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Thermal transport in the Falicov-Kimball model on a Bethe lattice
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We calculate thermal transport in the Falicov-Kimball model on an infinite-coordination-number Bethe
lattice. We perform numerical calculations of the thermoelectric characteristics and concentrate on finding
materials parameters for which the electronic thermoelectric figure-of-@&ris large, suggesting potential
cooling and power generation applications. Surprisingly, the Bethe lattice has significant qualitative and quan-
titative differences with the previously studied hypercubic lattiekich we expect to hold for many correlated
models. At low temperature it is unlikely that these systems can be employed in thermoelectric devices due to
the low conductivities and due to a larger lattice contribution to the thermal conduckiyitybut at high
temperature, the thermoelectric parameters appear more promising for devices due to a significant enhance-
ment ofZT and a smaller relative contribution by the lattice thermal conductivity.
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Materials that are candidates for thermoelectricized, namely, whether large valuesoT predicted theoreti-
application$ are interesting because they have the potentiatally can be realized experimentally or if they are the result
to compete with conventional compressor-based cooleref unavoidable simplifications.

These materials are characterized by the thermoelectric In this paper, we discuss electroriibermal and charge
figure-of-meritZ T, which evaluates the efficiency of a bulk transport for the Falicov-Kimball model on an infinite-
material as a cooling element. Commercially available semicoordination-number Bethe lattice. In a recent arffclee
conductor devices exhibit AT of about unity. Such values |nv_est|gated transport on an infinite-dimensional hypercubic
of ZT are far too low to be competitive with the efficiency of 1attice and found possible sets of parameters wizere- 1
conventional mechanical refrigerators, which would require©" & Wide range of temperatures. However, some of the Be-
aZT of 3 or 4. the Iatt'lce’s properties are closer to those pf real three-

Current directions of research include bulk semiconducto?'mens'on""I systems. First of al!, _the electrpmc band struc-
device® semiconductor nanostructurbsnetal/correlated ure for the Bethe lattice has a finite bandwidth, as opposed

miconductor heterostructursand  stronal rrelated to the hypercubic lattice where the interacting density of
semiconguctor nheterostructuresa strongly -correlate stategDOYS) decreases exponentially. Another important dis-

. -9 . .
material®® Bulk sem|f:onductor devices are most.com- tinction is that the “quasiparticle” scattering time(w) for
monly employed, an@T's of up to 1.14 have been achieved o Bethe lattice is exactly zero whenever the interacting

for a p-type (BbTe;)o oo ShTe:)07AShS&)o0s alloy at s s zero. This is also expected for a real physical system,
room temperature and pressdr8elow room temperature, in contrast to the hypercubic lattavhere the scattering
hOWeVer, a maXimUrZT of Only 0.8 haS been found in bl}lk t|me approaches a nonzero constantvas + o and behaves
CsBi,Tes at 225 K. Semiconductor nanostructures appeags a power law at smatb in the “pseudogap.” The Bethe
more promising by increasingT due to a suppressed lattice |attice, however, also has some unphysical properties. For
contribution to the thermal conductivity. The value of 2.4 hasinstance, the description of transport is controvet3fak the
been observed experimentélfpr p-type Bi,Te;/Sh,Te; su-  Bethe lattice; here we choose to define the square of the
perlattice structures at 300 K. These structures also showecklocity of a “quasiparticle” in such a way that the optical
improved values oF T (~1.7) at temperatures as low as 210 sum rule is enforced since the sum rule holds in three
K. Nevertheless, at lower temperatures all measured buldimensions. There is also no apparent way to determine the
materials exhibitZT's that are lower than unity. A recent volume for the Bethe lattice, which leads to the impossibility
theoretical proposal predicts an enhanc&t in a metal/ of a microscopic determination of the electric conductivity
correlated semiconductor structir&stimated values of the unit.

low temperatur&Z T's are enormous; for instance, for a semi- We consider the Hamiltonian for the spinless Falicov-
conductor gap of 100 meV, the best valueZsF would be  Kimball modef?

~6 at 150 K and~ 100 at 40 K. Finally, strongly correlated
materials have been suggested as possible candidates for
bulk thermoelectric materials, especially at low
temperaturés® because the correlations can strongly renor-
malize the Fermi temperature to low temperatures. Very rewherec;r (c) andf;r (f;) are the conduction and localized
cently, Peltier cooling has been achieved experimeritally  electron creatiorfannihilation operators, respectively, for a
low 10 K using crystals of the Kondo metal CgBThe  spinless electron at siie andU is the on-site Coulomb in-
greatest value of cooling at=4.5 K was equal to 0.2 K, teraction strength. The hopping integral is scaled with the
corresponding to & T of about 0.26. However, the proper- number of nearest neighbafsso as to have a finite result in
ties of such correlated materials are still not well characterthe limit'*'* of Z—; we measure all energies in units of

t*
Mo =S S dafit, @
i, I
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t*. As shown earlier, the case of infiniprovides an op- g =
portunity to take advantage of the locality of the self-energy (w)~A 0| 0= 5 || 0= =
and to use dynamical mean-field thed®MFT) (for a re-
view see Refs. 14,25Here we consider the Bethe lattice so Eqg g
—o- 5 || —o——], (6)
2 2
whereA, andB, are constantsf(x) is the unit step function

the noninteracting density of states is a semicirgle)
= \J4— €%[2r. The method for solving the Falicov-Kimball

model using DMFT is given elsewhet&:"We work with a : . :
fixed valuew,=(n;) for the average number of localized 29 Eg IS the_band/gap. On the other hsnﬁ’ the éréteractmg
electrons, which is the so-called binary alloy picture. ThePOS[Pin(@)=—(1/m)ImG(w)] at T=0 behaves
other two input parameters needed to calculate the Green’s

+B.o

function G(w) and self-energ®. (w) areU and p.—the av- Pim(w)“A9< w— E) w— E

erage number of conduction electrons. All our calculations 2 2

are performed for the cagg,=1—w,. This case is of par- E E

ticular interest because it yields a correlated insulating state +BOl —w— _9) ‘_ " 7
at values ofU larger than a certain critical . 2 2

The local Green'’s functio® = G(w) on the real axis sat-

isfies the following cubic equatiok! whereA andB are again constants. Note, that at finite tem-

peratures the expressions in E®.and(7) are modified by
2 a temperature-dependent shift in the chemical potential (
1+ (0+p—U/2)2— U_}G —wt+p— MT1=0). This difference in behavior of(w) anq
4 pint(w) in Egs. (6) and (7) arises from the extra velocity
squared terms inr(w) which modify the behavior at the
=0, 2) band edges. Henceyw)# opin:(®) which would be the
simplest approximation.
Oncer(w) is known, we can compute the transport coef-
ficientsL;; , according to the Jonson-Mahan theof@ifsee
also Ref. 7,

G3—2(w+u—U/2)G?+

w+u—URR+U

1
Wl_i

which we solve numerically in order to determine the
Green'’s function, and subsequently, the self-energy from th
relation (valid on the Bethe lattige

og [ df(w)

3 Lij=— _mdw( do )r<w>wi+i-2, ®)

2((1)):0)4‘,&_6((1))— m

Note that the physical root must be chosen in @yto yield whereo has units of.conductivityezlha, anqa is a length
the retarded Green’s function and a chemical potentids scale that cannot be independently determined on the Bethe

employed to get the right average electron dengity lattice. Here,f(w)=111+exp(w/kgT)] is the Fermi-Dirac
In order to find the transport, we start from the exactdistribution. Thermoelectric characteristics can be obtained
expression for the scattering time on the Bethe lattice once these transport coefficients are determined. Thus,
1 o4c=€L11, 9
"o)=3 ] dep(@a- AN e0), @
S=— ke L1 (10)
where A(e,w)=—(Um)Im[1lw+u—(w)—€)] is the le|T Lqig’
spectral function. This expression can be evaluated in terms
of the local Green’s function as k3 Liolog
Ke== | L2~ ; 11
) T Lqg
(w)= ilmz[G( )]M (5)
neI= 372 G211 L2
ZT=— 2 (12)
The scattering time computed on the Bethe lattice possesses Lylop— L2,
several important properties. It resembles the interacting
density of states in shape and behavior as a function of thand
Coulomb interactiord and filling w;. Namely, it develops a ) 5
well-defined gap at the metal-insulator transition, as opposed = €\ Ke _ Liboo—L1p 13
to the hypercubic lattice case, wher@w) assumes a power- \kg) ogT Lisz (13

law behavior. In addition, on the Bethe lattice, the relaxation
time is equal to zero outside the band for lajge, whereas Here, o4, and ., are the electric and therméaélectronic
7(w) on the hypercubic lattice approaches a nonzero conpart conductivities, respectively§ is the thermopowerlZ T
stant. There is, however, an essential difference, namely, it the thermoelectric figure-of-merit, anfl is the Lorenz
can be shown that in the vicinity of the band edges at zermumber. Note that the lattice contribution to the thermal con-
temperaturer(w) obeys ductivity has been neglected here.
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FIG. 1. Thermoelectric figure-of-merit as a functiondfat T

=0 for the Falicov-Kimball model ap,=1—w,;, andw;=0.05
(solid), 0.07 (dashed, 0.1 (dotted, 0.2 (chain-dotted, and 0.3

(long-dashed

At low temperature, in the correlated insulator, we can
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Temperature T [t*]

FIG. 2. (a) Thermoelectric figure-of-merit antb) the Lorenz
number for the Falicov-Kimball model a1 =2, p.=1-w,, and

w;=0.5 (solid), 0.4 (dashed 0.3 (chain-dottegl 0.2 (dotted, and

0.1 (long-dasheg

Now we show our numerical results. In Fig. 1 we present

determine analytic expressions for the electronic transporthe results for the thermoelectric figure-of-meZif at T
First, note thatA w=u— u7_o, the change in chemical po- =0 as a function otJ for several different values of,. For

tential with temperature, is a linear function to leading ordersmallU (in a metal ZT vanishes a3 — 0. As the gap opens,

+0(T%?).

| B
Ap= > nl—
Let us denote

=A \F b=B \/K
a= T Ki — b7 E’

then the thermoelectric characteristics follow as
4= 008 PEIT(a+b)+0(T?)],

kg a—b Eq ~172
5= learp2r O )

Uokzs
Ke= e2

ab
eﬁEg/Z[ e ES+ O(Tllz)} ,

E

_0'0 a.b g
T

2
- E i 1) Yo,

and

(a—b)? y
ZT= 2ab +0O(TY?),

with B=1/kgT. Therefore, at low temperatures, the ther-

(14)

(19

(16)

7

(18

19

(20

mopowerS and Lorenz numbert. diverge as I¥ and 172,

respectively. Thengy. and k., assume exponentially small
values, and T approaches a nonzero constéintthe metal-

lic phaseZT vanishes asT?). A divergence of the ther-
mopower indicates that the linear-response regime breal{%
down in the zero-temperature limit, which follows from the

logarithmic divergence of the thermal e f%SdT, when

a linear temperature gradient is applied.

ZT starts to grow linearly withJ. It is clear that the asym-
metry of the interacting DOS, which increaseswasdiffers
from 0.5 brings about larger values & for a givenU. The
closerw; is to zero or unity the large£ T is. Our numerical
results suggest that zero-temperature valueZ Bfcan be
made as large as desired by choosing proper valutsasfd

w;. This result is, however, undermined by the fact that con-
ductivity is exponentially small for low temperatur¢gq.
(16)], so a high voltage would be needed to operate the de-
vice. Note that on the hypercubic latffc8T—0 asT—0 in
both the metal and the insulator.

Figure 2 shows the thermoelectric figure-of-merit and the
Lorenz number as functions of temperature fbe=2. The
temperature scalé¢* can be estimated from a material’s
bandwidth, equating it to the noninteracting bandwidth 4
in our model. For example, for a strongly correlated material
with a bandwidth of 1 eVT=t* corresponds to 3000 K. At
half filling U=2 is the critical value of the Coulomb inter-
action for the metal-insulator transition and the critithl
decreases aw; changes from 0.5(For other values ofJ
>U, the temperature dependence of all thermoelectric pa-
rameters behaves similarly, with only quantitative differ-
ences. The thermoelectric figure-of-merit grows monotoni-
cally with temperature and reaches large values at high
temperature. The low-temperature peak found close to half
filling on the hypercubic lattidédoes not occur on the Bethe
lattice. The largest values df are achieved at low tempera-
tures in the insulating phase, while in the metallic phase, the
Lorenz number has a maximum at finite temperatures.

The temperature dependence of the electric conductivity

dc, the electronic part of the thermal conductivity, and

e thermopowefs for U=2 and variouswv; are shown in
Fig. 3. Bothoy. and x, are exponentially small at low tem-
peratures in agreement with the analytical expressions in
Egs.(16) and(18), reach a maximum, and then decrease at
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01 thermal conductivity and, therefore, will reduce the value of
o 8:82 » ZT. On the other hand, at high temperatur@s>@p) the
% 0.04 [ rate of decline of the lattice componentlis, ~ 1/T*, where
0.02 | x is between 1 and 2. The derivation of the precise behavior
0f is rather complex, related to the competition between cubic
e 061? L and quartic anharmonic scattering proce$éd@e important
= 0_0'5 i point, however, is that at the same timg assumes large
ol values and should become dominant, allowing the high val-
ues ofZT to be experimentally achievable.
=) 801 In summary, we have analyzed the thermal transport prop-
“ 10} erties of strongly correlated materials within the Falicov-
-1.0 — Kimball model on the Bethe lattice. Significant valuesZaf
0 0.25 05 0.75 1

can be obtained for both low- and high-temperature regimes,
contrary to the hypercubic lattice case, wh&rE declines at
high temperatures. On the other hard,grows linearly at
high temperature on the hypercubic lattice, while on the Be-
the lattice it decreases. The behavior of the interacting den-
sity of statesp;,;(w) as well as that of the scattering time
7(w) suggest that the results obtained on the Bethe lattice are
closer to what happens in real materials. However, while
high ZT values are necessary for practical applications, they
fare not sufficient to guarantee a viable device. In order to
ake advantage of these properties, one needs to be able to
achieve appreciable values of the current densities. Since the
conductivity approaches zero far—0, the feasibility of
thermoelectric devices based on strongly correlated materials
described by this Falicov-Kimball model is questionable at
low temperatures. At high temperatures, judging by the high
values of ZT and lower lattice contribution to the thermal
conductivity, it may be possible to employ these materials for
power generation applications.

Temperature T [t*]

FIG. 3. (a) Electric conductivity,(b) electronic contribution to
the thermal conductivity, andc) thermopower for the Falicov-
Kimball model atU=2, p.=1-w,;, and w,;=0.5 (solid), 0.4
(dasheg, 0.3 (chain-dotteg, 0.2 (dotted, and 0.1(long-dashef

higher temperatures. Larger maximum values «f are
achieved closer to half filling, contrary to the behavior o
o4c, Where larger maximum values are reached away fro
w;=0.5. The thermopower increases away from half filling
as well, and exactly vanishes far; =0.5 (due to particle-
hole symmetry. It diverges afT=0, according to Eq(17).
Also, the thermopower is positive, indicating holelike trans-
port for w;<0.5, and it satisfies the relatid®(w,,U,T)=
—S(1-w,,U,T) from particle-hole symmetry.

A comment is in order about the influence of the ne-
glected lattice component of the thermal conductivity. At low
temperaturesT well below the Debye temperatuf®y) the We would like to acknowledge useful discussions with V.
lattice contribution to the thermal conductivityx,  Zlatic. This work was supported by the National Science
decreasés asT2. At the same time, the electronic contribu- Foundation, Grant Nos. DMR-9973225 and DMR-0210717,
tion «, is exponentially small, according to E(L8). As a  and the Office of Naval Research, Grant No. NO0O014-99-1-
consequence, the lattice component is likely to dominate th8328.
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