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Thermal transport in the Falicov-Kimball model on a Bethe lattice
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We calculate thermal transport in the Falicov-Kimball model on an infinite-coordination-number Bethe
lattice. We perform numerical calculations of the thermoelectric characteristics and concentrate on finding
materials parameters for which the electronic thermoelectric figure-of-meritZT is large, suggesting potential
cooling and power generation applications. Surprisingly, the Bethe lattice has significant qualitative and quan-
titative differences with the previously studied hypercubic lattice~which we expect to hold for many correlated
models!. At low temperature it is unlikely that these systems can be employed in thermoelectric devices due to
the low conductivities and due to a larger lattice contribution to the thermal conductivitykL , but at high
temperature, the thermoelectric parameters appear more promising for devices due to a significant enhance-
ment ofZT and a smaller relative contribution by the lattice thermal conductivity.
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Materials that are candidates for thermoelect
applications1 are interesting because they have the poten
to compete with conventional compressor-based cool
These materials are characterized by the thermoele
figure-of-meritZT, which evaluates the efficiency of a bu
material as a cooling element. Commercially available se
conductor devices exhibit aZT of about unity. Such values
of ZT are far too low to be competitive with the efficiency
conventional mechanical refrigerators, which would requ
a ZT of 3 or 4.

Current directions of research include bulk semiconduc
devices,2,3 semiconductor nanostructures,4 metal/correlated
semiconductor heterostructures,5 and strongly correlated
materials.6–9 Bulk semiconductor devices are most com
monly employed, andZT’s of up to 1.14 have been achieve
for a p-type (Bi2Te3)0.25(Sb2Te3)0.72(Sb2Se3)0.03 alloy at
room temperature and pressure.2 Below room temperature
however, a maximumZT of only 0.8 has been found in bulk3

CsBi4Te6 at 225 K. Semiconductor nanostructures app
more promising by increasingZT due to a suppressed lattic
contribution to the thermal conductivity. The value of 2.4 h
been observed experimentally4 for p-type Bi2Te3 /Sb2Te3 su-
perlattice structures at 300 K. These structures also sho
improved values ofZT (;1.7) at temperatures as low as 21
K. Nevertheless, at lower temperatures all measured b
materials exhibitZT’s that are lower than unity. A recen
theoretical proposal predicts an enhancedZT in a metal/
correlated semiconductor structure.5 Estimated values of the
low temperatureZT’s are enormous; for instance, for a sem
conductor gap of 100 meV, the best value ofZT would be
;6 at 150 K and;100 at 40 K. Finally, strongly correlate
materials have been suggested as possible candidate
bulk thermoelectric materials, especially at lo
temperatures6–9 because the correlations can strongly ren
malize the Fermi temperature to low temperatures. Very
cently, Peltier cooling has been achieved experimentally9 be-
low 10 K using crystals of the Kondo metal CeB6. The
greatest value of cooling atT54.5 K was equal to 0.2 K,
corresponding to aZT of about 0.26. However, the prope
ties of such correlated materials are still not well charac
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ized, namely, whether large values ofZT predicted theoreti-
cally can be realized experimentally or if they are the res
of unavoidable simplifications.

In this paper, we discuss electronic~thermal and charge!
transport for the Falicov-Kimball model on an infinite
coordination-number Bethe lattice. In a recent article,8 we
investigated transport on an infinite-dimensional hypercu
lattice and found possible sets of parameters whereZT.1
for a wide range of temperatures. However, some of the
the lattice’s properties are closer to those of real thr
dimensional systems. First of all, the electronic band str
ture for the Bethe lattice has a finite bandwidth, as oppo
to the hypercubic lattice where the interacting density
states~DOS! decreases exponentially. Another important d
tinction is that the ‘‘quasiparticle’’ scattering timet(v) for
the Bethe lattice is exactly zero whenever the interact
DOS is zero. This is also expected for a real physical syst
in contrast to the hypercubic lattice8 where the scattering
time approaches a nonzero constant asv→6` and behaves
as a power law at smallv in the ‘‘pseudogap.’’ The Bethe
lattice, however, also has some unphysical properties.
instance, the description of transport is controversial10 for the
Bethe lattice; here we choose to define the square of
velocity of a ‘‘quasiparticle’’ in such a way that the optica
sum rule is enforced,11 since the sum rule holds in thre
dimensions. There is also no apparent way to determine
volume for the Bethe lattice, which leads to the impossibil
of a microscopic determination of the electric conductiv
unit.

We consider the Hamiltonian for the spinless Falico
Kimball model12

H52
t*

AZ
(
^ i , j &

ci
†cj1U(

i
ci

†ci f i
†f i , ~1!

whereci
† (ci) and f i

† ( f i) are the conduction and localize
electron creation~annihilation! operators, respectively, for
spinless electron at sitei, andU is the on-site Coulomb in-
teraction strength. The hopping integral is scaled with
number of nearest neighborsZ so as to have a finite result i
the limit13,14 of Z→`; we measure all energies in units o
©2004 The American Physical Society05-1
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t* . As shown earlier, the case of infiniteZ provides an op-
portunity to take advantage of the locality of the self-ene
and to use dynamical mean-field theory~DMFT! ~for a re-
view see Refs. 14,15!. Here we consider the Bethe lattice s
the noninteracting density of states is a semicircler(e)
5A42e2/2p. The method for solving the Falicov-Kimba
model using DMFT is given elsewhere.15–17We work with a
fixed valuew15^nf& for the average number of localize
electrons, which is the so-called binary alloy picture. T
other two input parameters needed to calculate the Gre
function G(v) and self-energyS(v) areU andre—the av-
erage number of conduction electrons. All our calculatio
are performed for the casere512w1. This case is of par-
ticular interest because it yields a correlated insulating s
at values ofU larger than a certain criticalUc .

The local Green’s functionG5G(v) on the real axis sat
isfies the following cubic equation:18,19

G322~v1m2U/2!G21F11~v1m2U/2!22
U2

4 GG
2Fv1m2U/21US w12

1

2D G50, ~2!

which we solve numerically in order to determine t
Green’s function, and subsequently, the self-energy from
relation ~valid on the Bethe lattice!:

S~v!5v1m2G~v!2
1

G~v!
. ~3!

Note that the physical root must be chosen in Eq.~2! to yield
the retarded Green’s function and a chemical potentialm is
employed to get the right average electron densityre .

In order to find the transport, we start from the exa
expression for the scattering time on the Bethe lattice11

t~v!5
1

3E der~e!~42e2!A2~e,v!, ~4!

where A(e,v)52(1/p)Im@1/„v1m2S(v)2e…# is the
spectral function. This expression can be evaluated in te
of the local Green’s function as

t~v!5
1

3p2Im2@G~v!#
uG~v!u223

uG~v!u221
. ~5!

The scattering time computed on the Bethe lattice posse
several important properties. It resembles the interac
density of states in shape and behavior as a function of
Coulomb interactionU and filling w1. Namely, it develops a
well-defined gap at the metal-insulator transition, as oppo
to the hypercubic lattice case, wheret(v) assumes a power
law behavior. In addition, on the Bethe lattice, the relaxat
time is equal to zero outside the band for largeuvu, whereas
t(v) on the hypercubic lattice approaches a nonzero c
stant. There is, however, an essential difference, namel
can be shown that in the vicinity of the band edges at z
temperaturet(v) obeys
16510
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t~v!'AtuS v2
Eg

2 D S v2
Eg

2 D
1BtuS 2v2

Eg

2 D S 2v2
Eg

2 D , ~6!

whereAt andBt are constants,u(x) is the unit step function
and Eg is the band gap. On the other hand, the interact
DOS @r int(v)[2(1/p)ImG(v)# at T50 behaves as19

r int~v!'AuS v2
Eg

2 DAUv2
Eg

2 U
1BuS 2v2

Eg

2 DAU2v2
Eg

2 U, ~7!

whereA andB are again constants. Note, that at finite te
peratures the expressions in Eqs.~6! and~7! are modified by
a temperature-dependent shift in the chemical potentialv
→v1m2mT50). This difference in behavior oft(v) and
r int(v) in Eqs. ~6! and ~7! arises from the extra velocity
squared terms int(v) which modify the behavior at the
band edges. Hence,t(v)Þt0r int(v) which would be the
simplest approximation.

Oncet(v) is known, we can compute the transport coe
ficients Li j , according to the Jonson-Mahan theorem20 ~see
also Ref. 7!,

Li j 5
s0

e2E2`

`

dvS 2
d f~v!

dv D t~v!v i 1 j 22, ~8!

wheres0 has units of conductivitye2/ha, anda is a length
scale that cannot be independently determined on the B
lattice. Here, f (v)51/@11exp(v/kBT)# is the Fermi-Dirac
distribution. Thermoelectric characteristics can be obtain
once these transport coefficients are determined. Thus,

sdc5e2L11, ~9!

S52
kB

ueuT
L12

L11
, ~10!

ke5
kB

2

T FL222
L12L21

L11
G , ~11!

ZT5
L12

2

L11L222L12
2

, ~12!

and

L5S e

kB
D 2 ke

sdcT
5

L11L222L12
2

L11
2 T2

. ~13!

Here, sdc and ke are the electric and thermal~electronic
part! conductivities, respectively,S is the thermopower,ZT
is the thermoelectric figure-of-merit, andL is the Lorenz
number. Note that the lattice contribution to the thermal co
ductivity has been neglected here.
5-2
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At low temperature, in the correlated insulator, we c
determine analytic expressions for the electronic transp
First, note thatDm5m2mT50, the change in chemical po
tential with temperature, is a linear function to leading ord

Dm5
T

2
lnS B

AD1O~T3/2!. ~14!

Let us denote

a5AtAB

A
, b5BtAA

B
, ~15!

then the thermoelectric characteristics follow as

sdc5s0e2bEg/2@T~a1b!1O~T3/2!#, ~16!

S52
kB

ueu
a2b

a1b

Eg

2T
1O~T21/2!, ~17!

ke5
s0kB

2

e2 e2bEg/2F ab

a1b
Eg

21O~T1/2!G , ~18!

L5
s0

e2

ab

~a1b!2S Eg

T D 2

1O~T23/2!, ~19!

and

ZT5
~a2b!2

4ab
1O~T1/2!, ~20!

with b51/kBT. Therefore, at low temperatures, the the
mopowerS and Lorenz numberL diverge as 1/T and 1/T2,
respectively. Then,sdc and ke assume exponentially sma
values, andZT approaches a nonzero constant~in the metal-
lic phaseZT vanishes asT2). A divergence of the ther-
mopower indicates that the linear-response regime bre
down in the zero-temperature limit, which follows from th
logarithmic divergence of the thermal emfE5*T1

T2SdT, when

a linear temperature gradient is applied.

FIG. 1. Thermoelectric figure-of-merit as a function ofU at T
50 for the Falicov-Kimball model atre512w1, and w150.05
~solid!, 0.07 ~dashed!, 0.1 ~dotted!, 0.2 ~chain-dotted!, and 0.3
~long-dashed!.
16510
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Now we show our numerical results. In Fig. 1 we prese
the results for the thermoelectric figure-of-meritZT at T
50 as a function ofU for several different values ofw1. For
smallU ~in a metal! ZT vanishes asT→0. As the gap opens
ZT starts to grow linearly withU. It is clear that the asym-
metry of the interacting DOS, which increases asw1 differs
from 0.5 brings about larger values ofZT for a givenU. The
closerw1 is to zero or unity the largerZT is. Our numerical
results suggest that zero-temperature values ofZT can be
made as large as desired by choosing proper values ofU and
w1. This result is, however, undermined by the fact that co
ductivity is exponentially small for low temperatures@Eq.
~16!#, so a high voltage would be needed to operate the
vice. Note that on the hypercubic lattice8 ZT→0 asT→0 in
both the metal and the insulator.

Figure 2 shows the thermoelectric figure-of-merit and
Lorenz number as functions of temperature forU52. The
temperature scalet* can be estimated from a material
bandwidth, equating it to the noninteracting bandwidth 4t*
in our model. For example, for a strongly correlated mate
with a bandwidth of 1 eV,T5t* corresponds to 3000 K. A
half filling U52 is the critical value of the Coulomb inter
action for the metal-insulator transition and the criticalUc
decreases asw1 changes from 0.5.~For other values ofU
.Uc the temperature dependence of all thermoelectric
rameters behaves similarly, with only quantitative diffe
ences.! The thermoelectric figure-of-merit grows monoton
cally with temperature and reaches large values at h
temperature. The low-temperature peak found close to
filling on the hypercubic lattice8 does not occur on the Beth
lattice. The largest values ofL are achieved at low tempera
tures in the insulating phase, while in the metallic phase,
Lorenz number has a maximum at finite temperatures.

The temperature dependence of the electric conducti
sdc , the electronic part of the thermal conductivityke , and
the thermopowerS for U52 and variousw1 are shown in
Fig. 3. Bothsdc andke are exponentially small at low tem
peratures in agreement with the analytical expressions
Eqs. ~16! and ~18!, reach a maximum, and then decrease

FIG. 2. ~a! Thermoelectric figure-of-merit and~b! the Lorenz
number for the Falicov-Kimball model atU52, re512w1, and
w150.5 ~solid!, 0.4 ~dashed!, 0.3 ~chain-dotted!, 0.2 ~dotted!, and
0.1 ~long-dashed!.
5-3
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higher temperatures. Larger maximum values ofke are
achieved closer to half filling, contrary to the behavior
sdc , where larger maximum values are reached away fr
w150.5. The thermopower increases away from half filli
as well, and exactly vanishes forw150.5 ~due to particle-
hole symmetry!. It diverges atT50, according to Eq.~17!.
Also, the thermopower is positive, indicating holelike tran
port for w1,0.5, and it satisfies the relationS(w1 ,U,T)5
2S(12w1 ,U,T) from particle-hole symmetry.

A comment is in order about the influence of the n
glected lattice component of the thermal conductivity. At lo
temperatures (T well below the Debye temperatureQD) the
lattice contribution to the thermal conductivitykL
decreases21 asT3. At the same time, the electronic contrib
tion ke is exponentially small, according to Eq.~18!. As a
consequence, the lattice component is likely to dominate

FIG. 3. ~a! Electric conductivity,~b! electronic contribution to
the thermal conductivity, and~c! thermopower for the Falicov-
Kimball model at U52, re512w1, and w150.5 ~solid!, 0.4
~dashed!, 0.3 ~chain-dotted!, 0.2 ~dotted!, and 0.1~long-dashed!.
rf
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thermal conductivity and, therefore, will reduce the value
ZT. On the other hand, at high temperatures (T@QD) the
rate of decline of the lattice component is21 kL;1/Tx, where
x is between 1 and 2. The derivation of the precise beha
is rather complex, related to the competition between cu
and quartic anharmonic scattering processes.22 The important
point, however, is that at the same timeke assumes large
values and should become dominant, allowing the high v
ues ofZT to be experimentally achievable.

In summary, we have analyzed the thermal transport pr
erties of strongly correlated materials within the Falico
Kimball model on the Bethe lattice. Significant values ofZT
can be obtained for both low- and high-temperature regim
contrary to the hypercubic lattice case, whereZT declines at
high temperatures. On the other hand,ke grows linearly at
high temperature on the hypercubic lattice, while on the B
the lattice it decreases. The behavior of the interacting d
sity of statesr int(v) as well as that of the scattering tim
t(v) suggest that the results obtained on the Bethe lattice
closer to what happens in real materials. However, wh
high ZT values are necessary for practical applications, th
are not sufficient to guarantee a viable device. In order
take advantage of these properties, one needs to be ab
achieve appreciable values of the current densities. Since
conductivity approaches zero forT→0, the feasibility of
thermoelectric devices based on strongly correlated mate
described by this Falicov-Kimball model is questionable
low temperatures. At high temperatures, judging by the h
values ofZT and lower lattice contribution to the therma
conductivity, it may be possible to employ these materials
power generation applications.
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