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Dynamical mean-field theory is generalized to solve the nonequilibrium Keldysh boundary problem: a
system is started in equilibrium at a temperature 7=0.1, a uniform electric field is turned on at =0, and the
system is monitored as it approaches the steady state. The focus here is on the Bloch oscillations of the current
and how they decay after their initial appearance near r=0. The system is evolved out to the longest time
allowed by our computational resources—in most cases we are unable to reach the steady state. The strongly
correlated material is modeled by the spinless Falicov-Kimball model at half-filling on a hypercubic lattice in
d=o dimensions, which has a Mott-like metal-insulator transition at U=v2. The computational algorithm
employed is highly efficient, parallelizes well, and scales to thousands of processors. For strong fields, we find
beats develop with a period of 277/ U, while for strong interactions, the Bloch oscillations are sharply damped

and become quite irregular in time.
DOI: 10.1103/PhysRevB.77.075109

I. INTRODUCTION

Dynamical mean-field theory (DMFT) was introduced' in
1989 as a new technique to solve the many-body problem.
Originally, DMFT was used to find the charge-density-wave
transition temperature of the spinless Falicov-Kimball
model® at half-filling. Since then, it has been employed to
solve nearly all model solid-state Hamiltonians® in equilib-
rium. It was recently generalized to treat nonequilibrium
situations.* This contribution is a sequel to that work, where
we examine the transient evolution of the Bloch oscillations
of the current that appear in a system that starts in equilib-
rium and has a uniform electric field turned on at time
t=0—the so-called Keldysh boundary problem.

Bloch® and Zener’ showed that noninteracting electrons
(on a lattice) undergo an oscillatory motion when placed in a
uniform static electric field (oriented along a symmetry di-
rection of the Brillouin zone), because the electron wave
vector, which evolves linearly in time under the driving force
from the electric field, is Bragg reflected whenever it reaches
a Brillouin zone boundary (since the wave vector will peri-
odically trace out an identical orbit when the electric field is
oriented in a symmetry direction). However, in conventional
metals, Bloch oscillations have never been seen, because the
electron relaxation time is so short, the electrons are scat-
tered before they reach the zone boundary, and Bragg reflect.
Bloch oscillations have been observed in semiconducting
heterostructures,® Josephson junctions,” and cold-atom
systems.!® In this contribution, we use nonequilibrium
DMEFT to solve the Keldysh boundary problem and analyze
how the Bloch oscillations are quenched in a strongly corre-
lated material as the scattering is increased. In particular, we
describe the change in the behavior of the current as the
system evolves from a metal to a Mott insulator with increas-
ing U.

The formalism for the nonequilibrium many-body prob-
lem was developed in the 1960s by Kadanoff and Baym'!
and Keldysh.” They determined the generic equations for the
Green’s functions and then solved them under different ap-
proximate conditions. Since then, the exact solution in the
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thermodynamic limit has remained elusive; determining ef-
fective solution techniques of this problem have been a long-
term goal of the many-body physics community. Now,
DMEFT can be employed to solve this problem in the limit of
large spatial dimensions. In this contribution, we describe, in
detail, how to do this. This problem is quite complex, and
necessarily, we need to limit our coverage to focus the dis-
cussion. We have chosen to concentrate on the phenomena of
the quenching of Bloch oscillations, examining how they
change their character as one goes from a metal to a Mott
insulator, and how they develop beats for large fields.
Understanding the quenching of Bloch oscillations and
the nonlinear response of Mott insulators has remained one
of the longest standing unsolved problems in condensed mat-
ter physics. There have been numerous attempts to solve
different aspects of this problem, often focusing on finite-
sized systems. The density matrix renormalization group
(DMRG) has been applied to one-dimensional systems and
their time evolution.'> Quantum dots coupled to metallic
leads have been widely studied; one recent development has
been to formulate the Bethe ansatz for these systems.'* Small
systems have been treated via exact diagonalization followed
by a solution of the time-dependent Schrodinger equation
(see Ref. 14 for a treatment of fermions and Ref. 15 for a
treatment of bosons). In particular, an examination of the
decay of Bloch oscillations for the bosonic case on a small
one-dimensional system has been completed.”> The two-
electron problem on a one-dimensional lattice has also been
examined, with interesting developments of the Bloch oscil-
lations as a function of the two-electron spectrum.'® None of
these efforts have been able to provide a complete solution of
the nonlinear response of a bulk material as it makes the
transition from a strongly correlated metal to a strongly cor-
related insulator. The work in one dimension, which employs
the DMRG technique, has been perhaps the most
successful,!” although the Bethe ansatz approach for the
quantum dot problem shows real promise. The main issue
that plagues the DMRG calculations is that the wave func-
tion can be evolved only out to the point where the initial
nonequilibrium disturbance has propagated as far as the
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boundaries of the system, after which, reflections off the
boundary create results that are not representative of the
infinite-sized system in the thermodynamic limit. The work
presented here is also a counterpart to the body of knowledge
developed for transport in quantum dots'®!® There, the non-
equilibrium features are restricted to a small region of space,
whereas they extend over a bulk lattice in this work. The
techniques needed to solve these kinds of bulk systems are
quite different from those appropriate for quantum dot prob-
lems.

On the experimental side, it is challenging to imagine
being able to observe these effects in condensed matter sys-
tems. Bloch oscillations have never been seen in conven-
tional metals (let alone Mott insulators), only in semicon-
ducting heterostructures, and the magnitudes of the electric
field that we employ in this work are so large, there are no
practical experimental techniques that can directly measure
the short-time oscillatory response. However, the situation is
quite different in ultracold atomic systems placed in optical
lattices. Here one can imagine a mixture of two different
mass fermionic atoms, one heavy and localized, the other
light and delocalized, which is described precisely by the
model we study in this contribution.”’ Then by detuning the
optical lattice, so that it appears as a standing wave in a
moving frame, we have the equivalent of a “pulled” optical
lattice, which is analogous to applying an electrical field to a
charged system. The current cannot be directly measured, but
one could construct it from time-of-flight data by summing
the distribution function of the light atoms over the Brillouin
zone, weighted by the appropriate velocity factor. The
“pulled lattice” experiments have already been performed on
many systems, but the reconstruction of an effective current
has not.

Finally, this work contributes to developments in high-
performance computing. The nonequilibrium dynamical
mean-field theory code has been ported to the Cray T3E,
XT3, and XT4, to a large HP Beowulf cluster (4000 cores),
to a SUN OPTERON system, and to two different SGI
ALTIX machines. By carefully handling the communica-
tions, the code scales to about 70% of linear scaling on up to
1500 cores and has achieved over 65% of peak performance
on 2032 cores of an SGI ALTIX machine. The code is writ-
ten with standard FORTRAN 77 and utilizes message passing
interface (MPI) calls, the LAPACK library, and the BLAS li-
brary. Hence, this work represents the creation of a portable
and efficient code that scales to thousands of processors, and
demonstrates how to effectively utilize high-performance
computing resources.

The remainder of this contribution is organized as fol-
lows: in Sec. II, we discuss the formalism, and derive, in
detail, all of the relevant generalizations of DMFT to treat
the nonequilibrium case as described by the Keldysh bound-
ary problem. In Sec. III, we present our numerical results for
extensive calculations of the current as a function of time on
the hypercubic lattice. We will see a range of interesting
behavior in both the high field limit and in the Mott insulator.
We end with a discussion of the results and a conclusion in
Sec. IV.
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FIG. 1. Kadanoff-Baym-Keldysh contour for the two-time
Green’s functions in the nonequilibrium case. We take the contour
to run from ¢,,,=-5 to t,,, and back, and then extend downward
parallel to the imaginary axis for a distance of . The field is turned
on at r=0; i.e., the vector potential is nonzero only for positive
times.

II. FORMALISM

The many-body formalism for nonequilibrium dynamical
mean-field theory is straightforward to develop within the
Kadanoff-Baym-Keldysh approach.>!! Because nonequilib-
rium problems are not time-translation invariant (indeed an
external field is turned on at t=0), we need to employ
Green’s functions that depend on two times. We work with
the so-called contour-ordered Green’s function, which is de-
fined for any two time values that lie on the Kadanoff-Baym-
Keldysh contour shown in Fig. 1. The system starts in equi-
librium until time =0 when a uniform electric field is turned
on. The contour starts at some time before the field is turned
on, runs out to a maximal time, then returns to the original
time, and finally moves parallel to the negative imaginary
axis a distance B (equal to the inverse of the temperature of
the original equilibrium distribution). The evolution forward,
and then backward, in time is necessary because there is no a
priori relationship between the quantum states at large posi-
tive times, and the original equilibrium distribution, so we
must evolve backward in time to reach a known equilibrium
distribution.

We will be working with a spatially uniform electric field.
We describe it via a spatially uniform vector potential (with a
vanishing scalar potential) in the so-called Hamiltonian
gauge (see below). In this case, we preserve the translational
invariance of the system in position space, so we can de-
scribe results in either real space or momentum space. Work-
ing in the Heisenberg picture, where all time dependence is
in the operators, the contour-ordered Green’s function (in
real space) is defined by

Gi(1,1") = =i Tr e Peae ()¢ (1)1 2, (1)

==i6(t,t")Tr e Meac()c](t')/ 2,
+i0,(t' . )Tr e PMeac (1) i)/ 2, (2)

where c:f (c;) are the electron creation (annihilation) opera-
tors for conduction electrons at site i, the subscript eq de-
notes the equilibrium Hamiltonian (chosen at any time prior
to when the field is turned on), and the equilibrium partition
function satisfies Z,,=Trexp[-BH,,], with B the inverse
temperature. The symbol 6,(z,¢") is the generalization of the
theta function to the contour, and it equals 1 if 7 lies after ¢’
on the contour and it equals O otherwise. The time depen-
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dence of the fermionic operators is expressed in the Heisen-
berg representation with the time evolution taking place
along the contour (the times ¢ and ¢’ are any two times on the
three-branch contour).

By choosing the time variables to lie on different pieces
of the contour, we can determine different types of Green’s
functions.?! In particular, if both ¢ and #' lie on the upper real
branch, we have the time-ordered Green’s function

Gi(t.t) = =i Te T e 0)c] () 2, (3)

if both 7 and ' are on the lower real branch, we have the
anti-time-ordered Green’s function

Gyt == i Te TePac0e] (V2 (4)

where the bar denotes anti-time-ordering. Similarly, when ¢
lies on the upper real branch and ¢’ lies on the lower real
branch, we have the so-called lesser Green’s function

G;(l,l') =iTr e‘ﬁHeqc}-(l")ci(t)/Zeq, ()

and when ¢ lies on the lower real branch and ¢’ lies on the
upper real branch, we have the so-called greater Green’s
function

G (t.t")==iTrePeac()c)(t')Z,,. (6)

Finally, when both times lie on the imaginary branch, we
have the thermal Green’s function (because the Hamiltonian
is the equilibrium Hamiltonian here). There also are mixed
Green’s functions, where one time argument lies on a real
branch and the other on the imaginary branch. These Green’s
functions are required to properly determine the transient re-
sponse at short times. They also enter when we map the
lattice problem onto the impurity problem in an additional
time-dependent field. Note that we can similarly define cor-
responding momentum-dependent Green’s functions in anal-
ogy to the real-space Green’s functions defined above.

In addition to the Green’s functions that can be directly
extracted from the contour-ordered Green’s function, there
are two other important Green’s functions that can be de-
fined. The retarded Green’s function is defined for real times,
and satisfies

Gi(t.t") == i6(t = t')Tr e P ealc)(0).c] ()} 20y ()
and the advanced Green’s function satisfies

GA(Lt') =01 = )Tr Pl (0, (1)} Z0ge (8)

where the curly brackets denote the anticommutator.

In nonequilibrium physics problems, we focus primarily
on two of these different Green’s functions—the retarded
Green’s function, which determines the quantum-mechanical
states of the system, and the lesser Green’s function, which
determines how the electrons are distributed amongst those
quantum states. It turns out that all of the other Green’s func-
tions defined with real-time arguments can be constructed
from these two “fundamental” Green’s functions.

We will consider a uniform electric field turned on at time
t=0. We ignore all magnetic field and relativistic effects and
assume the field is always uniform in space. Then we can
describe the field via a spatially uniform time-dependent vec-
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tor potential in the Hamiltonian gauge, where the scalar po-
tential vanishes

=— A 9
o (®); ©)
here we have set the speed of light equal to 1. The noninter-
acting contour-ordered Green’s function in momentum space
is
Gy "(t,t')=—iTr Ze‘["Hmenck(t)clT((t’)/Zeq,m,,,, (10)

where we use creation and annihilation operators in momen-
tum space, and evaluate all averages with respect to the equi-
librium noninteracting Hamiltonian

Heq,rmn = 2 (Ek - ILL)Cltck’ (1 1)
k

With the band  structure  satisfying  g=lim, ..
—~t El 1 cos(k )/ \rd The nearest nelghbor hopping is chosen
to scale?? as r=r"/2\/d, and we use 1" as our energy unit (the
lattice constant a is also set equal to 1). The electric field is
introduced via the vector potential, which is chosen to be

A(r)=- 6(1)Er, (12)

for a uniform field turned on at r=0. The time-dependent
Hamiltonian is then constructed via the Peierls’
substitution,”> where k—k—eA(7) in the band structure.
Hence the time-dependent noninteracting Hamiltonian be-
comes

Hnon = 2 [€k+0(t)eEt - /"L]cl’ick‘ (13)

k

Note that the noninteracting Hamiltonian commutes with it-
self at all times, even though it is time dependent. This result
makes it easy to exactly solve for the noninteracting Green’s
functions in a field.?** First note that the time-dependent
creation and annihilation operators satisfy

t

MOE exp(if dil €. o) er7— M])CL (14)

Imin

t

t

cx(t) = exp(— ij dil €. o) ew7 — M])Ck’ (15)

min

which follows by directly integrating their equations of mo-
tion (the integration in time runs over the contour from the
starting point at t,,;, to the desired time 7 because we need the
time arguments for any location on the contour; ¢,,;,=—5 for
the calculations presented here). Substituting into the defini-
tion for the noninteracting contour-ordered Green’s function
in Eq. (10) then produces the noninteracting Green’s function
directly (the integral over time lies on the contour between
the points ¢' and 1)

G (11") = il fl& -

XCXP(— iJ d?€k+0(?)eEt)- (16)
t,

distribution  f(g,—u)=1/[1+exp(B{€

—0.(1,1) ] 1)

The Fermi-Dirac
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—u})] enters from the initial equilibrium distribution of the
electrons (prior to the field being turned on).

The noninteracting Green’s function is quite complicated
for an electric field pointing in an arbitrary direction. It turns
out that the simplest problem to consider is one where the
field points along a diagonal direction E=E(1,1,1,...,1).
Then the noninteracting Green’s function depends on two
band energies: € (already defined above) and g.=lim,_,.,
—t*Efl:l sin k;/\d in the following way:

G2 (t,1") = i[ fle — p) — O.(t,1") ] =)

Xexp(— ift di[ (1) + 6(t)cos(eET) e

- 0(r)e sin(eEf)}). (17)

The two band energies are distributed with a joint density of
states that is a Gaussian in each variable®

p(e,E)z}Texp(—ez—Ez). (18)

It will turn out that all momentum-dependent quantities we
are interested in will depend only on € and €, so we reduce
the infinite-dimensional Brillouin zone to a two-dimensional
energy space. Note that in equilibrium, all € dependence
drops out, and we have all objects of interest depending only
on the band structure e.

The contour-ordered Green’s function for the interacting
many-body problem satisfies Dyson’s equation (with all time
integrals running over the contour)

Gt.t) = GL""(1,1) + f dt_f A7 GE"" (1. DS (T )GUT ).

(19)

which can be viewed as defining the contour-ordered self-
energy. We have written out the Dyson equation explicitly in
momentum space, and we used the fact that the self-energy is
local (and hence independent of momentum) in DMFT, a fact
that is proven next.

The argument that the self-energy is local in d— o is
based on two facts—the expansion of the self-energy in pow-
ers of the hopping?® which show that the self-energy is local
(in equilibrium) and the Langreth rules?” which show how to
relate perturbation theory in equilibrium to perturbation
theory for the nonequilibrium case, and thereby shows that
the nonequilibrium self-energy is also local. This follows be-
cause the many-body perturbation theory diagrams are iden-
tical in structure for both the equilibrium and nonequilibrium
perturbation theories, so the power-counting analysis (in in-
verse powers of the spatial dimension d) of Metzner guaran-
tees that the nonequilibrium self-energy remains local in
DMFT. In other words, the nonequilibrium DMFT problem
can be mapped onto an impurity problem in time-dependent
fields, just like the equilibrium problem, except now the
fields (the Green’s functions and the self-energy) have two
time arguments.
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The DMFT algorithm employed to solve for the transient
response of nonequilibrium systems is closely related to the
iterative approach used in equilibrium.?® We develop each of
the steps of this algorithm next, and then describe the differ-
ences between the nonequilibrium calculations and the equi-
librium ones.

The first step is to generalize the Hilbert transform em-
ployed in equilibrium DMFT to the nonequilibrium case.
Starting from the local self-energy 3¢(¢,¢'), which is a con-
tinuous matrix operator with both time variables running
over the contour, we need to construct the local contour-
ordered Green’s function Gy, (f,t") =2 Gy(,t’). This is done
by first expressing the momentum dependence in terms of
the two band energies € and €, and employing the Dyson
equation in Eq. (19). Hence,

Gloclt,1") = f de f dép(e,O[(1- GZ"2) ' G n.1),
(20)

where I denotes the identity matrix operator [equal to
8,(t,1")—the Dirac delta function on the contour, which sat-
isfies [ dt' 6,(t,1")f(t")=f(1)], GZZ™" is given in Eq. (17), and
there are a number of implicit matrix multiplications over the
time variables (which range over the contour) on the right
hand side. The integrand for each € and € point is found by
performing two continuous matrix operator multiplications
and one continuous matrix operator inversion. Hence, the
Hilbert transform for equilibrium problems generalizes to a
two-dimensional integral of a matrix valued function that
requires two matrix multiplies and one matrix inversion to
determine the integrand.

Once the local Green’s function has been determined, the
next step is to extract the dynamical mean-field A(z,¢"). This
is determined by first finding the effective medium by using
Dyson’s equation and then extracting the dynamical mean
field from the effective medium. In particular, we have the
effective medium satisfying

Git,1) = [(Gl) ™ + 2T (1.1, 1)
and then the dynamical mean field becomes
N(1,1") = (i + ) 8.(1.1") = (GG (1.1')
=(id + w)8.(t,") = (G5, )7 (t,t") + 24(1,1).
(22)

Here ¢ is the derivative operator along the contour, so it
equals +d/dt along the upper branch, —d/dt on the lower
branch, and —id/d7 along the negative imaginary time axis.
Note that we calculate N from [G{]™!, so we do not normally
compute Gj to find the dynamical mean field.

Once the dynamical mean field has been found, we need
to determine the impurity Green’s function for the impurity
problem that evolves in the presence of the dynamical mean
field (which is nonzero on the entire contour). For the
Falicov-Kimball model one can immediately write down the
solution to this problem (at the moment, we do not have any
numerical techniques to solve this problem for other models
in the time representation). The spinless Falicov-Kimball
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model® involves single-band conduction electrons hopping
on a lattice, and localized electrons which do not move but
do interact with the conduction electrons when they are in
the same unit cell via a screened Coulomb interaction U. The
equilibrium lattice Hamiltonian (in the absence of a field) is
then
t*
Heg=— 72 (cjc_,« + c'}'c,-) — ,U,E cjci + U, wiclc;.
2Vd Gjy ' i i
(23)

Here, we have cj (c;) create (annihilate) a spinless conduc-
tion electron at site i, w;=0 or 1 is the localized electron
number operator at site i, and u is the conduction electron
chemical potential. Although the Falicov-Kimball model is
one of the simplest many-body physics models, it does have
a Mott metal-insulator transition, so it is interesting to use
this model to examine how Bloch oscillations are quenched
due to strong electron correlations (but the model does not
include any Zener tunneling effects because there are no
higher-energy bands). The solution to the impurity problem
can be found by solving the equations of motion for the
contour-ordered Green’s function (the procedure is essen-
tially the same as in equilibrium except the Green’s functions
depend on two times now and the times run over the contour)
resulting in

Gipt,1") = (1 = (W) + ) S.(1,1") = N1, 1")]™!
+ Wl + u—U)8.(t.t") = Ne,t)T™,
(24)

with (w;)=2w;)/N the average localized electron filling.

The Dyson equation in Eq. (21) is then employed to ex-
tract the impurity self-energy from the impurity Green’s
function and the effective medium. The algorithm is then
iterated until it converges (we usually require the Green’s
functions to converge pointwise to better than one part in 10°
in order to end the calculation).

In summary, the basic structure of the iterative approach
to solving the DMFT equations®® continues to hold. We start
with a guess for the self-energy (which is usually chosen to
be equal to the equilibrium self-energy), then we sum the
momentum-dependent Green’s function over the Brillouin
zone to produce the local Green’s function. Next the dynami-
cal mean field for the impurity problem is extracted by using
Dyson’s equation for the local Green’s function and self-
energy, the impurity problem is solved in the dynamical
mean field to produce the impurity Green’s function, and
Dyson’s equation is used again to extract the impurity self-
energy. In the self-consistent solution of the DMFT equa-
tions, the impurity self-energy will be equal to the lattice
self-energy. If they are different, then the new lattice self-
energy is taken to be equal to the new impurity self-energy,
and the loop is iterated until it converges. The nonequilib-
rium algorithm includes the following modifications from the
equilibrium algorithm, (i) the summation over the Brillouin
zone now requires at least a double integral over two band
energies, (ii) the Green’s functions are described by continu-
ous matrix operators with time indices that run over the con-
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tour; and (iii) the impurity problem solver must be general-
ized to the nonequilibrium case.

The objects we work with on the contour are continuous
matrix operators. Unfortunately, there is no way to directly
calculate with such objects on a computer. Instead, we need
to first discretize the contour, and define the continuous ma-
trix operators as the limit where the discretization size goes
to zero of discrete matrices, whose matrix elements are iden-
tified with the average value of the matrix operators within
the corresponding discrete intervals on the contour. By per-
forming calculations with particular discretizations, and then
taking the limit where the discretization goes to zero (via an
extrapolation procedure), we can approximate the results for
the continuous matrix operators. The contour is discretized in
the following manner: we choose a real-time spacing At
which varies from 0.1 to 0.014, and we fix the spacing along
the imaginary axis to A7=0.1i so our largest matrix is
5700 X 5700 and we evaluate integrals over the contour by
discrete summations using the leftpoint rectangular integra-
tion rule. The matrix operators are general complex matrices,
which are manipulated using standard linear algebra pack-
ages (LAPACK and BLAS).

More precisely, the discretization process involves N,
points on the upper real branch (ranging from 7., t0 f;.«
—Arf), N, points on the lower real branch (ranging from f,,,,
to f,in+A7), and 100 points along the imaginary axis (rang-
ing from ., to t,,;,—iB+0.1i, with S=10); hence Ar=(t,,x
—tmin)/ N,. The discrete time values on the contour are then

==ty + (= DAt
=tmax_ O_Nz_ 1)Al,
:tmin_o'li(j_2Nt_ 1),

I<j<N,
N,+ 1 <j=<2N,
2N,+1=<j<2N,+ 100,
(25)
where we used the fact that the discretization along the
imaginary axis is always fixed at A7=0.1 in our calculations.
To calculate integrals over the contour, we use a leftpoint

rectangular integration rule for discretizing integrals.
2NA100

f dif)=" 2 W), (26)
c i=1
where the weights satisfy
W;=At, 1<j<N,
=—Af, N,+1<j<2N,
=-0.1i, 2N,+1=<j=<2N,+100. (27)

The leftpoint integration rule evaluates the function at the
“earliest” point in the time interval that has been discretized
for the quadrature rule (which is the left hand side of the
interval when we are on the upper real branch; earliest is
meant with regard to the sense that the contour is traversed).

Note that the contour-ordered Green’s function satisfies a
boundary condition where we identify the points f,;, with
tmin—1B.- One can show from the definition of the contour-
ordered Green’s function in Eq. (1), and the invariance of the
trace with respect to the ordering of operators that
Gz?i(tminvt,)=_Gfi(tmin_tit,) and Gz?‘(t’tmin)=_Gfi(t’tmin

L
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—if). This is similar to the antiperiodicity property that the
thermal Green’s functions satisfy, and the proof is identical.

The delta function changes sign along the negative
real-time branch, and is imaginary along the last branch
of the contour in order to satisfy the property that
J.dt' 8.(¢,1")f(¢t")=f(¢). In addition, we find that the numerics
work better if the definition of the delta function is done via
“point splitting” (when we calculate the inverse of a Green’s
function) so that the delta function does not lie on the diag-
onal, but rather on the first subdiagonal matrix (in the limit
as Ar—0 it becomes a diagonal operator). Because we iden-
tify the times t,,;, and 7,,;,—1/3, the point splitting approach to
the definition of the delta function allows us to incorporate
the correct boundary condition into the definition of the dis-
cretized delta function. Hence, we define the discretized delta
function in terms of the quadrature weights, in the following
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described in Eq. (27). We have a different formula for inte-
gration over the first variable versus integration over the sec-
ond variable because we are using the leftpoint quadrature
rule. Note that the formulas in Egs. (28) and (29) hold only
when i # 1. When i=1, the only nonzero matrix element for
the discretized delta function is the 1,j=2N,+100 matrix
element, and it has a sign change due to the boundary con-
dition that the Green’s function satisfies. The discretization
of the derivative of the delta function on the contour is even
more complicated. It is needed to determine the inverse of
the effective medium operator for the impurity. The deriva-
tive is calculated by a two-point discretization that involves
the diagonal and the first subdiagonal. Since all we need is
the discrete representation of the operator [idf+u]d,(¢,t'),
we summarize the discretization of that operator as follows:

way: 1
Oultt)) = Wa'j“ for integration over j (28) | |
! [id,+ u]8.(tjt) = i—M—, (30)
1 W, W,
=W_-15U 41 for integration over i,  (29)
where #; and ¢; are two points on the discretized contour as
described in Eq. (25), and W; are the quadrature weights  with the matrix M, satisfying
J
1 0 0 1 +iAtp
—1-iAtu 1 0 0
0 —1-iAtp 1 0
0 —1+iAr 1 0
Mjk = ’u 3 ;
0 —1+iArpn 1
—1-Amu 1
-1-Atu 1
(31

here A7=0.1. The top third of the matrix corresponds to the
upper real branch, the middle third to the lower real branch,
and the bottom third to the imaginary branch. Note that the
operator [id+u]d, is the inverse operator of the Green’s
function of a spinless electron with a chemical potential .
Hence the determinant of this operator must equal the parti-
tion function of a spinless electron in a chemical potential u,
namely, 1+exp[Bu]. Taking the determinant of the matrix
M ;. (by evaluating the minors along the top row) gives

det M =1+ (= 12N NN 1+ iAtu) (- 1 — iAep) V!
X(= 1+ iAtpw)N(= 1 = Aru)N-

~ 1+ +Amw)" + 0(AF), (32)

which becomes 1+exp[Bu] in the limit where Ar,A7—0

(N, is the number of discretization points on the imaginary
axis). This provides a check on our algebra, and shows the
importance of the upper right hand matrix element of the
operator, which is required to produce the correct boundary
condition for the Green’s function. This is also the reason
why we chose to point-split the delta function when we de-
fined its discretized matrix operator.

We also have to show how to discretize the continuous
matrix operator multiplication and how to find the dis-
cretized approximation to the continuous matrix operator in-
verse. Matrix multiplication is discretized as follows:

J dTA(LDB(T1) = 2 At t) WiB(14.1)). (33)
c k

So we must multiply the columns (or the rows) of the dis-
crete matrix by the corresponding quadrature weight factors.
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This can be done either to the matrix on the left (columns) or
to the matrix on the right (rows). To calculate the inverse, we
recall the definition of the inverse for the continuous matrix
operator

f diA(t,DA™(Tt') = 8,.(1.1), (34)
which discretizes to

1
%A(Ii’tk)WkA_](tkvtj) = W@j, (35)

1

where here we do not need to point-split the delta function.
Hence, the inverse of the matrix is found by inverting the
matrix W;A(t;,¢)W;, or, in other words, we must multiply the
rows and the columns by the quadrature weights before using
conventional linear algebra inversion routines to find the dis-
cretized version of the continuous matrix operator inverse.

Having resolved the technical details of the discretization,
which allows us to evaluate approximations to the continu-
ous matrix operators on a computer, we now move to the last
technical aspect, which is how we perform the numerical
quadrature of a matrix-valued integral. Since the band struc-
ture energies € and € are both distributed with Gaussian
weight functions, we employ Gaussian quadrature in each
dimension to perform the integration. We found, by bench-
marking the equilibrium solution,?® that averaging the results
of two Gaussian quadratures with N and N+1 points works
better than choosing 2N+1 points for the quadrature. For
most cases we discuss here, we use N=54 and N+1=55
points for the Gaussian quadrature routines, although some
calculations were performed with the more accurate N=100
and N+1=101 routines. In the former case, we have a total
of 5941 quadrature points, while in the latter case it is 20 201
quadrature points. Since the calculation of each matrix in the
integrand of the integral is independent of every other
quadrature point, this part of the code is easily parallelized.
The numerical quadrature requires two matrix multiplies and
one matrix inversion for each quadrature point, and the inte-
grand is a matrix.

The calculation of the local Green’s function from the
local self-energy is the most computationally intensive part
of the algorithm. Fortunately that part parallelizes well in the
master-slave format, since we need to send the slave nodes
the self-energy matrix, and then send them the energies € and
€ for the particular quadrature point, and the slaves calculate
the integrand directly and accumulate the results locally.
Then, once all band energies have been calculated, we use a
recursive binary gather operation®” to accumulate the results
and send them to the master efficiently. This works by divid-
ing the slave nodes in half and having one half send their
accumulated results to the other half, and having those slave
nodes accumulate the results they received with the ones
they had. A slave node that has sent its results to another
slave node then becomes inactive. The procedure is repeated
until only one slave node has all of the accumulated results,
which is then sent to the master. The impurity solver which
inputs the local Green’s function for the lattice, and outputs
the impurity self-energy, is a serial code that cannot be par-
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allelized, because the matrix operations need to all be per-
formed in turn. These calculations are performed on the mas-
ter node and they require a number of matrix inversions and
matrix multiplies, which are carried out with LAPACK and
BLAS routines. We typically require between 10 and 100 it-
erations to reach convergence of the results (the total com-
puter time for the calculations presented here was about
600 000 CPU h on a Cray XT3, 900000 CPU h on a SGI
ALTIX, and 800 000 CPU h on a SUN OPTERON). Overall,
the code is quite efficient. It has achieved over 65% of the
peak speed on 2032 cores of an SGI ALTIX machine, and
scales with near linear scaling up to many hundreds to a few
thousand cores (the main issue that affects the linear scaling
is the fact that part of the algorithm is serial in nature and
does not scale).

Once the Green’s functions have converged, we calculate
the current (in the Hamiltonian gauge) by evaluating the op-
erator average

(1)) = — ei >, v[k + 0BGy (1,1). (36)
k

The velocity component is v;(K)=¢" sin(k;)/ 2vd, and all
components of the current are equal when the field lies along
the diagonal (hence we can replace v by —€ and change the
sum over momentum to a two-dimensional integral over €
and €). We also calculate the equal time retarded and lesser
Green’s functions and their first two derivatives (at equal
time) and compare those results to the exact values.’! In
general, these “moments” are quite accurate as the step size
is made smaller.

We find, nevertheless, that the results for the current and
for the moments usually need to be extrapolated to the limit
Atr—0. To do this, we use a Lagrange interpolation formula
to extrapolate the results to Ar=0. Typically it is a quadratic
extrapolation, requiring results at three different values of Az,
but sometimes we use higher order extrapolants. This ex-
trapolation procedure allows us to achieve quite accurate re-
sults for the moments, when compared to the exact values,
and of the current (which must vanish when ¢<0). Further
details of these numerical issues and of the accuracies are
presented elsewhere.3%3

We end our formalism discussion by defining the non-
equilibrium many-body density of states. First we convert
from the time variables ¢ and ¢’ to Wigner’s average T=(¢
+1")/2 and relative t,,,=1—t' time variables. Then the density
of states (DOS) is defined from the Fourier transform of the
retarded Green’s function with respect to the relative time. In
other words,

. t t
GR(T, w) — dl‘relelwtrelGR T+ r_el’T_ rel (37)
2 2

is the retarded Green’s function at each average time, and the
many-body density of states satisfies

1
pPOS(T,w) = — — Im GX(T, w). (38)
T

We will use these relations to help us analyze some of our
results for the current. Note that the nonequilibrium density
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FIG. 2. (Color online) Scaled nonequilibrium current for differ-
ent values of U with E=0.125. All of these cases are metals in
equilibrium. We used a quartic extrapolation formula with five At
values for U=0.5 (At=0.1, 0.067, 0.05, 0.04, and 0.033), while we
used a quadratic extrapolation formula with three Az values for U
=1 (Ar=0.025, 0.02, and 0.0167).

of states can actually become negative for finite average
times—it is non-negative before the field is turned on (in
equilibrium) and also in the limit 7— oo (the steady state).

III. NUMERICAL RESULTS

We produce numerical calculations of the nonequilibrium
current as a function of time for the case of half-filling,
where the conduction electron and the localized electron fill-
ings are each equal to 0.5. In quilibrium, this system has a
metal-insulator transition at U= 2. In the case where there is
no scattering (U=0), the Bloch oscillations continue forever.
In the presence of scattering (for metals), the Bloch oscilla-
tions maintain the same approximate “periodicity,” but the
amplitude decays. As the interactions increase further, the
oscillations become irregular.

In Fig. 2, we plot the current for the noninteracting case,
the case of a strongly scattering metal (U=0.5, red), and the
case of an anomalous metal (U=1, green; anomalous in the
sense that there is a dip in the equilibrium many-body den-
sity of states near the chemical potential) for E=0.125. The
Bloch period in this case is 167~ 50. The time range we can
extend the calculations out to is ¢,,,=35, so we do not see
one full Bloch oscillation in the time window. The initial
temperature of the system satisfied =10, and the field is
turned on at 7=0. We checked the errors of the extrapolated
data against the known moment sum rules. The errors are
largest at small times (in equilibrium, before the field is
turned on) and improve for larger times. As a benchmark, we
record the maximal error in the moments for times greater
than r=5. The exact moments are equal to 1 for the zeroth
moment and 0.5+ U?/4 for the second moment. The U=0.5
case has errors in the zeroth moment less than 1% and errors
of 2% for the second moment. The U=1 case has errors less
than 1% for the zeroth moment and errors of 3% for the
second moment. We find generically that the calculations re-
quire smaller Az values for smaller electric fields.

In the strongly scattering metal (U=0.5), the Bloch oscil-
lations appear to be simply damped, while in the anomalous
metal (U=1), we start to see additional oscillations develop
at short time, which seem to disappear at longer times. While
we have clearly not reached the steady state yet, it does
appear that the current is approaching a constant nonzero
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FIG. 3. (Color online) Scaled nonequilibrium current for differ-
ent values of U (0, 0.5, 1, and 1.5) with E=0.25. All of these cases
are metals in equilibrium except for U=1.5 which is a near-critical
Mott insulator. We used a quadratic extrapolation formula with
three At values for U=0.5 (Ar=0.1, 0.067 and 0.05, 0.04, and
0.033), U=1 (Ar=0.05, 0.04, and 0.033), and U=1.5 (Ar=0.033,
0.025, and 0.02).

value for the anomalous metal at long times, as we expect for
a driven correlated material.

In Fig. 3, we plot the scaled current for E=0.25 and four
U values ranging from a ballistic metal to a near critical Mott
insulator. The Bloch period is now approximately 25 units,
so we fit about one and one-half oscillations in our time
window. The behavior for these cases is similar in many
respects to what we saw for the smaller field. The oscilla-
tions are damped and as the scattering strength increases we
see some additional shorter period wiggles develop, espe-
cially for short times. The larger U values appear like they
are approaching a steady-state limit (with a smaller value of
the current than for E=0.125, as expected for large fields),*
but it is also clear that the larger field strength increases the
transient response and makes it more difficult to reach the
steady state within our time window. We also find that our
accuracy improves and we do not need to employ as small
values of At; this is a general trend that continues as we
increase the electric field. The scaled moments show the fol-
lowing accuracies: U=0.5, less than 1% error for the zeroth
and second moments; U=1, less than 1% error for the zeroth
and second moments; and U=1.5, less than 2% error for the
zeroth moment and less than 4% error for the second mo-
ment.

In Fig. 4, we plot the E=0.5 current for normal metals in
panel (a) and for the anomalous metal and two Mott insula-
tors in panel (b). Here we have nearly three full Bloch oscil-
lations within our time window, and the metallic phases are
behaving pretty much as we would expect—they show Bloch
oscillations with the same period and are increasingly
damped as U increases. Unfortunately, the larger field drives
the system for a longer period of time, so we are unable to
see the steady-state limit emerging for any of these metallic
cases. While we expect the steady-state current to be a con-
stant dc response, we cannot rule out the possibility of a
small amplitude oscillatory response as well. The anomalous
metal and insulating cases in panel (b) also display interest-
ing behavior. For example, we see one prominent oscillation
for the first half Bloch period and then the response is
sharply damped afterward, but the oscillations have no regu-
larity to them, and as the system becomes more insulating we
see additional shorter period oscillations develop, similar to
what occurred for smaller fields, but here they are more
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FIG. 4. (Color online) Scaled nonequilibrium current for differ-
ent values of U with E=0.5. In panel (a), we show cases that are
metals in equilibrium. In panel (b), we show one anomalous metal
(U=1) and two Mott insulators (U=1.5 and U=2); note the reduced
scale for the vertical axis vs that in panel (a). We used a quadratic
extrapolation formula for U<1 (Ar=0.1, 0.067, and 0.05 for U
=0.125, U=0.25, and U=0.5; Ar=0.067, 0.05, and 0.04 for U=1),
a cubic extrapolation formula for U=1.5 (Ar=0.067, 0.05, 0.04, and
0.033), and a quartic extrapolation formula for U=2 (At=0.05,
0.04, 0.033, 0.025, and 0.02).

prominent. For longer times, the response is not yet reaching
a steady state, although it is flattening out much faster. No-
tice that in some cases, the long-time current response is
larger for more strongly interacting systems (notice how the
U=2 response lies above the U=1.5 and U=1 responses for
long times). We will see this phenomenon recurs as we in-
crease the electric field further. As mentioned above, the ac-
curacy continues to improve as we increase the field. For all
cases shown, the error in the zeroth and second moments is
less than 1% for times larger than 5.

In Fig. 5, we plot results for the current with E=1. In
panel (a) we show normal metals U=0, 0.125, 0.25, and 0.5,
while in panel (b) we show one anomalous metal U=1 and
three Mott insulators (U=1.5, 2, and 3). Note how the metals
continue to show damped Bloch oscillations, and that we
cannot reach the steady state within the time window. It may
appear that the U=0.5 case is not oscillating with the Bloch
period, but that deviation is most likely coming from some
higher harmonics in the transient response that should vanish
as time increases, because the oscillations are clearly not
with some slightly larger period in this range. The accuracy
for all of these metallic cases is better than 1% for both the
zeroth and second moments for times greater than 7=5.

Panel (b) shows the current for Mott insulators (and one
anomalous metal). As the system becomes more Mott-
insulating, we see more irregular oscillations of a larger am-
plitude. Note how, in addition, the U=3 Mott-insulating cur-
rent lies above the U=2 Mott-insulating current at long
times. For smaller U values, the oscillations still maintain a
fair amount of regularity with a period close to the Bloch
period. As shown in Ref. 4, the irregular oscillations con-
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FIG. 5. (Color online) Scaled nonequilibrium current for differ-
ent values of U with E=1. In panel (a), we show cases that are
metals in equilibrium (U=0, 0.125, 0.25, and 0.5). In panel (b), we
show one anomalous metal (U=1) and three Mott insulators (U
=1.5, 2, and 3); note the reduced scale for the vertical axis vs that in
panel (a). We used a quadratic extrapolation formula for U<0.5
(Ar=0.1, 0.067, and 0.05), a cubic extrapolation formula for U=1
(Ar=0.1, 0.067, 0.05, and 0.04), a quadratic extrapolation for U
=1.5 (Ar=0.067, 0.05, and 0.04), a quartic extrapolation formula
for U=2 (Ar=0.067, 0.05, 0.04, 0.033, and 0.025), and a quadratic
extrapolation formula for U=3 (Ar=0.02, 0.0167, and 0.0143).

tinue out to long times. These results clearly show the emerg-
ing trends as we move from a metal to a Mott insulator. The
current initially is quenched via a damping of the Bloch os-
cillations, but as the coupling strength increases, the oscilla-
tions become more irregular and lower in overall amplitude.
As the field strength increases, we see the oscillations sur-
vive out to longer and longer times. In most cases, we are
unable to reach the steady-state limit within our time win-
dow. The accuracy of our calculations is still quite good. The
extrapolated results have errors of less than 1% for both mo-
ments when U=1, less than 2% for both moments when U
=1.5 and U=2, and less than 3% for both moments when
U=3.

In Fig. 6, we plot the current for our final electric field
E=2. The behavior in this case is quite different from the
other cases. In the metallic case, we do not have simple
damped oscillations. Instead, the oscillations initially decay
but then grow, reminiscent of damped beats. The beat period
turns out to be 27/ U, decreasing as U increases. This result
was predicted from nonequilibrium calculations for two par-
ticles on a one-dimensional chain,?* but we see here that it
appears to only enter once the electric field is large enough
(for an infinite-dimensional lattice). We will treat this phe-
nomenon in more detail below and resolve the underlying
physical mechanism behind its occurrence. The beat period
becomes so short that the U=1 results look like quite irregu-
lar oscillations.

The beats disappear as we pass through the metal-
insulator transition. Instead, we see the irregularity in the
oscillations becomes more apparent. In panel (b), one can see
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FIG. 6. (Color online) Scaled nonequilibrium current for differ-
ent values of U with E=2. In panel (a), we show cases that are
metals in equilibrium (U=0, 0.125, 0.25, 0.5, and 1). In panel (b),
we show Mott insulators (U=1.5, 2, 3, and 4); note the reduced
scale for the vertical axis versus that in panel (a). We could not fit
the U labels onto panel (a). The U=0 case (black, amplitude un-
changed with time) has no damping to the oscillations. The U
=0.125 case (red, amplitude steadily decreases for the entire ¢ range
in the figure) looks like a damped oscillator, because the beat period
is about 50. The U=0.25 case (green, amplitude decreases out to
t=25 then increases) shows one beat period (it has the second larg-
est amplitude near r=30). The U=0.5 case (blue, third largest am-
plitude at r=30) shows a few beats. The U=1 case (magenta, small-
est amplitude throughout the figure) is the most irregular looking of
the curves. The Mott insulators all show the same irregular oscilla-
tions, with decreasing initial amplitude as the interaction strength is
increased. We used a quadratic extrapolation formula U<0.5 (At
=0.1, 0.067, and 0.05), a cubic extrapolation formula for U=1
(Ar=0.1, 0.067, 0.05, and 0.04), and for U=1.5 (Ar=0.067, 0.05,
0.04, and 0.033), a quadratic extrapolation formula for U=2 (At
=0.04, 0.033, and 0.025), a cubic extrapolation formula for U=3
(Ar=0.04, 0.033, 0.025, and 0.0167), and a linear extrapolation for
U=4 (Ar=0.0167 and 0.0143).

that the near-critical Mott insulator (U=1.5) still looks like it
could be represented in terms of damped oscillations with
beats, but the oscillations are not simple sinusoidal oscilla-
tions. As U is increased further, the oscillations are sharply
attenuated for times larger than 15. They continue to have
significant short-period irregular oscillations, which appear
to develop more strongly as U increases. In addition, we see
all of the different Mott insulators have small current at long
times, and we do not see some cases having significantly
larger current as we did when E=1. In spite of our ability to
extrapolate our numerical calculations to Az— 0, these Mott-
insulating results are the most difficult to obtain reliable data
for, and it is quite likely that the final curves for the current
have pointwise errors on the order of 10%, but we have no
way of rigorously estimating the errors, because our calcula-
tions have been pushed to the limit of what we can reliably
achieve. The errors for the metallic cases are all quite low
(less than 1% for both moments for all metals and for U
=1.5). However, they grow in the Mott insulators (less than
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FIG. 7. Unscaled nonequilibrium current (Az=0.1) for E=1 and
(a) U=0.125, (b) U=0.25, and (c) U=0.5. The longer time cutoff
allows us to see the initial development of beat like behavior in the
current response.

5% error for the first moment, and less than 7% error for the
second moment for larger U values).

Because the phenomena of beats newly develops for large
electric fields in metals, we need to investigate the origin of
the beats more thoroughly. To do this, we perform a series of
calculations with A¢=0.1 and no scaling of the data, but with
a much longer time window (¢ runs out to 195). We ran
calculations for E=0.5, E=1, and E=2. In the case when
E=0.5, we saw no indication of any beat phenomena in the
data. The results for E=1 are shown in Fig. 7. Panel (a) is for
U=0.125, panel (b) for U=0.25, and panel (c) for U=0.5.
Note how there is clearly some behavior that is reminiscent
of beats in these data (especially for small U), but it is not
well formed beats yet. [Note that the increase in amplitude of
the current at long times in panel (c) is a systematic error
associated with the large discretization size for the U value
and the boundary in time.] We do see the period of the beat-
like phenomena to decrease as U increases, and it appears to
be equal to 27/ U. When we move to the larger field of E
=2, which is plotted in Fig. 8, the beats become completely
transparent, even if the amplitude modulation becomes
somewhat dephased at long times. We clearly see the beat
period decreasing as U increases and being inversely propor-
tional to U.

One can ask what the cause of these beats can be? Since
the beat period is 27/ U, we immediately suspect the result is
coming from two frequencies equal to the Bloch frequency
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FIG. 8. Unscaled nonequilibrium current (Az=0.1) for E=2 and
(a) U=0.125, (b) U=0.25, and (c) U=0.5. Here the beats are clearly
visible, but one can also see a dephasing at long times, because the
beat amplitude does not go to zero.

plus or minus U/2. Then the combination of these oscilla-
tions will produce the expected beats. If we extract the re-
tarded Green’s function from the contour-ordered Green’s
function, transform to Wigner coordinates, and perform a
Fourier transform with respect to the relative time, we can
then plot the local many-body density of states as a function
of average time. For large times, the density of states ap-
proaches a steady-state limit, and we plot a large time result
(T=95) in Fig. 9 for U=0.5 and the three different E values
(0.5, 1, and 2). One can see that as the electric field is in-
creased, the DOS develops two sharp peaks centered at w
==*U/2. While we can see these peaks already for E=1,
they really become well separated and distinct for E=2. We
believe that these two delta-function-like peaks, when com-
bined with the underlying Bloch frequency, are the source of
the beat phenomena in the current, and since we do not see
the double peak structure develops for smaller fields, the beat
behavior in the current is a strong field behavior. This is
hinted at in the work with two particles in one dimension,>*
but that work showed the additional oscillations occurring
for all U and E. As one increases the particle density, and the
spatial dimension, the occurrence of beats requires a critical
value of the electric field, which is around E=1 for our case.

IV. CONCLUSIONS

In this work, we have shown a detailed derivation of the
generalization of DMFT to nonequilibrium problems given
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FIG. 9. Local many-body density of states with U=0.5 for time
T=95 units after the electric field was turned on and (a) E=0.5, (b)
E=1, and (c) E=2; the data are from unscaled results with At
=0.1. The Wannier-Stark ladder would have delta functions at the
Bloch frequencies nE. Here the many-body density of states is
broadened into bands about the Bloch frequencies with a width of
approximately U. Note how the central band becomes sharply
peaked at w=* U/2 as E increases. This is the source of the two
frequencies separated by U that creates the beats in the current as a
function of time.

by the so-called Keldysh boundary condition—the system
starts in equilibrium and then a field is turned on and the
system is monitored as it is driven to a steady state. Our
focus was on the current and how the Bloch oscillations are
quenched and change character as electron-electron correla-
tions are increased. We find for weak fields the picture in
metals is pretty much what one might have guessed—the
Bloch oscillations are damped and the system approaches a
steady state with what appears to be a constant current (al-
though we cannot rule out low amplitude oscillations with
the Bloch period superimposed on top of the constant re-
sponse). As the field is increased, we find the oscillations
survive out to longer and longer times. When the coupling
increases to that of a Mott insulator, the oscillations change
their character and become quite irregular. This process is a
slow evolution and not a sharp “phase transition.” Most in-
teresting is the appearance of beats in the current for large
electric fields in metals. These beats have a period inversely
proportional to the interaction strength and are quite robust.
As time increases, however, the beats do dephase, and even-
tually we get a constant amplitude response (which may be
decreasing due to damping) that no longer has an oscillatory

075109-11



J. K. FREERICKS

envelope. We also explained in detail many of the technical
issues required by the discretization and by the numerics to
obtain an efficient iterative algorithm that scales to many
hundreds if not thousands of processors.

While this work is a significant advance in theoretical
many-body physics, it is not clear that this phenomenon can
be observed directly in solid-state systems. The problem
there is that most solid-state systems where Bloch oscilla-
tions can be observed have higher-energy bands present. If
the field becomes large enough to induce tunneling between
the bands, then the theory we have derived will not apply,
because we have neglected Zener tunneling. This implies the
observation of beats may be difficult to see in a solid-state
system. Furthermore, the fields are so large here that the
Bloch frequencies are enormous, with periods probably lying
in the femtosecond range. It is a challenge to find experimen-
tal techniques to measure such rapid oscillations.

One system that might be appropriate for this experiment,
however, is ultracold atoms placed in optical lattices. If we
consider a mixture of two species where one of the atomic
species is much more massive than the other, and if the de-
localized fermions are in a band that is well separated from
the higher-energy bands, then by detuning the optical lattice,
so that it appears as a static lattice in a moving frame (via the
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Doppler effect), one can “pull” the lattice through the atomic
cloud, in direct analogy to the Hamiltonian gauge calcula-
tions presented here. Unfortunately there is no direct way to
measure the current, but it could be reconstructed, in prin-
ciple, from a time-of-flight measurement which determined
the distribution of atoms through the Brillouin zone.

In future work, we plan to examine the steady-state limit
directly and how the distribution functions transiently evolve
after the field is turned on (the latter being important for
direct comparison to time-of-flight measurements in ultra-
cold atoms).
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