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Dynamical mean field theory is employed to calculate the properties of multilayered inhomogeneous devices
composed of semi-infinite metallic lead layers coupled via barrier planes that are made from a strongly
correlated materiajand can be tuned through the metal-insulator Mott transitigve find that the Friedel
oscillations in the metallic leads are immediately frozen in and do not change as the thickness of the barrier
increases from one to 80 planes. We also identify a generalization of the Thouless energy that describes the
crossover from tunneling to incoherent ohmic transport in the insulating barrier. We qualitatively compare the
results of these self-consistent many-body calculations with the assumptions of non-self-consistent Landauer-
based approaches to shed light on when such approaches are likely to yield good results for the transport.
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I. INTRODUCTION within its formalism! We are, however, making one approxi-
mation in this approach—namely, we make the assumption
The fields of strongly correlated materials and of nano-that the self-energy remains local, even though it can vary
technology are being united by work that investigates whaffom plane to plane in the multilayered nanostructure. Such
happens when correlated materials are placed into inhom@n approximation should work fine for these inhomogeneous
geneous environments on the nanoscale. This can be accog¥Stéms, since the coordination number remains the same
plished by careful growth of strongly correlated materialsthroughout the devicéand we are working in three dimen-
with molecular beam epitaxy or pulsed laser deposition, or i£/ON9: This is to be contrasted with more conventional ap-
may be an intrinsic property of some strongly correlated sysProaches to tunneling, which assume a single-particle ap-
tems that display either nanoscale phase separation, 'roach and employ a phenomenological potential to describe

. . ' _The barrier regiod. The wave functions, transmission, and
nanoscale inhomogeneity. There are fundamental questio &flection coefficients can be calculated, and then the trans-

about these systems_—what happ_e.ns to the properties of t rt analyzed, as in a Landauer-based approach. In the
system when it has inhomogeneities on the nanoscale al MFT calculations, we determine the potential self-

how does this spatial confinement modify the quantumqngistently(i.e., the self-energyfrom the microscopic pa-
mechanical correlations? rameters of the Hamiltonian, and the potential can vary with
We investigate a special case of a correlated nanostrugne energy of the scattering states. It is not clear that a simple
ture, where we can carefully control the quantum confinephenomenological potential can reproduce the same kind of
ment effects. We take a semi-infinite ballistic-metal lead anthehavior via a conventional tunneling approach.
couple it to another semi-infinite ballistic-metal lead via a \We assume each of the multilayer planes has translational
strongly correlated barrier materigbhich is from one to 80 invariance in the perpendicularandy directions. This al-
atomic planes thick As the barrier is made thinner, the lows us to use a mixed basis, Fourier transforming the two
strongly correlated system is being confined in one spatigberpendicular directions tk, andk,, but keeping the di-
direction between the metallic leads. But the metallic leadsection in real space. Then for each two-dimensional band
induce a proximity effect on the barrier, which can deconfineenergy, we have a quasi-one-dimensional problem to solve,
the correlated system. Indeed, we will see that systems wittvhich has a tridiagonal representation in real space, and can
a single-plane barrier still display upper and lower Mottbe solved with a renormalized perturbation expansitins
bands, but they also have a low-energy low-weight peak tahis mixed-basis representatigimtroduced by Potthoff and
the density of states that arises from the proximity-effectNolting! ) that allows us to solve this problem. By iterating
induced states that are localized near the interfaces of theur many-body equations, we can achieve a self-consistent
leads and the barrier. As the barrier is made thicker, this peagolution.
becomes a dip, which decreases exponentially with the thick- In addition to single-particle properties, we also evaluate
ness. z-axis transport, perpendicular to the multilayers. Thouless
We employ dynamical mean field theofMFT) in this  introduce the idea of using the dwell time within the barrier
work. This allows us to self-consistently calculate the prop-to define a quantum energy scél& ., Which turned out to
erties of the inhomogeneous system, including Friedel-typelescribe the dynamics and transport of both ballistic metal
oscillations in the leads, and the proximity-effect on the bar-and diffusive metal barriers® The concept has been applied
rier. We do not need to make any assumptions about the kindidely to the quasiclassical theory of Josephson junctions as
of transport through this device, be it ballistic, diffusive, tun-well.® If we do not focus on the time spent within the barrier,
neling, or incoherentvia thermal excitations since the but instead try to extract an energy scale from the resistance
DMFT automatically incorporates all kinds of transport of a device, then we can generalize the Thouless energy to
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the case of an insulating barrier, where the transport arised/e let thez direction denote the direction where the system
from either tunneling or incohere(thermally activateglpro-  is allowed to have inhomogeneity. Then our translational in-
cesses. We find that when this energy scale is on the order efriance in the parameters requires tatU; if R;—R; has
the temperature, then we have a crossover from tunneling ta vanishingz component. Similarlyt;=t;:;, if Ri—R; and
incoherent transport. A short communication of this work hasR;—R;, both have a vanishing component, andR;-R;
already appeared. =R;,—R;.. But this requirement is quite modest, and allows
The organization of this paper is as follows: in Sec. Il, wefor many complex situations to be considered.
present a detailed derivation of the formalism and the nu- We denote the planes with a givencomponent by a
merical algorithms used to calculate properties of nanostruagreek label«a, 8,7, ...). Then our requirement on the inter-
tures. In Sec. Ill, we describe the single-particle propertiesaction is thatU, has a definite value for each plane The
focusing on the density of states and the self-energy. In Sedopping matrix can have one valtlefor the hopping within
IV, we generalize the concept of the Thouless energy, whiclhe plane, and different valués,,.; andt,_, , for hopping to
is applied to charge transport in Sec. V. We end with ourthe plane to the right and for hopping to the plane to the left,
conclusions in Sec. VI. respectively. For simplicity, we will only consider nearest-
neighbor hopping here, and we assume the lattice positions
R; all lie on the points of a simple cubic lattigeut we do
Il. FORMALISM AND NUMERICAL ALGORITHMS not have full cubic symmetjy

The Hamiltonian we consider involves a hopping term for Because of the transl_atlonal invariance within each plane,
we can perform a Fourier transform in tlkeandy coordi-

the electrons and an interaction term for the sites within the . .
) Lo X . . hates to the mixed basls, k,, and a (the z component in

barrier region(interactions can be added in the metal if de- real spacg We define the tv)\//o—dimensional band structure

sired to convert the leads from a ballistic metal to a di1‘fusivefor eagh lanar. b '

metal, but we do not do so h@re~or the interaction, we P » Y

employ the Falicov-Kimball mod&which involves an inter- g |

action between the conduction electrons with localized par- ex'(kyky) = = 2t,[cosk, + cosk,]. (2)

ticles (thought of asf-electrons or charged iopsvhen the o _ _

conduction electron hops onto a site occupied by the localThe Green’s function, in real space, is defined by

ized particle. The Falicov-Kimball model has a non-Fermi

liquid ground s_,tate in the metallic regim_e, because the elec- Gij(1=-(T, ci(r)cJ-T(O)>, (3)

trons see static charge scatterers, which always produce a

finite lifetime, so it has no quasiparticle resonance associateg, imaginary timer. The notation(O) denotes the trace

with it, as seen in other strongly correlated models like the]-r exp-BH-uN)O divided by the partition function

Hubbard and periodic Anderson model. It also has a Mott-
. . . Z=Trexpg-B[H-uN]) and the operators are expressed
type metal-insulator transition, that sets in when the correlain the Heisenberg representatiad(r)=exp(qH - uA])O

tion strength is large enough. Our choice of using the ~ ~ ) ;
Falicov-Kimball model is pragmatic, since the DMFT can bexexp( 71~ pN]). The symbolZ, denotes time ordering of

easily solved for this system. We expect the results in th@Perators, with earlier values appearing to the right ayti
insulating phase to resemble other correlated insulatordS the inverse temperatu(qs:,l/T). We will work with the
since the most important property of an insulator is the sizd/atsubara frequency Green's functions, de,fmed for imagi-
of its gap. On the metallic side, the Falicov-Kimball model is M@y frequenciesw,=i7T(2n+1). The Green's function at
good for describing the crossover from ballistic to diffusive €ach Matsubara frequency is determined by a Fourier trans-
transport in dirty metals, but it is unable to describe the coformation

herent quasiparticle formation, with a renormalized Fermi

energy seen in pure systems. We feel it is nevertheless an ) B o

interesting model to consider for examining systems near a Gijliwn) :f dr €“"Gj(7). (4)

Mott transition. We consider spinless electrons here, but spin 0

can be included trivially by introducing a factor of 2 into

some of the results. The Hamiltonian is We also will work with the analytic continuation of the time-

ordered Green’s functions to the real axistarded or ad-
B T i1 1 vanced Green'’s functiohpswith iw,— w+i0*. We use the
H= _2 tjcici+ E Uil cici— S)\WiT5 ) (1) symbolZ to denote a general variable in the complex plane
. ' (although we will mainly be interested in eith&=iw, or
wheret;; is a Hermitian hopping matrixJ; is the Falicov- Z=w+i0%). Finally, we work in the mixed basis described
Kimball interaction, andw, is a classical variable that equals above, where we Fourier transform thendy components
one if there is a localized particle at sitand zero if there is to momentum space, to giv8,s(k,Z), whereR; has az
no localized particle at site(a chemical potentigk is em- ~ component equal te andR; has az component equal t@
ployed to adjust the conduction-electron concentration (k is a two-dimensional wave vecjor
Since we are considering multilayered heterostructures, we With all of this notation worked out, we can write the
assume that the hopping matrix is translationally invarianiequation of motion for the Green’s function in real space,
within each plane, as well as the Falicov-Kimball interaction.which satisfies
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Gj'(2) = (Z+ W& ~2i(D) &) + 1. (5)  8.p=Gup(K,D[Z+ pu~342) ~ &'(K)]+Gpp-1(K,Dtg1p
Now we go to a mixed basis, by Fourier transforming in the +Gopr1(K, Dtgiip. @)
x andy directions to find
G p(K,2) = [Z+ u=34(2) = %K) 8,5+ tuqr1Oarip The equation of motion in Eq7) has a tridiagonal form with
+tya 10015 (6) respect to the spatial componenand hence it can be solved

by employing the renormalized perturbation expansivve
with 2 ,(Z) the local self-energy for plane. Finally, we use illustrate the solution exactly here. The equation witha is
the identityEyGay(Z)G;};(ZF5a,3 to get the starting point different from the equations wit # . The former is solved
for the recursive solution to the problem, directly via

1
Gualk,2) = : )
Gua-1(k,Z Guari(kK,Z
Z+/*L_2a(z)_ Efyd(k) + éa E-I(( Z))ta—la+ G :(ll(( Z)) at+la

and the latter equations can all be set into the form that the left function is equal to the valle., found in the
G k.2t bulk, until we are within 30 planes of the first interfaider
ot LD = = 7 4 =3 n(2) — €9,(K) a ballistic-metal lead®_..(Z)=0]. Then we allow those 30
Gaanl(k,2) planes to be self-consistently determined wiith possibly
Goar1(Ks Dt y1een changing, and we include a similar 30 planes on the right-
Gurn(K,2) , (9 hand side of the last interface, terminating with the bulk

result to the right as well.
for n>0, with a similar result for the recurrence to the right.  In a similar fashion, we define a right function and a

We define the left function recurrence relation to the right, with the right function
Gaa— +1(klz)ta—n+1a—n G - (k Z)t —
La— (k'Z) =- n (10) R...(k,Z)=- aa+tn=-1\" &) La+n-1a+n 13
" Gaan(k,2) arnlkn2) Garn(k,2) (13
and then determine the recurrence relation from (By. and the recurrence relation
ta— | —1ta—n—1a—r'l t t
Lon(K,2)=Z+ pu =3, 1(2) - €9 (k) — -hen=tazi-temn, =7 - ~ 24 (k) = larnarneilarniam
n M n n L y-n-1(k,2) Ratn(K,2) =Z+ =2 410(2) = €44n(K) Romi(K.2)

(11) (14)

We solve the recurrence relation by starting with the resuliye solve the right recurrence relation by starting with the
for L_.., and then iterating Eq11) up ton=1. Of course we  result for R,, and then iterating Eq(14) up to n=1. As
do not actually go out infinitely far in our calculations. We pefore, we determinR., by substitutingR.. into both the left-

assume we have semi-infinite metallic leads, hence we cagnd right-hand sides of E¢L4), which produces a quadratic
determineL_.. by substitutingL_.. into both the left- and equation forR. that is solved by

right-hand sides of Eq(1l1), which produces a quadratic

equation forl _., that is solved by R.(k.2)= Z+p=3.2) - &k

Z+p-3_(2) - (k) 2
2

L_.(k,2)=

+ %\”/[Z +p-3.(2) - Eid(k)]z - 4t020. (15)

1 f d 2 2
* EV[Z+ po 22 - EKF - 4L The sign in Eq(15) is chosen the same way as for E#j2).

(12) In our calculations, we also assume that the right function is
equal to the valudR, found in the bulk, until we are within
The sign in Eq(12) is chosen to yield an imaginary part less 30 planes of the first interfacffor a ballistic-metal lead
than zero forZ lying in the upper half plane, and vice versa %.(Z)=0]. Then we allow those 30 planes to be self-
for Z lying in the lower half plane. IL_,, is real, then we consistently determined witR, possibly changing, and we
choose the root whose magnitude is larger tharithe prod- include a similar 30 planes on the left-hand side of the last
uct of the roots equaltf.,). In our calculations, we assume interface, terminating with the bulk result to the left as well.
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Using the right and left functions, we finally obtain the recurrences in Eqg11) and(14) along with the bulk values

Green'’s function found in Egs.(12) and(15) and a choice for the number of
self-consistently determined planes within the metal leads
G,.(k,Z) = 1 (which we choose to be 30 to the left and the right of the
ae Lo(k,2) +Ry(K,2) = [Z+ -3 4(2) - €(K)]’ barrier interfacesto calculate the local Green’s function at

(16) each plane in the self-consistent region from Ed$) and
(19). Once the local Green’s function is known for each
where we used Eqg11) and (14) in Eq. (8). The local Plane, we theniii) extract the effective medium for each
Green’s function on each plane is then found by summingi:a”e. from Eq.(20), (iv) determine the new local Green's
over the two-dimensional momenta, which can be replaceéHnction from Eq.(21), and(v) calculate the new self-energy

by an integral over the two-dimensional density of state®n €ach plane from Eq22). Then we iterate through steps
(DOS) (il)~(v) until the calculations have converged.

For all of the calculations in this work, we will assume the
hopping matrix is unchanged in the metallic leads and the
Gual2) = f deX’ p?U(€G,(€2,2), (17)  barrier, so alk,,., and allt" are equal td, which we take as
our energy unit. We also work at the particle-hole symmetric
with point of half-filling for the conduction electrons and the lo-
calized electrons. This yields;=1/2 andu=0.
od 2d 1 (€92 There are a number of numerical details that need to be
p=(e,) = 2.2 azJK 1-4/1- (4t)2) (18) discussed in these computations. First, one should note that
“« “ the recurrence relations in Eq41) and(14) always preserve
andK(x) the complete elliptic integral of the first kind. ﬂi the imaginary part oR or L during the recursion. Hence the
varies in the nanostructure, then changing variables to recursion is stable wheR or L is complex. On the other

=/t in Eq. (17) produces hand, when they are real, we find that the large root is stable.
4 Since this is the physical root, the recursion relations are

G. (2) :f de 1 K(l _ /1 —é)G ' e2) a_lways _s;abl_e. _Second, the integrand can have a number of

o _,  2ma? 16/ e singularities in it. When we calculate the Matsubara Green’s

19 functions, the only singularity comes from the logarithmic
(19 singularity in the two-dimensional DOS. We remove that sin-

so that we can take thevariable to run from -4 to 4 for the gularity from the integration by using a midpoint rectangular
integration on every plane, and we just need to introduce thitegration scheme for 055¢| <4, and we change the vari-
corresponding,e substitution(for €2%) into the left and right ~ ables for the regiorie/ <0.5 from € to x*= ¢, which is finite
recurrence relations. In the bulk limit, where we gset, we ~ @sx— 0, and which has a finite slope &s- 0; this allows a
find that the local Green’s function found from E¢7) and ~ Midpoint rectangular integration scheme fef< (0.5° to
(16) reduce to the well-known expressions for the three-accurately determine this second piece of the integral. When
dimensional Green’s functions on a simple cubic latfice, we calculate the real frequency Green's functions, we have
with a hopping parameter the logarithmic singularity, but we also can have a square-
Once we have the local Green’s function on each planeioot singularity at theath plane in the denominator of the
we can perform the DMFT calculation to determine the localintegrand when InZ (w)=0 and |o+u—ReX (w)-¢=2.
self-energy on each plafé® We start with Dyson’s equa- We definea=w+u—-ReZ (w)+2 andb=w+u-ReZ ()

tion, which defines the effective medium for each plane, —2. Then, ifa<-4 or b>4, the only singularity lies at
1 . =0 as before. Whelh <-4, but —-4<a<4, then there is a
Goa(2) =G, (2) +2,(2). (20) singularity ate=a; whena>4, but —4<b<4, then there is
The local Green’s function for thath plane satisfies a singularity ate=b; and when —-4<a, b<4, there are sin-

gularities ata andb. The singularities are easy to transform
away by using sine and hyperbolic cosine substitutions like
e=w+u—-ReX (w)-2sind and e=w+u—Rel (o)
—2 coshd into the respective pieces of the integrands where
with w; equal to the average filling of the localized particles g singularity lies. We simply determine where all possible
[note that this above form is Sl|ght|y different from the Usualsingularities |ie(f0r each p|an)3 set up an appropriate gnd
notation;® because we have made the theory particle-holgor the e variable that takes the different changes of integra-
symmetric by the choice of the interaction in Ef), so that  tion variable into account, and compute the associated
u=0 corresponds to half-filling in the barrier region and in weight functions for the integrations, in order to perform the
the ballistic metal leads Finally, the self-energy is found integration over the two-dimensional DOS. Third, we find
from that when the correlations in the barrier are strong enough
— -1 -1 that we are in the Mott insulator for the bulk material, and
2u(2)= Cool2) = G (D). (22) the barrier is sufficiently thick, then the self-energy develops
The full dynamical mean field theory algorithm can now a sharp structure, where the real part goes through zero over
be stated. We begin byi) making a choice for the self- a small range close te=0, and the imaginary part picks up
energy on each plane. Next, wi) use the left and right a large delta-function-like peak arouno=0. In order to

Gu(2) = (1 -wy) (21)

1 1
+Ww ,
G2 +iU  'Gyl2)-1u

195342-4



DYNAMICAL MEAN-FIELD THEORY FOR STRONGLY... PHYSICAL REVIEW B 70, 195342(2004)

properly pick up this behavior in the self-consistent solu-tinuation of Eq.(24) to the real frequency axis via

tions, we need to use a very fine integration gvie used up iAIT (v)

to one million points for the calculations reported heie Tap(v) = lim Re—2£— (25)
perform the integration over the two-dimensional DOS. Such v=0 v

a fine grid is only needed for frequencies closeste0, but | the spirit of the DMFT, we evaluate the two-particle cor-
one needs to have a fine enough frequency grid to pick  relation function in Eq.(24) by the bare bubble with no
up the sharp peak behavior in the self-enefigg use a step vertex corrections. In homogeneous systems in infinite di-
size of 0.001 when there is a sharp structure in the selfmensions, this procedure is exact, but it is only approximate
energy. For ordinaryw points, we typically used an integra- for our inhomogeneous three-dimensional systamd even
tion grid of 5000 points. Fourth, these equations are easy tfbr inhomogeneous systems in infinite dimensipnever-
parallelize on the real-frequency axis, because the calculaheless, we expect the corrections to be small. Substituting
tions for each value of frequency are completely independeriq. (23) into Eg.(24), evaluating the contractions in terms of
of one another, so we simply use a master-slave approache single-particle Green’s functions, performing the integra-
and send the calculations at different frequencies to each afon over 7 to convert to the Matsubara frequency represen-
the different slaves until all frequencies are calculated. Thigation, and performing a Fourier transform over thkspa-
approach has an almost linear scale up in the parallelizatiotial coordinates, yields the following result after some

speed. straightforward algebra:
In addition to these single-particle properties, we also are eat)2
interested in transport along tlzeaxis (perpendicular to the I, 4(v) = (—) ™ 322 -G (K, i)
. X ap\'Y] A Btlat1\Py
multilayered planes The resistance of the nanostructures m ok

can be calculated by a Kubo-based linear response
formalisnt! (i.e., a current-current correlation functioWve
begin with the current operator at tla¢h plane, + Gppr1(K,iwm)Gopra(K iwm+ivy)

X Gp(K,iwm+iv)

jz:Ejzaa +Gﬁ+la(kaiwm)Ga+lB(kviwm+iVI)
“ — Gga(K, o) Gasipi(Kion +iv)]. (26

icat Now we need to perform the analytic continuation from the
ja=— X (chcpu—cliiica). (23)  imaginary to the real frequency a¥&This is done by first
% i in 2d plane converting the summations over the Matsubara frequencies
into contour integrals that enclose all of the Matsubara fre-
quencies and are multiplied by the Fermi-Dirac distribution
function f(w)=1/[1+exdBw)] which has a pole at each
5 Matsubara frequency. Then the contours are deformed to go
. i . along lines paralle(but just above or just belowthe real
op(im) = Jo d7 €T 1, (D] 15(0), (24 axis, and the real axis shifted byiur. At this point we re-
place f(w—iv) by f(w) and then analytically continugy,
with iy =i#T2l the Bosonic Matsubara frequency and with — v+i0*. The algebra is once again straightforward but
the dc conductivity matrix determined by the analytic con-somewhat tedious. The final result is

This operator sums all of the current flowing from thth
plane to thea+1 plane.
The current-current correlation function is defined to be

1/ eat)?
Haﬂ(v) == ;(%) azz {f(w)[Gaﬁ(kvw + V)Im Gﬁ+la+1(k!w) + Gaﬂ+1(klw + V)Im Gﬁa+l(klw) + Ga+lﬁ(klw + V)
k

X ImGﬁ+la(k!w) - Ga+l,8+1(k!w + V)Im G,Ba(krw)] + f(w + V)[_ G;}+lu+l(kvw)|m Gaﬁ(k!w + V)

+ G*Baﬂ(k,w)lm GypraK, 0 +v) + G,*g+1a(k,w)|m GarapK, 0 +v) = G;;a(k@)'m Garipra(K, 0 + 1)} (27)

The last step is to evaluate the dc conductivity matrix, which becomes

a'aﬁ(O) = zTezathzf de pzd(E) f d(,()(_ %)[Im Gﬁa+l(6,(l))|m Gaﬁ+l(61 (J)) +1Im Gﬁ+la(€1 (.L))Im Ga+lﬁ(61 U))

— 1M Ggy1041(€,0)IM G 4(€, 0) + 1M Gg,(€, 0)IM Gy1p41(€, ) ]. (28)
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The conductivity matrix has the dimensioggha?, which is  calculation(when there is scattering in the leads
the inverse of the resistance unit, divided by two factors of In order to calculate the dc conductivity matrix in Eq.
length, and is the correct unit for the conductivity matftixe  (28), we need to evaluate the off-diagonal components of the
mixed-basis Green’s functioB,,; has dimensions 142). Green'’s functions. This is easy to do using the renormalized
Since the conductivity matrix is not as familiar as the perturbation expansion, and the right and left functions. We
scalar conductivity used for homogeneous problems, we wilfind two recurrence relations
briefly derive how one extracts the resistance of the nano-
structure from the conductivity matrix. The key element that Gupon(€,w) = — Gaa-n+1la-n+1a—n (32
we use is that the current density that flows through each aamm L g-n(€ )
lane is conserved, because charge current can neither ,
(F:)reated nor destroyed in our device?The continuity equationEC?efmed forn>0) and
then says that the current density throughdtie plane | ,, is G otnottorntasn
related to the electric fieldE,, between thegth and +1 Gaatn(€0) == T Ro(cw) (33
plane via (€
(also defined fon> 0). The other off-diagonal Green'’s func-
l,=a 0ap(0)Eg=1, (29 tions are found from the symmetry relatios,,—,=G,-na
A and G ,1n=Gina-
where we set the current density on each plane equal to a The computation of the junction resistance for a given
constant valué. Inverting this relation to determine the elec- temperature is relatively simple to perform. First, one must
tric field gives calculate all of the local self-energies for each plane, using
the algorithm described above. Then, for each frequency
Eg= lz [ (0)]al - (300  one can calculate all of the Green’s functions that enter into
a’, the formula foro,4(0). It is best to evaluate the integral over
for many different temperatures “at the same time” since
e only thing that changes with temperatgwhen at half-
ling, where the chemical potential is fixed and does not
ary with T) is the Fermi factor derivative. Since evaluating
at each frequency is independent of every other frequency,
this algorithm is also “embarrassingly parallel.”

. w
The voltage across the nanostructure is just the sum of thﬁ.]
electric field between each plane, multiplied by the inter—fiI
plane distancqwe assume a constant dielectric constant,
throughout, so we can immediately determine the
resistance-area produ@pecific resistangdrom Ohm'’s law

, Vv i One final comment is in order about the formalism for

Rya®= n =2 [0 (0)]ga- (31) calculating the junction resistance. Namely, how does it re-
ap late to a Landauer approach to the resistance? In the Land-

One needs to pursue a similar type of analysis to examine thuer approachone does not calculate a conductivity matrix,

thermal transport propertigthermopower and thermal resis- but instead determines the transport directly by evaluating

tance, but it is somewhat more complicated, because théhe Green’s functiorG,; where « lies at the left interface

thermal current is not conserved from one plane to anotheand S lies at the right interface. We believe one can show

plane, as is the charge current. We will present results fothat these two approaches are completely equivalent if one

such a calculation elsewhetat half-filling, where we re- uses the same self-energies for the inhomogeneous structure

strict ourselves in this paper, there is no thermopower byo calculate the Green's functions that enter into the transport

particle-hole symmetny calculation. We will examine this relationship in a future

The only mathematical issue associated with this analysiBaper.

is that we have assumed the conductivity matrix is invertible. In @ homogeneougbulk) noninteracting system, we find

In general, this is not true when there is no scattering in théhat the Green’s functions satisfy

metallic leads. In this case, we need to truncate the conduc-

tivity matrix to consider only the block that covers all of the g win(€w) = —!

planes in the barrier and the first metallic plane to the left VA2 = (0 + u - €)?

and to the right of the barrier. This matrix is always invert- 2 3]n
ible, and allows calculations to be performed eagifywe [_ wrpTE VA~ (0t p ¢
were to include a larger matrix, we find that the resistance 2 2

does not increase as we increase the number of planes within (34)

the metallic leads that we include in the conductivity matrix

block that is inverted, at least until we run into precisionwhen e lies within the band[|w+u—€[<2]. Note that
issues for the calculationsOf course, if the metallic leads Im G,4(€, w) is not always negative when+ 3. This occurs
have scattering, there are no numerical issues associated whlecause we are using a mixed basis, and the imaginary part
the matrix inversion(except when the matrix is made too of the Green’s function does not have a definite sign in this
large and the system has approached the bulk limit, see b&asis. We can substitute these Green’s functions into the ex-
low), but we need to decide how far down the metallic leadspression for the conductivity matrix, to evaluate the result for
we will perform the actual measurement, since the voltagéhe bulk. We find the matrix has all of its matrix elements
grows with the thickness of the metallic leads included in theequal to each other, and they assume the value
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(O)—i 2d Zd()z063_e2 (35) lU-:Ilu-aI
Tap™) = ha?J_, €p € "ha?’ 0.2 k- U=2 U=12 i
| U=4 U=16
for the case of half-fillingu=0 (since every matrix element ~ U=6 — — U=20

@
(=]
N
(3]
T
1

is the same, the conductivity matrix is not invertible, but the
resistance can still be calculajedhis result will lead to
precisely the Sharvin contact resistatic® when we con-
vert the conductivity into a resistangéhe resistivity of a
ballistic metal vanishes, but the resistance is nonzero

IIl. SINGLE-PARTICLE PROPERTIES 0 '15 Pra—
We perform our calculations at half-fillingu=0, (c'c;) Frequency

=1/2, andw; =(w;)=1/2). This has a number of advantages.

First, because the chemical potential is the same for the me- FIG. 1. Barrier DOS as a function of the Falicov-Kimball inter-

tallic leads and the barrier, there is no electrochemical forc@ctionU. The different line widths and styles denote differént

that reorganizes the electrons to a screened dipole layer %#lues, as detailed in the legend. Note how the DOS initially

each of the interfaces, instead the filling remains homoge€V0Ives as in the bulk, with the DOS being reduced nead, and

neous throughout the system. Second, the chemical potentigﬂe bandwidth increasing. But as we pass through the Mott transi-

is fixed as a function of temperature, so there is no need th°": We see that the double-peak Mott-Hubbard bands appear, but

perform imaginary-axis calculations to determine the Chemi-lsoooS:Tiieaal(l)(\)lvvar\‘,g{ggpirefgﬁélobﬁg?gﬂz?genear“’:O’ which
cal potential as a function of temperature. We usually calcu- 9 '

late the Matsubara Green's functions anyway, to test the agesistive. This is easiest to see when we consider the local
curacy of the real-axis Green's function, by comparing theDOS within the barrier plane, as plotted in Fig. 1. There we
Matsubara Green’s functions calculated directly with thosesee that the DOS starts to be reduced at the chemical poten-
calculated from the spectral formula via the real-axis DOStial as we increas¥, but there is still substantial DOS at the
(usually the accuracy is better than three decimal points foFermi energy whel = 4.9. In fact, adJ is increased, we see
every Matsubara frequengyThird, we can perform calcula- that the upper and lower Mott-Hubbard bands form, centered
tions of the resistance at all temperatures in parallel, becausg +U/2, but there is significant DOS that remains centered
the chemical potential does not vary with temperatoeeall, at w=0, and it even develops a small peak fdr>10. The
the DOS of the Falicov-Kimball model is temperature inde-origin of, and the size of this peak, can be shown to arise
pendent for the DMFT solutidfi ). Fourth, the particle-hole naturally from the renormalized perturbation theory expres-
symmetry of the DOS allows us to have another check on theions for the Green’s functions, but we do not do so Rére.
accuracy of the calculations because we do not invoke thalle anticipate that these states are localized at the interface,
symmetry in our calculations. Fifth, there is a metal-insulatorand represent the states that an incident electron can tunnel
transition (MIT) in the bulk Falicov-Kimball model on a through to go from one metallic lead to the other in a trans-
cubic lattice whenU=4.%, so the solutions at half-filling port experiment. These results show a number of interesting
include the MIT. For these reasons, we find this case to béatures of the coupling of a Mott insulator to a metallic lead:
the simplest one to consider in a first approach to the inho¢i) the Mott transition remains in the sense that Mott-
mogeneous many-body problem. Hubbard bands continue to form, with their origin clearly
We also reduce the number of parameters in our calculaseen near the MIT(ii) the interface-localized states have a
tions by assuming all of the hopping matrix elements aremetallic characteki.e., a peak aw=0) in the larget re-
equal tot for nearest neighbors. This is by no means necesgime; and(iii) the proximity effect appears to always be
sary, but it allows us to reduce the number of parameters thaictive, and able to create states within the barrier at low
we vary in our calculations, which allows us to focus on theenergy, but the total weight in those states is low, so medium
physical properties with fewer calculations. The hoppingto high energy properties of the Mott insulator phase will
scalet is used as our energy scale. We also include 30 selfremain similar to the bulk.
consistent planes in the metallic leads to the left and to the Next we examine what happens as we increase the barrier
right of our barrier, which is varied between 1 and 80 planeghickness for given values &f. Our focus is on three generic
in our calculations. values of interestU=2, which is a strongly scattering, dif-
The first problem we investigate is the extreme quantunfusive metal;U=4, which is so close to the MIT, that the
limit of having one atomic plane in the barrier of our device. bulk DOS show a significant dip near=0; andU=6, which
We tune the Falicov-Kimball interaction in the one barrieris well within the Mott-insulating phase. We first examine
plane fromU=1 to U=20, which goes from a dirty metal to how the metallic leads are influenced by the presence of the
well into the Mott insulating regime. But the Mott insulating barrier. We set the origin of the variables so thatv=0
phase does not like being confined to a single atomic planeorresponds to the first barrier plagieence planes -1 to =30
and there is a metallic proximity effect, where the metallicrepresent the 30 planes to the left of the barrier, with -1
DOS leaks into the insulator DOS at low energies. The resultlosest to the barrigrIn Fig. 2, we show results fod=2
is that we do not expect the single-plane barrier to be toand five representative planes in the methe device has
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FIG. 2. Lead DOS for alN=5 barrier device withJ=2. The FIG. 4. Lead DOS for ailN=5 barrier device withJ=6. The

different panels show the DOS in the first metal plane to the left ofdifferent panels show the DOS in the first metal plane to the left of
the barrier, in the second, the third, the tenth, and the thirtieth. Notéhe barrier, in the second, the third, the tenth, and the thirtieth. Note
how the system approaches the bulk cubic DOS as it moves furthérow the amplitude of the oscillations is even larger here. A careful
from the interface, as expected. A careful examination of the panelsxamination shows there are also oscillatiomgh the same kind of
shows that the “flat” region withw| <2 shows a half-period oscil- increase in the number of half periods with the distance from the
lation for each unit of distance from the current plane to the inter-interface in the region|w|> 2.

face, but the amplitude shrinks dramatically as we move further o ) . )
from the interface. the oscillations increases with the distance away from the

interface(both for |w| <2 and|w|>2). The source of these
five barrier planes In Fig. 3, we show the same results for oscillations is the Friedel oscillation@ith a wavelength on
U=4 and in Fig. 4, we show the same results fbx6. The the order o_f two Ia_ttlce spacings for half-fillipghat we ex-
first thing to notice is that the DOS is close to that of the bulkP€ct associated with the disturbance of the Fermi sea of the
simple cubic lattice for 30 planes away from the interface,metal by the proximity to the interface.
indicating that our choice of 30 self-consistent planes is rea- There are two interesting questions to ask about these

sonable. Next, note that the amplitude of the oscillationd€sults: how thick does the barrier have to be before the
grows asU increases. Third, the number of half periods in Friedel oscillations become frozen in the metallic leads and

do not change with a thicker barrier, and do we see oscilla-
T T T T T tory behavior in the barrier, where we instead expect there to

0.15 E :

01 E E be exponentially decaying wave functions? We find that the

0.05 F - answer to the first question is that the structure is already
0 N PR I U N B "

L B L B L N N essentially frozen in for a single-plane barrier, and it does not

A, (w)

3 061? ] A E evolve much with the barrier thicknegalthough it does
N . E E . . . . ,
< 005 F 3 show evolution with the interaction strengtihis perhaps
0 +——t—+——+—+++ sheds some light on why non-self-consistent Landauer based
ZOI5F E approaches for transport have been so successful. If one has
<".’ 0%513 ] /w\ 3 a good guess for the semi-infinite lead DOS, then it does not
0 change much as the thickness increases, so that guess will
3 0.15 F 3 work well for all calculations with the same strength of elec-
2 0.1 F 3 tron correlations.
< °'°g N To examine the second question, we plot results for the
So015F 0 T T DOS at a fixed frequencgfour chosen for eachl value) in
i
<

01 E 3 Fig. 5. There are six different thicknesses plotted for ddch
0.05 3 value. The curves all lie on top of each other for the metallic
°_'8'_6'_'4'_'2' (') ' é ’ ,L 6 8 lead planes, indicating that the Friedel oscillation structure is
Frequency frozen in starting aN=1 (and we can read off the oscillation
wavelength to be two lattice spacings, with a sharp decrease
FIG. 3. Lead DOS for aiN=5 barrier device witiJ=4. The  of the amplitude as one moves away from the interfalre
different panels show the DOS in the first metal plane to the left ofthe barrier, we see that there are only oscillations close to the
the barrier, in the second, the third, the tenth, and the thirtieth. Noténterface, then the curves either flatten out or exponentially

how the amplitude of the oscillations increasedJamcreases. decay with thickness. But the curves continue to lie on top of
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FIG. 6. (Color onling False-color plot of the DOS for =1
. \w=e barrier plane device withd=6. The barrier plane is just the lowest
-30-20-10 0 10 20 30 40 plane at the bottom of the figure, while the 30 metallic planes lie on
Plane number o top. Note how the ripples of the Friedel oscillations are most visible
in the central region, where the DOS has a plateau.

CEEEEE
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FIG. 5. DOS at specific values a@f as a function of the plane
position in the device. We plot only the left-hand piece of the plots, The final single-particle property we consider is the
since the right-hand piece is a mirror image of the left-hand pieceimaginary part of the self-energy at the central plane of the
Note that theJ=6 panel is a semilogarithmic plot. The four values barrier at low energy in Fig. 8. In the bulk, the imaginary
of w for U=2 are 0.0, 3.0, 4.0, and 5.0. The barrier thicknesses arpart of the self-energy vanishes within the Mott-Hubbard
N=1, 5, 10, 20, 40, and 80. The four valueswfor U=4 are 0.0, gap, except for a delta function at=0 whose weight can be
2.5, 3.5, and 5.0. The barrier thicknesseshdl, 5, 10, 20,40, and  ysed as a quasiorder parameter for the Mott transition at
80. The four values ob» for U=6 are 0.0, 0.2, 0.4, and 1.0. The hajf-filling (but not away from half-filling®). In the nano-
thicknesses arbl=1, 4, 7, 10, 15, and 20. Note how all curves lie gtr;ctyres, the imaginary part of the self-energy never van-
on top of each other in the metallic lead, indicating the structure iNshes in the bulk gap region, but it can assume very small
the metallic lead is frozen in for aN=1 barrier, and does not values, with a sharp peak, of finite width, developingeat
significantly change with increasing. In the barrier, we only have =0. This peak grows in height and narrows as the barrier is

oscillations at the interface, and then the curves either are flat Wmﬁwade thicker. It is a challenge to try to calculate such a

thicknes(U=2 and 4, or exponentially decreasing or e =6). structure numerically, especially due to the loss of precision
The little tails that stick out for the lowest two frequencies with Y, €sp y P

U=6 show that the middle plane of the barrier does not follow the!! extracting the self-energy from the Dyson equation during

same exponential decay as the other planes do. But the exponentt@f’_53 |teraF|ve algorithm. It requires a fine Qnough frequenqy
the exponential decay is frozen in startinght 1. grid to pick up the narrow structure, and it requires a suffi-

ciently fine integration grid fok, in order to accurately de-

each otherexcept for the middle plane of the barrier for termine the peak value. Note how the self-energy evolves
small w andU=6). These results, once again, show that an{from a relatively broad featureless structure to a very sharply
other of the assumptions of the non-self-consistent Landauepeaked structure as the barrier is made thicker. This kind of a
based approaches, that there is an exponential decay withpgaked self-energy is similar to what is seen in the exact
well-defined decay length in the insulating barrier regionssolution on the hypercubic lattice in infinite dimensions.
holds here as well, but one needs to properly predict th&here the Mott transition is actually to a pseudogap phase,
decay length to perform accurate calculations.

Our final summary of the DOS is included in false color
plots (the color, or gray scale, denoting the height of the
DOS at a given planeo emphasize the spatial location and
amplitudes in the oscillations. Figure 6 shows the results for
N=1 andU=6 and Fig. 7 shows the results with=20 and
U=6 (only one-half of the nanostructure planes are shown
due to the mirror symmetjy The color scal€or gray scalg
needs to use a banded rainbow, with the different colors
(gray scalepseparated by bands of black in order to pick up
the small amplitude oscillations in the background of the
large DOS. Note how the Friedel oscillations are essentially
the same in the two plots, indicating this freezing of the kG, 7. (Color onling False-color plot of the DOS for B=20
oscillations starting aN=1. There are also oscillations vis- parrier plane device withi=6. The barrier planes are the lower 10
ible near the metal band edges, indicating Friedel-type oscilpjanes, while the 30 metallic planes lie on top. Note how the ripples
lations due to the different total bandwidths of the two ma-of the Friedel oscillations agree with those in Fig. 6. In the barrier,
terials joined in the nanostructure. The DOS in the barrier athe DOS decreases rapidly on this linear scale, and shows few os-
low frequency becomes very small very quickly on thesecillations, but one can see some small oscillations near the band
linear scales, but it is nonzelsee Fig. 5. edges in both regions.
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10° p———T——T———1 So the fundamental question we wish to investigate is can
10° i 3 the concept of a Thouless energy be generalized to a strongly
. correlated system, where transport through a nanostructure is

10 either via tunneling or via incoherent thermal excitation. The
—~ 1000 answer is yes, and we do so by first trying to extract an
5%_, 100 energy scale from the resistance of the junction, which is
W able to track the putative thermal dependence of the resis-
E 10g tance when we are in the incoherent thermal transport re-
! 1§ gime. A simple dimensionality argument shows that the form

0.1 i

0.01 Ern= (36)

=3 [ 1 1 1 1 1

-0.75-0.5-0.25 0 0.25 0.5 0.75

Rna22ezf dw[— df/dw]pbu|k(w)Na

Frequency has the the kind of dependence we are looking for. The sym-
bol p, () is the local DOS in the bulk for the material that

FIG. 8. Semilogarithmic plot of the imaginary part of the self- =" " . .
9 P ginary p Sits in the barrier of the nanostructure. If we check the di-

energy on the central plane of the barrier at small frequency for fiv . - .
different thickness barrierd\=1, 4, 7, 10, and 15 Note how the mensions, we see th&, has dimension/e?, and the DOS

imaginary part of the self-energy becomes very small for frequenl’@s dimensions B2, so Er, is an energy[note Eq.(36)
cies close tay=0, but as we approaah=0, a sharp delta-function- COITeCts typographical errors in an earlier warkVhen we
like peak develops that narrows as the barrier is made thicker. It i§Xamine systems where the barrier is a metal, then at low
precisely this structure that is hard to reproduce with numericafemperature the bulk DOS can be replaced by a constant in
calculations. Note that this kind of a self-energy is very similar tothe integral, and we reproduce the known forms for the
what is seen in the hypercubic lattice in infinite dimensions. Thouless energy for ballisti€Er,~C/Na) and diffusive
(Er,=~C’/[Na]?) electrons because the resistance is indepen-
with the DOS vanishing only at the chemical potential, butdent of the thickness for a ballistic metal barrier and it grows
there is a region of exponentially small DOS in the “gaplinearly with the th|pl§ness for a diffusive metal barrier. Thls
region.” The sharp features in the self-energy led to a signifilmethod of generalizing the Thouless energy also avoids us
cant enhancement of the low-temperature thermopower of{aving to try to answer the question of how long does it take
the hypercubic lattice when the system was doped off ofin electron to tunnel from the left to the right lead, and it
half-filling® (andw, changed to produce an insulgtoit is reprngces all of the known forms for t.he Thouless energy in
unclear at this point whether such behavior could lead td unifying formula that does not require us to even use the

enhancements in the nanostructureS, even though the Seﬁjnstein relation to extract a diffusion constant or to deter-
energy has similar properties. mine the Fermi velocity for an anisotropic Fermi surfaire

the ballistic casgp

We plot the results for this Thouless energy as a function
of thickness in Fig. 9 folJ=4. In panel(a), we multiply Ey,

It is important to try to bring semiclassical ideas of trans-by the square of the lengtt=Na of the barrier. The different
port into transport in nanostructures, to see whether thoseurves correspond to different temperatures. If the Thouless
concepts have useful quantum analogues. Thouless was theergy went exactly lik€’ /L2, then all of the curves would
first to investigate such ideas for diffusive metal barrfets. be straight lines, with a temperature-dependent vau@).

He considered the idea of a dwell time in the barrier for anBut we see some curvature for small barrier thicknesses. This
electron that tries to travel through the barrier. If we assumearises mainly from the fact that in addition to the diffusive
the electron takes a random walk through the barrier, then theontribution to the resistance, there is a contact resistance, so
time it spends inside the barrier is proportional to the squaréor thin barriers, we do not have a purel®/behavior. Note,

of the thickness of the barrigwith the proportionality being however, that the Thouless energy has little temperature de-
related to the diffusion constgntSince one can extract the pendence at low temperature, as expected. In pémeive
diffusion constant, via an Einstein relation, from the junctionplot the curves on a semilogarithmic plot, so one can see
resistance, Thouless could construct a quantum-mechanicabw small the Thouless energy becomes for thicker junc-
energy#/tyyen from these classical ideas. It turns out thattions.

this energy scale plays a significant role in determining the The Thouless energy is plotted versus temperature on a
quantum dynamics of many different kinds of nanostruc-log-log plot for U=6, which corresponds to a Mott-
tures. For example, it can be easily generalized to take intmsulating barrier with a small correlation-induced gap. The
account ballistic metals, whetg,e;=Na/vg for a barrier of  dashed line indicates wheker,=T, which is an important
thicknessNa, with vg the Fermi velocity. The Thouless en- crossover point for dynamics, as we will see below. Note that
ergy appears to be the critical quantum energy scale thdhe temperature dependence is significant in an insulator, be-
determines the dynamics through weakly correlated nanocause the integral in the denominator of E86) has strong
structures; its success in the theory of Josephson junctions iemperature dependence in the insulator, but the resistance
particularly noteworthy. does not in the tunneling regime at low temperature. If we

IV. GENERALIZED THOULESS ENERGY
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Thickness FIG. 10. Thouless energy forld=6 (Mott-insulating barrier as
a function of temperature on a log-log plot. The different curves

FlGi 9. Thouless energy forlazz_l (diffusive, but very _strongly correspond to different thicknesses of the barrier, ranging fiom
scattering metalbarrier as a function of the barrier thicknelss =1 for the top curve tN=2, 3, 4, 5, 7, 10, 15, and 20 as we move

=Na The differ_eqt curves correspond to different temperatures. Th%lown the plot. Note how the Thouless energy picks up dramatic
top panel multiplies the Thouless energy I5yto try to isolate the temperature dependence here. The dashed line is the curve where

prefactor for the diffusive transport, while the bottom panel pIOtSETh=T. We find that when the Thouless energy equals the tempera-

the Thouless energy on a semilogarithmic plot. Note thett the temfure, interesting effects occisee below.
perature dependence of the constant, seen for thick barriers in panel

(a), arises from the fact that the=4 DOS has significant low- ok we were not successful in examinitg=6 barriers
energy structure, because there is a dip that develops near tl?ﬁicker thanN=20

chemical potential, so the temperature dependence is both stronger We plot the resistance-area product in Fig. 11 for
than expected for normal metals, and anomalous because many, 01 and four different) values:U=2. a diffusi\}e metal

more states are involved dsis increased, i.e., it behaves more like -

an insulator. near t_he Ioffe-RegeI limit of a mean free pa’;h on the order of
a lattice spacing;U=4, a strongly scattering, anomalous
metal, that has a strong dip in the DOS near the chemical

used the Thouless energy to determine the tunneling time Vigotential; U=5, a Mott insulator that is nearly critical; and
twnne=7/Etr, We would find tunneling times rapidly ap-

proaching zero a3 — 0. We will not comment further here 1013 T T T T T
as to whether there is any substance to using such results to
describe the quantum dynamics of the tunneling process. In-
stead we simply want to conclude that the concept of the
Thouless energy can be generalized to strongly correlated
systems, and we will see below that the crossover point
whereE,=~ T has important physical interpretations that will

be developed in the next section. Finally, the generalization
of the Thouless energy to correlated systems changes the
idea of a single energy scale being associated with the trans-
port, since now the energy scale develops strong temperature
dependence. If a single number is desired, then we would
propose to use the energy scale where the Thouless energy is 0 30 o
equal to the temperature, indicated by the points of intersec- Thickness

tion of the solid lines with the dashed curves in Fig. 10.

FIG. 11. Resistance-area product for nanostructures Writl2,
4, 5, and 6, and various thicknesses. Pd&agls a semilogarithmic
plot, while panel(b) is a linear plot. The temperature 75=0.01 in
V. CHARGE TRANSPORT both panels. Note how the correlated insuldtdr6) has an expo-

. . tial th with thick ted f t li
The dc resistance is a low-energy property of the nanoy oo 9rowHm Wi ICKNESS as expected 1or a unnefing process,

. . . . but it turns over at the thickest junction, indicating a crossover to
structure, and so it requires the results of the smgle-partlclﬁ1e incoherent transport regime. Thi5 data, which is close to

pmpe.rt_'es to be dEte'fm'ned, accur_ately at low energy. This Ithe critical point for a MIT, has neither linear, nor exponential
not difficult for metallic barriers with any degree of scatter- g o\th of its resistance-area product. The metallic case=2 and

ing, as long as the numerical subtleties discussed above ali¢have perfect linear scaling of the resistance with current, with a
taken into account in the analysis, but it does create problemsonzero intercept corresponding to the contact resistance. This may
for thick Mott insulators. We need to be able to properly pe surprising folU=4, because it is so strongly scatterifwjth a
determine the structure seen in Fig. 8 as the barrier is mad@ean free path much less than a lattice spaciihat one would not
thicker, and this can exhaust the numerical resources, or thRink a semiclassical approach should apply there. The constant
numerical precision available for a given calculation. For oursatisfieso,=2e?/ha?.
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W T T T ] temperatures, so this barrier is always ohmic in nature. But it

i has quite anomalous temperature dependence, looking like
an insulator, whose resistance is reduced as the temperature
increases. In panégb), we see an exponential dependence of
R,a’ versusL at low temperature, marked by the equidistant
step increases @,a” as the thickness increasgscall this is

a log-log ploy. The temperature dependence is also weak in
this region, indicated by the flatness of the curves. Hence the
system is in the tunneling regime at low temperature.TAs

0 0.2 04 06 08 1 rises, there is a relatively sharp crossover region, wRgaé
Temperature begins to pick up strongexponentially activatedT depen-
dence, andR,a® grows linearly withL. This is the incoherent
}g}; “AMAENE AL AR “ohmic” regime for the transport. The solid dots represent
103{ 20\ (b) the resistance-area product at the Thouless energy, deter-
100" mined by finding the temperature whe#g,=T from Fig. 10,
o100 f ¥ and marking those points on the curves in pagl A
5 108 !-'l'mmlm'- . . . .
5 107 E R dashed line guide to the eye is drawn through these points.
c 6 f Inooherent (bulk) Troneport .
14 }gs N One can clearly see that the point where the Thouless energy
104 § DN equals the temperature determines the crossover from tunnel-
}8: 4 o= ing to incoherent transport. Surprisingly, this crossover oc-
10' f—— - | curs at a lower temperature for a thicker barrier. This occurs,
0.01 0.1 1 because the tunneling resistance is higher for a thicker bar-
Temperature rier. As T increases, the ohmic resistance, determined by

multiplying the temperature-dependent bulk resistivity by the
FIG. 12. Resistance-area product for nanostructures @t/ thickness and dividing by the area, will decrease. Once it is
=4 and(b) U=6 as a function of temperatujpanel(a) is on a  essentially equal to the tunneling resistance, there will be a
linear scale, and pané) is a log-log plo}. In panel(@ we include  crossover from tunneling, which provides a “quantum short”
results forN=1, 2, (lowest two curve 5, 10, 15, 20, 40, 60, and  5crgss the junction for oW, to “ohmic” (incoherent ther-

80. Note how at each temperature there is a linear dependence mally activated transport. This must occur at a lower tem-

the resstance-area.prodluct with the thickness of the junction. Not erature for more resistive junctions, and hence the thicker
further, that these junctions have anomalous temperature depe

) > . inctions have the crossover before the thinner junctions.
dence for a metajthey actually look insulating in their depen- Note that the temperature scale for this crossover does not
dencg. In panel(b), we show the results fod =6 with N=1-10, P

15, and 20. Note at low temperature we have tunneling, as th ppear to hav_e any sim_plg .relation to the energy gap O.f the
resistance-area product is weakly dependent on temperature, a Ik mat.enal, instead ',t is inimately rglated to the Qynamlcal
the steps are equally spaced as a function of thickness, indicatir! formation encoded in the generalizégy, found in Eq.

exponential dependence on the thickness. At higher temperatures;™/- . .
there is a crossover to the incoherent transport regime, with the We do not consider thermal transport there, since the ther-

resistance-area product picking up a strdngependence, and scal- Mopower vanishes for this particle-hole symmetric case and
ing linearly with the thickness. The dotted line that connects thethe thermal resistance is not as interesting in systems with
solid dots is a plot of the resistance-area value at the temperatudanishing thermopower.
whereEr,=T which determines the crossover.

VI. CONCLUSIONS

U=6, a Mott insulator with a small correlation-induced gap. In this contribution we worked with a generalization of
In panel(a), we have a semilogarithmic plot, which is useful DMFT to inhomogeneous systems to calculate the self-
for picking out tunneling behavior via an exponential in- consistent many-body solutions for multilayered nanostruc-
crease of the resistance with thickness. This is clearly seetures that have barriers that can be tuned to go through the
for the Mott insulator withU=6, with the beginnings of a Mott transition. We developed the computational formalism
crossover occurring nedt=20, but the near-critical insula- thoroughly(based on the algorithm of Potthoff and Noltjng

tor at U=5 does not grow exponentially, nor does it grow and although we applied it only to the Falicov-Kimball
linearly [see panelb)]. The data forU=2 andU=4, both  model, it is obvious that one can trivially add mean-field-like
show linear increases with thickness, with a nonzero interinteractions such as Zeeman splitting for magnetic systems,
cept on they axis denoting the nonzero contact resistanceor long-range Coulomb interactions for systems with mis-
with the metallic leads. It is surprising that this linear matched chemical potentials. In addition, one can invoke
“ohmic” scaling holds for systems that are so strongly scatwhatever impurity solver desired for the local DMFT prob-
tering, that their mean free path is much less than one latticeem on each plane, which extracts a new self-energy from the

spacing. current local Green’s function. We studied both the single-
Our final figure plots the resistance-area product versuparticle properties and the charge transport.
temperature fofa) U=4 and(b) U=6 (Fig. 12. In panel(a), There are a number of interesting results that came out of

we can infer a linear dependence Rfa? versusL for all  this analysis. First, we found that as the strength of the cor-
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relations increases in the barrier, there is a stronger feedbadf course, the many-body theory is the only way to deter-
effect on the Friedel-type oscillations that appear in the memine the precise structure needed via its self-consistent so-
tallic leads, but those oscillations vary little with the thick- lution (i.e., it requires no fitting
ness of the barrier for a fixed interaction strength. Second, There are a number of important effects that we have not
there are few oscillations inside the barrier except close tdliscussed here, which play roles in the transport through
the interface with the metallic leads, but the behavior in thehanostructures. We did not attempt to include them in this
barrier, of either an exponential decay, or of a constant DOSjrst, simplest problem that we tackled. The first one is the
gets frozen in for a relatively thin barrier, and the DOSissue of charge reorganization around the interface. If the
changes little with increasing the thickness of the barrierchemical potentials of the leads and the barriers are different,
except when there is exponential decay which will alwayselectrons will spill from one plane to another until a screened
decrease within the correlation-induced gap. Third, the Mottlipole layer is formed, and a constant electrochemical poten-
insulating barrier develops a narrow peaklike structure in thédial is found throughout the devi¢8.Such effects can have
imaginary part of the self-energy that approaches the bulklramatic results if one or more of the materials is a corre-
delta function result. This narrow and tall peak is difficult to lated insulator, since the inhomogeneous doping of the sys-
determine accurately with the numerics and limits the abilitytem can transform part of it from insulating to metallic. This
to study thick insulating barriers. Fourth, we showed how tois believed to occur in grain boundaries in high temperature
generalize the concept of a Thouless energy to become superconducting tapes and wifésand in insulator-based
function of T for a strongly correlated Mott insulator. Our hanostructure$2* Second, calculations should be per-
unifying form for the Thouless energy includes the results fofformed off of half-filling, where the thermal evolution of the
both the ballistic and diffusive metals as well. We identified chemical potential, will likely undergo some temperature de-
an energy scale that describes the crossover from tunneligendence so the charge rearrangement can vary with tem-
to incoherent transport in these nanostructures; it correperature in the system. Third, we should calculate the ther-
sponds toEr,=T. This energy scale is quite useful in other mal transport effects. Since these calculations require
areas such as in the theory of Josephson junctions, whigparticle-hole asymmetry, we will have the chemical potential
will be presented elsewhere. Sixth, we analyzed the resigvolution and the charge reorganizations to deal with as well.
tance of these devices and found interesting behavior, includ=ourth, one can include ordered phase effects at the mean-
ing anomalous metallic behavigbut no tunneling for a  field level easily, as in a superconductor for a Josephson
strongly scattering metal, and the crossover from tunnelingunction?* or in a ferromagnet for a spintronics device. Fifth,
to ohmic transport for insulating barriers. it will be useful to determine the capacitance of a nanostruc-
This work also shed light on other approaches to transpotture, since the capacitance is often important in determining
through multilayered structures like the Landauer-based aghe switching speed of a device; it can be calculated with a
proaches. Usually these are non-self-consistent techniquédisear-response formalism as well. Finally, we also should
that approach the problem from the point of view of trans-look into nonequilibrium effects, especially the nonlinear re-
mission and reflection of Bloch waves moving through thesponse of a current-voltage curve. Itis our plan to investigate
device. We found that because the structure in the leads fsese complications in the future.
frozen in beginning witlN=1 and because the exponential
decay lengths are also determined froda 1, if one knew
those results and plugged them into the Landauer approach, The author would like to thank V. Zldtifor useful discus-
one should be able to calculate accurate properties; i.e., tr@ons. The author acknowledges support from the National
self-consistency is needed for each nanostructure, but th&cience Foundation under Grant No. DMR-0210717 and the
self-consistency hardly changes with the thickness of the ba®ffice of Naval Research under Grant No. NO0014-99-1-
rier. Hence a phenomenological approach that adjusts th@328. Supercomputer time was provided by the Arctic Re-
properties of the barrier height to produce the required begion Supercomputer Center and by the Mississippi Region
havior, may work well, even for strongly correlated systems;Supercomputer Center ERDC.
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