allows us to have another check on the
accuracy of the calculations because we do not invoke that
symmetry in our calculations. Fifth, there is a metal-insulator
transition (MIT ) in the bulk Falicov-Kimball model on a
cubic lattice whenU<4.9t, so the solutions at half-filling
include the MIT. For these reasons, we find this case to be
the simplest one to consider in a first approach to the inho-
mogeneous many-body problem.

We also reduce the number of parameters in our calcula-
tions by assuming all of the hopping matrix elements are
equal tot for nearest neighbors. This is by no means neces-
sary, but it allows us to reduce the number of parameters that
we vary in our calculations, which allows us to focus on the
physical properties with fewer calculations. The hopping
scalet is used as our energy scale. We also include 30 self-
consistent planes in the metallic leads to the left and to the
right of our barrier, which is varied between 1 and 80 planes
in our calculations.

The first problem we investigate is the extreme quantum
limit of having one atomic plane in the barrier of our device.
We tune the Falicov-Kimball interaction in the one barrier
plane fromU=1 to U=20, which goes from a dirty metal to
well into the Mott insulating regime. But the Mott insulating
phase does not like being confined to a single atomic plane,
and there is a metallic proximity effect, where the metallic
DOS leaks into the insulator DOS at low energies. The result
is that we do not expect the single-plane barrier to be too

resistive. This is easiest to see when we consider the local
DOS within the barrier plane, as plotted in Fig. 1. There we
see that the DOS starts to be reduced at the chemical poten-
tial as we increaseU, but there is still substantial DOS at the
Fermi energy whenU<4.9. In fact, asU is increased, we see
that the upper and lower Mott-Hubbard bands form, centered
at ±U /2, but there is significant DOS that remains centered
at v=0, and it even develops a small peak forU.10. The
origin of, and the size of this peak, can be shown to arise
naturally from the renormalized perturbation theory expres-
sions for the Green’s functions, but we do not do so here.17

We anticipate that these states are localized at the interface,
and represent the states that an incident electron can tunnel
through to go from one metallic lead to the other in a trans-
port experiment. These results show a number of interesting
features of the coupling of a Mott insulator to a metallic lead:
(i) the Mott transition remains in the sense that Mott-
Hubbard bands continue to form, with their origin clearly
seen near the MIT;(ii ) the interface-localized states have a
metallic character(i.e., a peak atv=0) in the large-U re-
gime; and(iii ) the proximity effect appears to always be
active, and able to create states within the barrier at low
energy, but the total weight in those states is low, so medium
to high energy properties of the Mott insulator phase will
remain similar to the bulk.

Next we examine what happens as we increase the barrier
thickness for given values ofU. Our focus is on three generic
values of interest,U=2, which is a strongly scattering, dif-
fusive metal;U=4, which is so close to the MIT, that the
bulk DOS show a significant dip nearv=0; andU=6, which
is well within the Mott-insulating phase. We first examine
how the metallic leads are influenced by the presence of the
barrier. We set the origin of thea variables so thata=0
corresponds to the first barrier plane(hence planes −1 to −30
represent the 30 planes to the left of the barrier, with −1
closest to the barrier). In Fig. 2, we show results forU=2
and five representative planes in the metal(the device has

FIG. 1. Barrier DOS as a function of the Falicov-Kimball inter-
action U. The different line widths and styles denote differentU
values, as detailed in the legend. Note how the DOS initially
evolves as in the bulk, with the DOS being reduced nearv=0, and
the bandwidth increasing. But as we pass through the Mott transi-
tion, we see that the double-peak Mott-Hubbard bands appear, but
so does a low-energy(interface-localized) band nearv=0, which
looks like a low-weight metallic band for largeU.

DYNAMICAL MEAN-FIELD THEORY FOR STRONGLY… PHYSICAL REVIEW B 70, 195342(2004)

195342-7



five barrier planes). In Fig. 3, we show the same results for
U=4 and in Fig. 4, we show the same results forU=6. The
first thing to notice is that the DOS is close to that of the bulk
simple cubic lattice for 30 planes away from the interface,
indicating that our choice of 30 self-consistent planes is rea-
sonable. Next, note that the amplitude of the oscillations
grows asU increases. Third, the number of half periods in

the oscillations increases with the distance away from the
interface(both for uvu,2 and uvu.2). The source of these
oscillations is the Friedel oscillations(with a wavelength on
the order of two lattice spacings for half-filling) that we ex-
pect associated with the disturbance of the Fermi sea of the
metal by the proximity to the interface.

There are two interesting questions to ask about these
results: how thick does the barrier have to be before the
Friedel oscillations become frozen in the metallic leads and
do not change with a thicker barrier, and do we see oscilla-
tory behavior in the barrier, where we instead expect there to
be exponentially decaying wave functions? We find that the
answer to the first question is that the structure is already
essentially frozen in for a single-plane barrier, and it does not
evolve much with the barrier thickness(although it does
show evolution with the interaction strength). This perhaps
sheds some light on why non-self-consistent Landauer based
approaches for transport have been so successful. If one has
a good guess for the semi-infinite lead DOS, then it does not
change much as the thickness increases, so that guess will
work well for all calculations with the same strength of elec-
tron correlations.

To examine the second question, we plot results for the
DOS at a fixed frequency(four chosen for eachU value) in
Fig. 5. There are six different thicknesses plotted for eachU
value. The curves all lie on top of each other for the metallic
lead planes, indicating that the Friedel oscillation structure is
frozen in starting atN=1 (and we can read off the oscillation
wavelength to be two lattice spacings, with a sharp decrease
of the amplitude as one moves away from the interface). In
the barrier, we see that there are only oscillations close to the
interface, then the curves either flatten out or exponentially
decay with thickness. But the curves continue to lie on top of

FIG. 2. Lead DOS for anN=5 barrier device withU=2. The
different panels show the DOS in the first metal plane to the left of
the barrier, in the second, the third, the tenth, and the thirtieth. Note
how the system approaches the bulk cubic DOS as it moves further
from the interface, as expected. A careful examination of the panels
shows that the “flat” region withuvu,2 shows a half-period oscil-
lation for each unit of distance from the current plane to the inter-
face, but the amplitude shrinks dramatically as we move further
from the interface.

FIG. 3. Lead DOS for anN=5 barrier device withU=4. The
different panels show the DOS in the first metal plane to the left of
the barrier, in the second, the third, the tenth, and the thirtieth. Note
how the amplitude of the oscillations increases asU increases.

FIG. 4. Lead DOS for anN=5 barrier device withU=6. The
different panels show the DOS in the first metal plane to the left of
the barrier, in the second, the third, the tenth, and the thirtieth. Note
how the amplitude of the oscillations is even larger here. A careful
examination shows there are also oscillations(with the same kind of
increase in the number of half periods with the distance from the
interface) in the regionuvu.2.
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each other(except for the middle plane of the barrier for
small v andU=6). These results, once again, show that an-
other of the assumptions of the non-self-consistent Landauer-
based approaches, that there is an exponential decay with a
well-defined decay length in the insulating barrier regions,
holds here as well, but one needs to properly predict the
decay length to perform accurate calculations.

Our final summary of the DOS is included in false color
plots (the color, or gray scale, denoting the height of the
DOS at a given plane) to emphasize the spatial location and
amplitudes in the oscillations. Figure 6 shows the results for
N=1 andU=6 and Fig. 7 shows the results withN=20 and
U=6 (only one-half of the nanostructure planes are shown
due to the mirror symmetry). The color scale(or gray scale)
needs to use a banded rainbow, with the different colors
(gray scales) separated by bands of black in order to pick up
the small amplitude oscillations in the background of the
large DOS. Note how the Friedel oscillations are essentially
the same in the two plots, indicating this freezing of the
oscillations starting atN=1. There are also oscillations vis-
ible near the metal band edges, indicating Friedel-type oscil-
lations due to the different total bandwidths of the two ma-
terials joined in the nanostructure. The DOS in the barrier at
low frequency becomes very small very quickly on these
linear scales, but it is nonzero(see Fig. 5).

The final single-particle property we consider is the
imaginary part of the self-energy at the central plane of the
barrier at low energy in Fig. 8. In the bulk, the imaginary
part of the self-energy vanishes within the Mott-Hubbard
gap, except for a delta function atv=0 whose weight can be
used as a quasiorder parameter for the Mott transition at
half-filling (but not away from half-filling18). In the nano-
structures, the imaginary part of the self-energy never van-
ishes in the bulk gap region, but it can assume very small
values, with a sharp peak, of finite width, developing atv
=0. This peak grows in height and narrows as the barrier is
made thicker. It is a challenge to try to calculate such a
structure numerically, especially due to the loss of precision
in extracting the self-energy from the Dyson equation during
the iterative algorithm. It requires a fine enough frequency
grid to pick up the narrow structure, and it requires a suffi-
ciently fine integration grid fore, in order to accurately de-
termine the peak value. Note how the self-energy evolves
from a relatively broad featureless structure to a very sharply
peaked structure as the barrier is made thicker. This kind of a
peaked self-energy is similar to what is seen in the exact
solution on the hypercubic lattice in infinite dimensions.
There the Mott transition is actually to a pseudogap phase,

FIG. 5. DOS at specific values ofv as a function of the plane
position in the device. We plot only the left-hand piece of the plots,
since the right-hand piece is a mirror image of the left-hand piece.
Note that theU=6 panel is a semilogarithmic plot. The four values
of v for U=2 are 0.0, 3.0, 4.0, and 5.0. The barrier thicknesses are
N=1, 5, 10, 20, 40, and 80. The four values ofv for U=4 are 0.0,
2.5, 3.5, and 5.0. The barrier thicknesses areN=1, 5, 10, 20, 40, and
80. The four values ofv for U=6 are 0.0, 0.2, 0.4, and 1.0. The
thicknesses areN=1, 4, 7, 10, 15, and 20. Note how all curves lie
on top of each other in the metallic lead, indicating the structure in
the metallic lead is frozen in for anN=1 barrier, and does not
significantly change with increasingN. In the barrier, we only have
oscillations at the interface, and then the curves either are flat with
thickness(U=2 and 4), or exponentially decreasing or flatsU=6d.
The little tails that stick out for the lowest two frequencies with
U=6 show that the middle plane of the barrier does not follow the
same exponential decay as the other planes do. But the exponent of
the exponential decay is frozen in starting atN<1.

FIG. 6. (Color online) False-color plot of the DOS for aN=1
barrier plane device withU=6. The barrier plane is just the lowest
plane at the bottom of the figure, while the 30 metallic planes lie on
top. Note how the ripples of the Friedel oscillations are most visible
in the central region, where the DOS has a plateau.

FIG. 7. (Color online) False-color plot of the DOS for aN=20
barrier plane device withU=6. The barrier planes are the lower 10
planes, while the 30 metallic planes lie on top. Note how the ripples
of the Friedel oscillations agree with those in Fig. 6. In the barrier,
the DOS decreases rapidly on this linear scale, and shows few os-
cillations, but one can see some small oscillations near the band
edges in both regions.
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with the DOS vanishing only at the chemical potential, but
there is a region of exponentially small DOS in the “gap
region.” The sharp features in the self-energy led to a signifi-
cant enhancement of the low-temperature thermopower on
the hypercubic lattice when the system was doped off of
half-filling19 (andw1 changed to produce an insulator). It is
unclear at this point whether such behavior could lead to
enhancements in the nanostructures, even though the self-
energy has similar properties.

IV. GENERALIZED THOULESS ENERGY

It is important to try to bring semiclassical ideas of trans-
port into transport in nanostructures, to see whether those
concepts have useful quantum analogues. Thouless was the
first to investigate such ideas for diffusive metal barriers.4,5

He considered the idea of a dwell time in the barrier for an
electron that tries to travel through the barrier. If we assume
the electron takes a random walk through the barrier, then the
time it spends inside the barrier is proportional to the square
of the thickness of the barrier(with the proportionality being
related to the diffusion constant). Since one can extract the
diffusion constant, via an Einstein relation, from the junction
resistance, Thouless could construct a quantum-mechanical
energy" / tdwell from these classical ideas. It turns out that
this energy scale plays a significant role in determining the
quantum dynamics of many different kinds of nanostruc-
tures. For example, it can be easily generalized to take into
account ballistic metals, wheretdwell=Na/vF for a barrier of
thicknessNa, with vF the Fermi velocity. The Thouless en-
ergy appears to be the critical quantum energy scale that
determines the dynamics through weakly correlated nano-
structures; its success in the theory of Josephson junctions is
particularly noteworthy.6

So the fundamental question we wish to investigate is can
the concept of a Thouless energy be generalized to a strongly
correlated system, where transport through a nanostructure is
either via tunneling or via incoherent thermal excitation. The
answer is yes, and we do so by first trying to extract an
energy scale from the resistance of the junction, which is
able to track the putative thermal dependence of the resis-
tance when we are in the incoherent thermal transport re-
gime. A simple dimensionality argument shows that the form

ETh =
"

Rna
22e2E dvf− df/dvgrbulksvdNa

s36d

has the the kind of dependence we are looking for. The sym-
bol rbulksvd is the local DOS in the bulk for the material that
sits in the barrier of the nanostructure. If we check the di-
mensions, we see thatRn has dimensionsh/e2, and the DOS
has dimensions 1/a3t, so ETh is an energy[note Eq.(36)
corrects typographical errors in an earlier work7]. When we
examine systems where the barrier is a metal, then at low
temperature the bulk DOS can be replaced by a constant in
the integral, and we reproduce the known forms for the
Thouless energy for ballisticsETh<C/Nad and diffusive
sETh<C8 / fNag2d electrons because the resistance is indepen-
dent of the thickness for a ballistic metal barrier and it grows
linearly with the thickness for a diffusive metal barrier. This
method of generalizing the Thouless energy also avoids us
having to try to answer the question of how long does it take
an electron to tunnel from the left to the right lead, and it
reproduces all of the known forms for the Thouless energy in
a unifying formula that does not require us to even use the
Einstein relation to extract a diffusion constant or to deter-
mine the Fermi velocity for an anisotropic Fermi surface(in
the ballistic case).

We plot the results for this Thouless energy as a function
of thickness in Fig. 9 forU=4. In panel(a), we multiply ETh
by the square of the lengthL=Na of the barrier. The different
curves correspond to different temperatures. If the Thouless
energy went exactly likeC8 /L2, then all of the curves would
be straight lines, with a temperature-dependent valueC8sTd.
But we see some curvature for small barrier thicknesses. This
arises mainly from the fact that in addition to the diffusive
contribution to the resistance, there is a contact resistance, so
for thin barriers, we do not have a pure 1/L2 behavior. Note,
however, that the Thouless energy has little temperature de-
pendence at low temperature, as expected. In panel(b), we
plot the curves on a semilogarithmic plot, so one can see
how small the Thouless energy becomes for thicker junc-
tions.

The Thouless energy is plotted versus temperature on a
log-log plot for U=6, which corresponds to a Mott-
insulating barrier with a small correlation-induced gap. The
dashed line indicates whereETh=T, which is an important
crossover point for dynamics, as we will see below. Note that
the temperature dependence is significant in an insulator, be-
cause the integral in the denominator of Eq.(36) has strong
temperature dependence in the insulator, but the resistance
does not in the tunneling regime at low temperature. If we

FIG. 8. Semilogarithmic plot of the imaginary part of the self-
energy on the central plane of the barrier at small frequency for five
different thickness barriers(N=1, 4, 7, 10, and 15). Note how the
imaginary part of the self-energy becomes very small for frequen-
cies close tov=0, but as we approachv=0, a sharp delta-function-
like peak develops that narrows as the barrier is made thicker. It is
precisely this structure that is hard to reproduce with numerical
calculations. Note that this kind of a self-energy is very similar to
what is seen in the hypercubic lattice in infinite dimensions.
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used the Thouless energy to determine the tunneling time via
ttunnel=" /ETh, we would find tunneling times rapidly ap-
proaching zero asT→0. We will not comment further here
as to whether there is any substance to using such results to
describe the quantum dynamics of the tunneling process. In-
stead we simply want to conclude that the concept of the
Thouless energy can be generalized to strongly correlated
systems, and we will see below that the crossover point
whereETh<T has important physical interpretations that will
be developed in the next section. Finally, the generalization
of the Thouless energy to correlated systems changes the
idea of a single energy scale being associated with the trans-
port, since now the energy scale develops strong temperature
dependence. If a single number is desired, then we would
propose to use the energy scale where the Thouless energy is
equal to the temperature, indicated by the points of intersec-
tion of the solid lines with the dashed curves in Fig. 10.

V. CHARGE TRANSPORT

The dc resistance is a low-energy property of the nano-
structure, and so it requires the results of the single-particle
properties to be determined accurately at low energy. This is
not difficult for metallic barriers with any degree of scatter-
ing, as long as the numerical subtleties discussed above are
taken into account in the analysis, but it does create problems
for thick Mott insulators. We need to be able to properly
determine the structure seen in Fig. 8 as the barrier is made
thicker, and this can exhaust the numerical resources, or the
numerical precision available for a given calculation. For our

work, we were not successful in examiningU=6 barriers
thicker thanN=20.

We plot the resistance-area product in Fig. 11 forT
=0.01 and four differentU values:U=2, a diffusive metal
near the Ioffe-Regel limit of a mean free path on the order of
a lattice spacing;U=4, a strongly scattering, anomalous
metal, that has a strong dip in the DOS near the chemical
potential;U=5, a Mott insulator that is nearly critical; and

FIG. 9. Thouless energy for aU=4 (diffusive, but very strongly
scattering metal) barrier as a function of the barrier thicknessL
=Na. The different curves correspond to different temperatures. The
top panel multiplies the Thouless energy byL2 to try to isolate the
prefactor for the diffusive transport, while the bottom panel plots
the Thouless energy on a semilogarithmic plot. Note that the tem-
perature dependence of the constant, seen for thick barriers in panel
(a), arises from the fact that theU=4 DOS has significant low-
energy structure, because there is a dip that develops near the
chemical potential, so the temperature dependence is both stronger
than expected for normal metals, and anomalous because many
more states are involved asT is increased, i.e., it behaves more like
an insulator.

FIG. 10. Thouless energy for aU=6 (Mott-insulating) barrier as
a function of temperature on a log-log plot. The different curves
correspond to different thicknesses of the barrier, ranging fromN
=1 for the top curve toN=2, 3, 4, 5, 7, 10, 15, and 20 as we move
down the plot. Note how the Thouless energy picks up dramatic
temperature dependence here. The dashed line is the curve where
ETh=T. We find that when the Thouless energy equals the tempera-
ture, interesting effects occur(see below).

FIG. 11. Resistance-area product for nanostructures withU=2,
4, 5, and 6, and various thicknesses. Panel(a) is a semilogarithmic
plot, while panel(b) is a linear plot. The temperature isT=0.01 in
both panels. Note how the correlated insulatorsU=6d has an expo-
nential growth with thickness as expected for a tunneling process,
but it turns over at the thickest junction, indicating a crossover to
the incoherent transport regime. TheU=5 data, which is close to
the critical point for a MIT, has neither linear, nor exponential
growth of its resistance-area product. The metallic cases(U=2 and
4) have perfect linear scaling of the resistance with current, with a
nonzero intercept corresponding to the contact resistance. This may
be surprising forU=4, because it is so strongly scattering(with a
mean free path much less than a lattice spacing), that one would not
think a semiclassical approach should apply there. The constant
satisfiess0=2e2/ha2.
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U=6, a Mott insulator with a small correlation-induced gap.
In panel(a), we have a semilogarithmic plot, which is useful
for picking out tunneling behavior via an exponential in-
crease of the resistance with thickness. This is clearly seen
for the Mott insulator withU=6, with the beginnings of a
crossover occurring nearN=20, but the near-critical insula-
tor at U=5 does not grow exponentially, nor does it grow
linearly [see panel(b)]. The data forU=2 andU=4, both
show linear increases with thickness, with a nonzero inter-
cept on they axis denoting the nonzero contact resistance
with the metallic leads. It is surprising that this linear
“ohmic” scaling holds for systems that are so strongly scat-
tering, that their mean free path is much less than one lattice
spacing.

Our final figure plots the resistance-area product versus
temperature for(a) U=4 and(b) U=6 (Fig. 12). In panel(a),
we can infer a linear dependence ofRna

2 versusL for all

temperatures, so this barrier is always ohmic in nature. But it
has quite anomalous temperature dependence, looking like
an insulator, whose resistance is reduced as the temperature
increases. In panel(b), we see an exponential dependence of
Rna

2 versusL at low temperature, marked by the equidistant
step increases ofRna

2 as the thickness increases(recall this is
a log-log plot). The temperature dependence is also weak in
this region, indicated by the flatness of the curves. Hence the
system is in the tunneling regime at low temperature. AsT
rises, there is a relatively sharp crossover region, whereRna

2

begins to pick up strong(exponentially activated) T depen-
dence, andRna

2 grows linearly withL. This is the incoherent
“ohmic” regime for the transport. The solid dots represent
the resistance-area product at the Thouless energy, deter-
mined by finding the temperature whereETh=T from Fig. 10,
and marking those points on the curves in panel(b). A
dashed line guide to the eye is drawn through these points.
One can clearly see that the point where the Thouless energy
equals the temperature determines the crossover from tunnel-
ing to incoherent transport. Surprisingly, this crossover oc-
curs at a lower temperature for a thicker barrier. This occurs,
because the tunneling resistance is higher for a thicker bar-
rier. As T increases, the ohmic resistance, determined by
multiplying the temperature-dependent bulk resistivity by the
thickness and dividing by the area, will decrease. Once it is
essentially equal to the tunneling resistance, there will be a
crossover from tunneling, which provides a “quantum short”
across the junction for lowT, to “ohmic” (incoherent) ther-
mally activated transport. This must occur at a lower tem-
perature for more resistive junctions, and hence the thicker
junctions have the crossover before the thinner junctions.
Note that the temperature scale for this crossover does not
appear to have any simple relation to the energy gap of the
bulk material, instead it is intimately related to the dynamical
information encoded in the generalizedETh found in Eq.
(36).

We do not consider thermal transport there, since the ther-
mopower vanishes for this particle-hole symmetric case and
the thermal resistance is not as interesting in systems with
vanishing thermopower.

VI. CONCLUSIONS

In this contribution we worked with a generalization of
DMFT to inhomogeneous systems to calculate the self-
consistent many-body solutions for multilayered nanostruc-
tures that have barriers that can be tuned to go through the
Mott transition. We developed the computational formalism
thoroughly(based on the algorithm of Potthoff and Nolting),
and although we applied it only to the Falicov-Kimball
model, it is obvious that one can trivially add mean-field-like
interactions such as Zeeman splitting for magnetic systems,
or long-range Coulomb interactions for systems with mis-
matched chemical potentials. In addition, one can invoke
whatever impurity solver desired for the local DMFT prob-
lem on each plane, which extracts a new self-energy from the
current local Green’s function. We studied both the single-
particle properties and the charge transport.

There are a number of interesting results that came out of
this analysis. First, we found that as the strength of the cor-

FIG. 12. Resistance-area product for nanostructures with(a) U
=4 and (b) U=6 as a function of temperature[panel (a) is on a
linear scale, and panel(b) is a log-log plot]. In panel(a) we include
results forN=1, 2, (lowest two curves), 5, 10, 15, 20, 40, 60, and
80. Note how at each temperature there is a linear dependence of
the resistance-area product with the thickness of the junction. Note
further, that these junctions have anomalous temperature depen-
dence for a metal(they actually look insulating in their depen-
dence). In panel(b), we show the results forU=6 with N=1–10,
15, and 20. Note at low temperature we have tunneling, as the
resistance-area product is weakly dependent on temperature, and
the steps are equally spaced as a function of thickness, indicating
exponential dependence on the thickness. At higher temperatures,
there is a crossover to the incoherent transport regime, with the
resistance-area product picking up a strongT dependence, and scal-
ing linearly with the thickness. The dotted line that connects the
solid dots is a plot of the resistance-area value at the temperature
whereETh=T which determines the crossover.
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relations increases in the barrier, there is a stronger feedback
effect on the Friedel-type oscillations that appear in the me-
tallic leads, but those oscillations vary little with the thick-
ness of the barrier for a fixed interaction strength. Second,
there are few oscillations inside the barrier except close to
the interface with the metallic leads, but the behavior in the
barrier, of either an exponential decay, or of a constant DOS,
gets frozen in for a relatively thin barrier, and the DOS
changes little with increasing the thickness of the barrier,
except when there is exponential decay which will always
decrease within the correlation-induced gap. Third, the Mott
insulating barrier develops a narrow peaklike structure in the
imaginary part of the self-energy that approaches the bulk
delta function result. This narrow and tall peak is difficult to
determine accurately with the numerics and limits the ability
to study thick insulating barriers. Fourth, we showed how to
generalize the concept of a Thouless energy to become a
function of T for a strongly correlated Mott insulator. Our
unifying form for the Thouless energy includes the results for
both the ballistic and diffusive metals as well. We identified
an energy scale that describes the crossover from tunneling
to incoherent transport in these nanostructures; it corre-
sponds toETh=T. This energy scale is quite useful in other
areas such as in the theory of Josephson junctions, which
will be presented elsewhere. Sixth, we analyzed the resis-
tance of these devices and found interesting behavior, includ-
ing anomalous metallic behavior(but no tunneling) for a
strongly scattering metal, and the crossover from tunneling
to ohmic transport for insulating barriers.

This work also shed light on other approaches to transport
through multilayered structures like the Landauer-based ap-
proaches. Usually these are non-self-consistent techniques
that approach the problem from the point of view of trans-
mission and reflection of Bloch waves moving through the
device. We found that because the structure in the leads is
frozen in beginning withN=1 and because the exponential
decay lengths are also determined fromN=1, if one knew
those results and plugged them into the Landauer approach,
one should be able to calculate accurate properties; i.e., the
self-consistency is needed for each nanostructure, but the
self-consistency hardly changes with the thickness of the bar-
rier. Hence a phenomenological approach that adjusts the
properties of the barrier height to produce the required be-
havior, may work well, even for strongly correlated systems;

of course, the many-body theory is the only way to deter-
mine the precise structure needed via its self-consistent so-
lution (i.e., it requires no fitting).

There are a number of important effects that we have not
discussed here, which play roles in the transport through
nanostructures. We did not attempt to include them in this
first, simplest problem that we tackled. The first one is the
issue of charge reorganization around the interface. If the
chemical potentials of the leads and the barriers are different,
electrons will spill from one plane to another until a screened
dipole layer is formed, and a constant electrochemical poten-
tial is found throughout the device.20 Such effects can have
dramatic results if one or more of the materials is a corre-
lated insulator, since the inhomogeneous doping of the sys-
tem can transform part of it from insulating to metallic. This
is believed to occur in grain boundaries in high temperature
superconducting tapes and wires,21 and in insulator-based
nanostructures.22,23 Second, calculations should be per-
formed off of half-filling, where the thermal evolution of the
chemical potential, will likely undergo some temperature de-
pendence so the charge rearrangement can vary with tem-
perature in the system. Third, we should calculate the ther-
mal transport effects. Since these calculations require
particle-hole asymmetry, we will have the chemical potential
evolution and the charge reorganizations to deal with as well.
Fourth, one can include ordered phase effects at the mean-
field level easily, as in a superconductor for a Josephson
junction,24 or in a ferromagnet for a spintronics device. Fifth,
it will be useful to determine the capacitance of a nanostruc-
ture, since the capacitance is often important in determining
the switching speed of a device; it can be calculated with a
linear-response formalism as well. Finally, we also should
look into nonequilibrium effects, especially the nonlinear re-
sponse of a current-voltage curve. It is our plan to investigate
these complications in the future.
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