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A model calculation of the phase diagram for the isostructural insulator-metal phase transition of
nickel iodide is presented. The system is modeled by the Falicov-Kimball Hamiltonian with the calcu-
lated band structure of Nil, and (Ising) spin-spin interactions, but neglects all hybridization effects be-
tween nickel 3d and iodine 5p bands. Many-body interactions and spin superexchange are both treated
in mean-field theory. The results include second-order antiferromagnetic-paramagnetic insulator transi-
tions, first-order insulator-metal transitions, and a (as yet unobserved and probably unobservable) classi-
cal critical point. The calculated phase diagram and transport properties agree well with the recent ex-

perimental results.

Nickel iodide (Nil,) is a transition-metal halide that
has been shown to exhibit an isostructural insulator-
metal transition' (with a simultaneous collapse of antifer-
romagnetic order) upon the application of hydrostatic
pressure. The experiments! utilize Mssbauer spectros-
copy (of the isotope !%I), conductivity, and x-ray-
diffraction measurements within a diamond-anvil cell to
observe this phase transition.

Nickel iodide crystallizes in the CdCl, (R3m) struc-
ture, which consists of alternating hexagonal planes of
nickel and iodine. The structure can be viewed as a face-
centered-cubic lattice of I~ ions with every other close-
packed (111) plane intercalated by a hexagonal plane of
Ni%? ions. The triple-layer neutral sandwich I -Ni2¥.I~
compresses by approximately 2.5% along the ¢ axis and
forms a layered structure of weakly interacting
sandwiches, The hexagonal Ilattice constants? are
a=3.922 A and ¢=19.808 A. At low temperatures
(T'<60 K), nickel iodide undergoes a hexagonal-
monoclinic distortion? that nonuniformly changes the
planar lattice constants by an additional 0.25%.

Each Ni** jon contains a local (S =1) spin magnetic
moment. At low temperatures these moments order? as
an incommensurable helix of type 1 which is very nearly
approximated by ferromagnetic planes of Ni?™ (with the
spins oriented at an angle of 55° to the ¢ axis) that are or-
dered antiferromagnetically along the ¢ axis. The Néel
temperature! is 75 K at ambient pressure and increases
by over four orders of magnitude to 310 X at the metalli-
zation pressure of 19 GPa.

Band-structure calculations® (using the intersecting
spheres approach) have been performed on the isostruc-
tural nickel dihalides NiCl, and NiBr,. The crystal struc-
ture is taken to be the “ideal” structure in which the
iodine-iodine interplanar spacing is not compressed by
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the intercalated Ni?" plane. The calculated energy bands
contain the following features: (i) the five nickel 3d bands
break into groups of three bands and two bands with
bandwidths of less than 0.5 eV; (ii) the Fermi level E lies
within the upper group of two 3d bands; (iii) the upper-
most three filled halogen p bands lie 2.0 eV (1.5 eV) below
Er and have a bandwidth of 2.0 eV (3.0 eV) for NiCl,
(NiBr,); (iv) two of the halogen p bands have, close to the
top, cylindrical constant-energy surfaces with very little
dispersion in the z direction.

The band-structure trend is to reduce the energy sepa-
ration of the uppermost halogen p bands from the Fermi
level and to increase the bandwidth of these p bands as
the atomic size of the halogen increases (or equivalently
as pressure is applied). In this manner, nickel iodide (at
ambient pressure) can be predicted to have a Fermi level
lying within a group of two nickel 34 bands and to have
iodine 5p bands that lie approximately 1.0 eV below Ep
with a bandwidth of approximately 4.0 eV. Band theory
predicts that nickel iodide is a metal.

Many-body interactions* modify the one-electron pic-
ture for the electrons in the nickel 3d bands. The Ni**
ion is described, to a first approximation, by a spin-triplet
3d® configuration of atomic (localized) states. It is ener-
getically unfavorable to form any atomic configuration
with fluctuating charges (such as 3d7<»3d?) so that the
3d electrons are frozen at the nickel sites and do not con-
duct.

The Falicov-Kimball model® was introduced 20 years
ago to describe isostructural insulator-metal transitions.
The model includes both uncorrelated conduction elec-
trons (or holes) and strongly correlated localized elec-
trons with the insulator-metal transition occurring when
the localized electrons move into the conduction bands.
The Hamiltonian is
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H= 2 ev(k)a I'koravka +8d zdiT

vwk,o i,o vi,o,0

where a Ik,, creates a Bloch hole in band v with wave vec-
tor k and spin o, g,(k) i 1s the (hole) band structure for the
vth conduction band d,,, creates a d electron in a local-
ized (atomic) orbital in the ith unit cell, g, is the energy
to create a d electron, c:r,w =3, exp(—k-R;)a vk(,/ N
creates a hole in a Wannier orbital locallzed about site
R,~, and G is the (excitonic) electron-hole interaction ener-
gy.® The last term in (1) is a Heisenberg spin-exchange
interaction term for the localized sp1ns S; (that are
present at the atomic sites 7 whenever’ (Ead,adw) 0)
and Jj; is the interaction energy between two localized
spins at sites i/ and j. The Hilbert space is restricted to
the subspace of states that include no doubly occupied lo-
calized electrons; i.e., {3 ,d; d;,? <1. Charge neutrality
requires that the number of conduction holes
Sk,08 I,w %kg is equal to the number of localized elec-
trons 3,; ,d;,d;,- The model is mapped onto the case of
Nil, as follows.

(i) The vacuum state corresponds to the d®
configuration of Ni2t jons with the interactions Ji;
chosen so that the (S =1) spins are oriented into fer-
romagnetic planes that are ordered antiferromagnetically.

(ii) The band structure € (k) corresponds to the three
uppermost iodine 5p bands w1th a density of states p(E)
described by?®

VE

3.72

= {(1/6.63)cos—1(1—10E) 0<E<0.2

(r/6.63) 0.25<E<6.5, (2)

for 0 E £6.5, where all energies are measured in eV, the
density of states is normalized to include six electron
|
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states per unit cell, and the energy E is measured from
the bottom of the hole conduction band (the minimal
hole excitation energy is g, ).

(iii) The minimal energy to create an electron-hole pair,
A=g, +¢4, is varied to mimic the effect of the hydrostat-
ic pressure on the system.

This model only allows fluctuations between electronic
configurations of the form 3d® and 3d°L where L refers
to a ligand hole. All hybridization effects between the
nickel 3d and the iodine 5p bands have also been neglect-
ed.

Exact treatment of the many-body Hamiltonian (1) is
complicated by the presence of both the Falicov-Kimball
interaction term and the Heisenberg spin-exchange in-
teraction term. The thermodynamics of a system
governed by the Hamiltonian (1) is treated here in mean-
field theory only, neglecting all fluctuations. The
localized-electron number density (per unit cell) is defined
to be v and is constrained to equal the conduction-hole
density

v= f_°° F(E)p(E)E , 3)

where f(E) is the occupation of the hole states with ener-
gy E+g, at a temperature T. The quantum-mechanical
(S=1) spins are approximated by Ising (S =1) spins
with a Weiss molecular field. The sublattice magnetiza-
tion (for the antiferromagnetic state) is defined to be
M=guzS(1—wv)x, with up the Bohr magneton, S the lo-
calized (Ising) spin, and 0 <x =<1 the dimensionless sub-
lattice magnetization.
The trial free energy (per unit cell) becomes

T[1—f(E)]1n[1—f(E)}p( E)AE

+egvtkp T[vinv-+(1—v) In(1—v)]—k; TvIn2—Gv [ * f(E)p(E)dE

sinh[(S+1)BJS(1—v)x]

+1IS(1—v)x2—kp T(1—v

which includes the free energy of the conduction holes,
the free energy of the localized electrons, the Falicov-
Kimball interaction energy, the free energy of the local-
ized (Ising) spins, and the Lagrange multiplier term (with
Lagrange multiplier A) to ensure constraint (3). The
magnetic interaction J is an effective magnetic-
interaction term {(that determines the Néel temperature)
and the spin S is set to 1 for Nil,. Performing the minim-
ization of the trial free energy (4) with respect to f(E), v,
x, and A yield

— sinh[BJ(1—v)x] o
* T cosh[BI1—w)x ] +1 T Ga)

sinh[ ;BJS(1—v)x ]

A [v—— [ rEpmaE], )

|
FE)=(1+[v/(1—v)]{ cosh[BJ (1 —v)x ]+ 1]}
X exp[B(E+A—2Gv)])"!, (5b)

v= [ _wwf(E)p(E)dE ) ) (5¢)
Fr=Gv*+1J(1—v)*x?
+kpTIn((1 —v)/{ZCosh[BJ( 1—vix]+1})
+kpT f n[1—f(E)]p(E)E , (5d)

where B=1/k; T
For general values of the temperature there are multi-
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ple solutions to the transcendental equations (5a)-(5c)
and the true solution corresponds to the absolute
minimum of the free energy (5d). These solutions are
characterized by their limiting behavior as T—0: anti-
ferromagnetic insulators (x —1,v—0), paramagnetic in-
sulators (x =0,v—0), paramagnetic metals (x =0,v—1),
and nonphysical solutions (x =0,v—Vgno1.s). The non-
physical solutions satisfy 0 <v,q,,ny <1 and always have
a corresponding free energy (5d) that is larger than all of
the other solutions (for all values of the temperature).

There is always at least one paramagnetic (x =0) solu-
tion to the transcendental equations (5a)—(5c). An anti-
ferromagnetic insulator solution occurs whenever the
temperature T satisfies

kpT <2J[1—wT)] ©6)

and the Néel temperature Ty is defined by the largest
temperature that satisfies (6). The antiferromagnetic
solution always has a lower free energy (Fy— —1J) than
the paramagnetic insulator (¥;—-0) in the limit of van-
ishing temperature (7—0). The paramagnetic metal
solution and the nonphysical solution are present (at zero
temperature) whenever the derivative of the internal en-
ergy with respect to the electron concentration is less
than zero,

(3F(T—0)/3v), = z—0 <0 (72)
or
E,+A—2G <0, (7b)

where E,=1.509 eV is the Fermi level for one conduc-
tion hole per unit cell. The paramagnetic metal has the
minimal free energy whenever the metallic free energy
lies below —1J as T—0, or

E
P+ [ 'Ep(E)MdE +A—G <0, (8)

where fflEp(E)dE=0. 836 85 for the Nil, density of
states (2).

As the temperature is increased from zero, the number
of solutions to the transcendental equations (5a)—(5c) de-
creases:’ as T is increased beyond the Néel temperature
Ty the antiferromagnetic-insulator solution disappears
undergoing a  second-order iransition to the
paramagnetic-insulator phase at Ty; as T is increased
beyond a temperature (denoted by T';_, ;) the nonphysical
solution joins either the insulating solution or the metal-
lic solution and both disappear leaving only one
paramagnetic solution to the transcendental equations
(5a)—(5¢).

The parameters are chosen to be

G=0.93 eV ; 9)
A is a function of pressure such that

A=1.000 eV, P=0 GPa,

A=0.075 eV, P=19 GPa;

(10)

and the effective magnetic interaction J is chosen to be a
linear function of A,

J(A)=(487—376A)/11840 , (11)

which yields a Néel temperature of 75 K at ambient pres-
sure and 310 K at 19 GPa. The parameter G produces an
insulator-metal transition at A=0.08 eV with a
conduction-hole concentration that closely resembles the
resistivity curves of Ref. 1 at 300 K.

The calculated phase diagram for Nil, is found in Fig.
1. The horizontal axis corresponds to the “pressure” axis
and plots the parameter A in eV while the vertical axis
corresponds to the temperature. The shaded region of
Fig. 1 is the antiferromagnetic-insulator phase. The
chain-dotted line is a second-order tranmsition line from
the antiferromagnetic insulator to the paramagnetic insu-
lator and marks the Néel temperature as a function of
“pressure.” The white region above the chain-dotted line
and to the left of the solid line is the paramagnetic-
insulator phase. The solid line marks the first-order
phase transition from an insulator to a paramagnetic
metal. This insulator-metal transition line ends at a clas-
sical critical point at T,~1400 K and A ~0.03 eV
denoted by the open circle. Above the critical point there
is no clear demarcation between a paramagnetic insulator
and a metal. The dashed line in Fig. 1 indicates where
the paramagnetic insulator-metal transition would occur
in the absence of any magnetic order. Finally, the region
below the dotted line is the region where there are three
paramagnetic solutions to Egs. (5a)—(5¢) and the region
above the dotted line has only one solution.

The insulator-metal transition line is very nearly verti-
cal, but the slight curvature does allow the system to
have a small range of A (a fixed pressure range) where
there is a change from an antiferromagnetic insulator at
low T to a metal at moderate T and then to a paramag-
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FIG. 1. Calculated phase diagram for nickel iodide (Nil).
The horizontal axis approximately measures the pressure and
the vertical axis measures the temperature. The shaded region
corresponds to an antiferromagnetic insulator. The chain-
dotted line is the second-order transition line from an antiferro-
magnetic insulator to a paramagnetic insulator. The solid line is
the first-order insulator-metal transition line. The dotted line
marks the temperature T;_,; where the number of paramagnet-
ic solutions to the transcendental equations (5a)—(5c) changes
from three to one. Note the appearance of a classical critical
point at T, ~ 1400 K and A, ~0.03 eV.
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FIG. 2. Logarithm of the reciprocal conduction-hole concen-
tration at a temperature of 300 K. Note that the reciprocal hole
concentration has an exponential dependence on A and a jump
of two orders of magnitude at the insulator-metal transition.
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netic insulator at high T. The calculated critical point
may not be physically accessible to the system. Nickel
jodide decomposes at a temperature’ of approximately
1000 K at ambient pressure. If this decomposition tem-
perature increases fast enough with pressure, then Nil,
may be another system with an observable classical criti-
cal point (similar® to the a-y phase transition of cerium
and the alloys of vanadium chromium oxide).

The logarithm of the reciprocal conduction-hole con-
centration [log;,(1/v)] is plotted in Fig. 2 as a function
of A (pressure) at fixed temperature (77=300 K). This is
the simplest approximation to the resistivity of Nil, as a
function of pressure. The “resistivity’’ curve is almost ex-
ponential in A up to the point of the first-order metal-
insulator transition, where it decreases discontinuously
by two orders of magnitude. The slope of the logarithm
of the “resistivity” and the magnitude of the jump agree
quite well with the experimental results.!

At low temperature (T =~4 K) the sublattice magneti-
zation jumps discontinuously from 1 to O at the first-
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order phase transition between the antiferromagnetic in-
sulator and the metallic phase. The curvature that is
present in the experimental data! is most likely due to the
hybridization between nickel 3d and iodine 5p bands (that
have been neglected here). The effect of hybridization on
a simpler model® has shown this curvature.

In summary, a simple model of isostructural insulator-
metal transitions has been applied to nickel iodine. The
calculated phase diagram and resistivity curves agree
quite well with the experimental data' and show the ex-
istence of a classical critical point. Several approxima-
tions have gone into this model calculation and they are
summarized here.

(i) The effect of hybridization has been neglected. In-
clusion of hybridization effects tends to “smooth out” the
first-order phase transitions as illustrated in Ref. 9 for a
simpler model.

(ii) The quantum-mechanical interactions of the (S =1)
spins have been completely neglected. This is known to
be a poor approximation for magnetic properties, but the
change in the free energy arising from a more accurate
treatment of the spins is much smaller than the electronic
contributions and should not change the qualitative be-
havior described above.

(iii) Many-body corrections beyond mean-field theory
for both the Falicov-Kimball interaction and the magnet-
ic interaction should produce a much more accurate
phase diagram.

(iv) A more accurate calculation of the transport prop-
erties that include resonance scattering of the conduction
holes with the localized electronic states could produce a
more realistic resistivity curve (rather than assuming that
the resistivity was inversely proportional to the carrier
concentration).
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