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Charge-transfer metal-insulator transitions in the spin-1
2 Falicov-Kimball model

Woonki Chung and J. K. Freericks
Department of Physics, Georgetown University, Washington, DC 20057-0995

~Received 25 November 1997!

The spin-12 Falicov-Kimball model is solved exactly on an infinite-coordination-number Bethe lattice in the
thermodynamic limit. This model is a paradigm for a charge-transfer metal-insulator transition, where the
occupancy of localized and delocalized electronic orbitals rapidly changes at the metal-insulator transition
~rather than the character of the electronic states changing from insulating to metallic as in a Mott-Hubbard
transition!. The exact solution displays both continuous and discontinuous~first-order! transitions.
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I. INTRODUCTION

The Falicov-Kimball model~FKM! ~Ref. 1! is the sim-
plest model for a charge-transfer metal-insulator transiti
In this model there are two types of electronic states:~i!
localizedf or d orbitals which have a negligible overlap wit
neighboring electronic orbitals but possess a strong on
Coulomb repulsion~usually taken to be infinite!, and ~ii !
delocalized conduction-band orbitals in which the Coulo
repulsion between two conduction electrons is neglec
The only ‘‘dynamic’’ Coulomb interaction that is included
the Coulomb repulsion between a conduction electron an
localized electron that occupy the same lattice site. T
metal-insulator transition takes place when there is a ra
change in the thermodynamic occupation of the electron
els as a function of temperature~or some other thermody
namic variable such as pressure!. Hence an insulator~or
semiconductor!, which has most electrons lying in the loca
ized states, rapidly changes its character to a metal as
electronic charge transfers from the localized levels to
conduction band. This transition is similar to the liquid-g
phase transition, in which the density changes abruptly at
first-order transition temperature, or smoothly varies wh
the temperature is above the critical point. Here it is
density of electrons in the conduction band that change
the transition.

It was originally thought that this model described t
most important physics behind the metal-insulator transiti
in a variety of transition-metal and rare-earth compoun
These materials~such as SmB6, V 2O3, Ti 2O3, NiS, etc.!
exhibit a variety of metal-insulator transitions with eith
continuous or discontinuous changes in the conductivity
curring as the temperature is varied. This opinion, howev
was not shared by everyone, since most of these mate
simultaneously exhibit structural and metal-insulator ph
transitions, and because the FKM ignores all effects aris
from the hybridization between the localized a
conduction-band orbitals~such as the Kondo effect, and th
screening of the localized moments!. It remained unclear
whether it was the electronic system, modeled by the FK
570163-1829/98/57~19!/11955~7!/$15.00
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that was driving the transition, or whether it was driven
other ~electron-phonon or hybridization! effects.

Furthermore, there are competing scenarios for me
insulator transitions. In the Mott-Hubbard scenario,2 it is the
electron-electron correlations that changethe character of
the electrons~within a single band! from an insulator to a
conductor. In the Anderson picture,3 however, it is disorder
that produces states that are localized and delocalized~within
a single band!, and the metal-insulator transition takes pla
by adjusting the Fermi level between the localized and de
calized states.

Recently, however, a series of experiments4 have been
performed on NiI2, which appears to be a paradigm for
charge-transfer metal-insulator transition as described by
FKM. In this material, the Ni ions donate one electron
each of the neighboring I ions, filling the iodinep shell. The
Fermi level lies within thed band of the Ni ions. This ma-
terial is an insulator because of the strong electron corr
tions within thed band~which also lead to antiferromagneti
order at low temperatures!. As the pressure is increased, th
Néel temperature increases, and then disappears at the
point where the conductivity has a discontinuous increase
two orders of magnitude. Detailed x-ray-diffraction studi
showed that there was no structural phase transition oc
ring at the metal-insulator transition. Instead, the experim
tal evidence points toward a transfer of charge from th
ions to the Ni ions, which quench the local moments~chang-
ing Ni 21 to Ni 1), and leave behind conduction holes in th
iodine p band. Such a scenario is described by a FKM.5

The theoretical side of the FKM has also been controv
sial. The original solution of the model1 involved just a
mean-field analysis of the interband Coulomb interacti
That approximate solution found both continuous and d
continuous metal-insulator transitions. Later, an approxim
version of the coherent potential approximation~CPA! was
applied to the model by different groups, and produced c
flicting results:6,7 the first-order metal-insulator transition
were obtained in one solution;6 while only continuous tran-
sitions were obtained in the other solution.7 Hence it is im-
portant to be able to solve the FKM in an approximation-fr
11 955 © 1998 The American Physical Society
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11 956 57WOONKI CHUNG AND J. K. FREERICKS
fashion ~and in the thermodynamic limit!, to resolve the
question of whether or not it contains discontinuous me
insulator transitions.

We present an exact solution of the simplest spi1
2

Falicov-Kimball model on an infinite-coordination Bethe la
tice ~in the thermodynamic limit!. We find that the solution
possesses both continuous and discontinuous metal-insu
transitions. In Sec. II, we describe the formalism used
solving the problem, and describe the numerical techniq
employed. In Sec. III, we present our results, and end w
our conclusions in Sec. IV.

II. FORMALISM

The FKM consists of two types of electrons: a localiz
~dispersionless! valence band and a conduction band~sepa-
rated by an energy gapD). The Fermi level lies within the
energy gap at zero temperature, so that all of the electroa
priori occupy the localized valence band, and the system
an insulator. Hence the FKM was originally described with
an electron-hole picture, where one considers holes wi
the valence band. The valence holes have a direct Coul
repulsion U f̃ f̃ , which disfavors two holes occupying th
same localized orbital. In addition, there is an interband
site electron-hole Coulomb interaction (2U,0) which
drives the charge-transfer metal-insulator transitions. T
Coulomb interaction is attractive, because the electron
hole have opposite charge. The resulting Hamiltonian is

H5(
k,s

Fe~k!1D1
W

2 Gdk,s
† dk,s2U (

i ,ss8
dis

† dis f̃ is8
† f̃ is8

1U f̃ f̃ (
i

f̃ i↑
† f̃ i↑ f̃ i↓

† f̃ i↓ , ~1!

wheredk,s
† (dk,s) is the creation~annihilation! operator for a

conduction electron of wave vectork and spins, e(k) is the
dispersion of the conduction band~with bandwidthW), and
f̃ is

† ( f̃ is) is the creation~annihilation! operator for a local-
ized hole at lattice sitei ~the on-site energy of the localize
hole is chosen as the origin of the energy axis!. SinceU f̃ f̃ is
large1 for most localized levels, we choose the limit whe
U f̃ f̃→`, and restrict the number off holes per site ton f̃
<1. Since thed electrons in the conduction band origina
by thermal excitation from thef band, their number is con
strained tond5n f̃ in order to conserve the total number
electrons.

We have found it to be more convenient for our numeri
calculations to study the model in the particle picture rat
than in the original hole picture given in Eq.~1!. We employ
a particle-hole transformation (f̃ is→ f is

† and f̃ is
† f̃ is→1

2 f is
† f is), and represent the kinetic energy in the localiz

basis to transform the Hamiltonian into

H52(
i j ,s

t i j dis
† dj s1Ef(

i ,s
f is

† f is2m(
i ,s

~dis
† dis1 f is

† f is!

1U (
i ,ss8

dis
† dis f is8

† f is81U f f(
i

f i↑
† f i↑ f i↓

† f i↓ , ~2!
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wheredis
† (dis) is the creation~annihilation! operator for a

conduction-band electron of spins at site i , t i j is the hop-
ping matrix between lattice sitesi and j @which yields the
band structuree(k)#, Ef5U2D2W/2 is the localized elec-
tron site energy measured from the middle of the conduc
band, andU f f is the on-site Coulomb repulsion betweenf
electrons. A chemical potentialm is introduced to satisfy the
constraintnd1nf51 asU f f→`. This Hamiltonian has also
been used as a model for intermediate-valence problems8 as
a thermodynamic model for an annealed binary alloy,9 as a
simplified Hubbard model,10 and as a model for metamag
netism and anomalous magnetic response11 ~when a mag-
netic field is added!.

We choose to solve the FKM in the infinite-coordinatio
number limit following the method of exact solution deve
oped by Brandt and Mielsch12 and expanded by Freerick
and Zlatić.11 In the infinite-coordination-number limit, the
local approximation becomes exact, implying that one c
neglect the momentum dependence of the irreducible s
energy and the irreducible vertex functions, but one need
determine the frequency dependence. Hence the problem
the lattice can be mapped onto a problem on a single site
coupled to an effective medium, which represents the
namical information of all of the other sites of the lattic
The effective medium needs to be determined s
consistently in order to solve the lattice problem exactly.

We begin with the local Green’s function of the condu
tion electrons for each spin,G( ivn)[Gn evaluated at the
fermionic Matsubara frequenciesvn5(2n11)pkBT, and
express it explicitly in terms of the ‘‘bare’’ Green’s functio
G0( ivn) ~which contains all of the dynamical information o
the other sites in the lattice!:

Gn5
12nf

G0
21~ ivn!

1
nf

G0
21~ ivn!2U

, ~3!

where

nf5F11q exp$~Ef2m2U !/kBT%

3)
n

$12UG0~ ivn!%21G21

. ~4!

Hereq5(2J011)/(2J11) is the ratio of the spin degenera
cies without (J0) and with (J) an f electron at a lattice site
and we takeq5 1

2. ~This is a different value from the origina
FKM work, which tookq52. We do not expect the result
to depend strongly on the value ofq.! The ‘‘bare’’ Green’s
function also satisfies the usual Dyson equation

G0
21~ ivn!5Gn

211Sn , ~5!

which can be viewed as a definition of the self-ener
S( ivn)[Sn . The loop for determining the Green’s func
tions is completed by evaluating the self-consistency eq
tion by summing the momentum-dependent Green’s func
over all momenta@i.e., integrating over the noninteractin
density of statesD(e)#,

Gn5E
2`

`

de
D~e!

ivn1m2e~k!2Sn
, ~6!
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yielding an exact solution of the model.
The algorithm for solving the FKM is the same as th

used for numerically solving the Hubbard model:13 ~i! Begin
with an initial self-energy Sn(init.) @we chose either
Sn(init.)50, or we interpolated from a higher-temperatu
run#; ~ii ! use Eq.~6! to find Gn ; ~iii ! then use Eq.~5! to find
G0( ivn). ~iv! Next determinenf from Eq.~4!, and~v! deter-
mine a newGn from Eq. ~3!. ~vi! Finally, use Eq.~5! with
the new Green’s function and the old ‘‘bare’’ Green’s fun
tion to extract a new self-energy, and~vii ! go back to step~ii !
to repeat the iteration until convergence is reached.

Since we are interested in dynamical properties, we a
need to solve for the retarded Green’s functions on the
axis. We do this by first performing an imaginary-axis c
culation to find the filling of thef electrons (nf), and then
solving the analytically continued equations~3!, ~5!, and~6!
where the Matsubara frequencies are simply replaced by
real frequencies (ivn→v1 id). Convergence of these equ
tions is rapid under iteration on both the real and imagin
axes~less than 100 iterations on average for a converge
of the self energy to one part in 109 on the imaginary axis,
and to one part in 103 on the real axis!.

Note that the self-consistent equations for fixednf , i.e.,
Eqs.~3!, ~5!, and~6!, are identical to those employed in th
CPA. However,nf is explicitly determined by Eq.~4! in the
infinite-coordination-number limit, while, in the CPA, it i
determined thermodynamically by minimizing the trial fre
energy6,7 FCPA@nf # as a function ofnf :

FCPA@nf #522kBTE
2`

`

de A~e! ln~11e2e/kBT!

1S m2U1D1
W

2 D ~12nf !

1kBTFnf ln nf1~12nf !ln
12nf

q G , ~7!

which, for the conduction electrons, has the form of a n
interacting electron system with the noninteracting density
states D(e) replaced by the interacting one,A(e)5
(21/p)ImG(e). Heree is measured from the chemical po
tentialm. Since the conduction electrons are effectively no
interacting for fixed value ofnf ~Ref. 14! ~i.e., the interacting
density of states for fixednf does not vary with temperature!,
the trial free energy in Eq.~7! is also exact. Naturally, thenf
obtained in the CPA by minimizing the trial free energ
agrees with thenf found within the Brandt-Mielsch formal
ism using Eq.~4!.

We solve the model on an infinite-coordination-numb
Bethe lattice. As the coordination numberZ increases, the
hopping integral t between the nearest-neighbor sites
scaled ast→t* /AZ in order to have a nontrivial kinetic en
ergy, and the density of states for the noninteracting sys
becomes Wigner’s semicircle withW54t* :

D~e!5
1

2pt* 2
A4t* 22e2. ~8!
t
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We take t* as our energy unit (t* 51). The integral that
defines the local Green’s function@Eq. ~6!# can now be per-
formed analytically, to yield

G~z!5
z̃

2t* 2
2 sgn@ Im~ z̃ !#

A z̃224t* 2

2t* 2
, ~9!

with z̃5z1m2S(z), andz an arbitrary complex number.
In addition, one can also calculate susceptibilities

charge-density-wave or spin-density-wave orders. Wh
these susceptibilities become infinite, the system ha
second-order phase transition to an ordered state. We
not describe in detail how to calculate such susceptibilit
here ~a discussion has appeared already12,11!, because the
system never underwent any second-order phase transi
for all of the parameters we considered in this work.

III. RESULTS

We begin our discussion in the low-conduction-ban
density limit (nd→0) which leads to the ‘‘excitonic phase’
considered by Ramirez, Falicov, and Kimball.1 The excitons
~bound electron-hole pairs which do not contribute to the
conductivity! can be shown to form whenU is larger than a
critical valueUc . The critical value ofU was determined by
solving the single-exciton problem~in the hole picture!,1

where the Hamiltonian in Eq.~1! with one hole and one
electron produces a bound state just below the conduc
band. This occurs when the Green’s function, evaluated
the real axis at the lower band edge, is equal to21/U, or

1

Uc
5E

22

2

de
D~e!

e121 id
52G~221 id!51, ~10!

for the infinite-coordination-number Bethe lattice after usi
Eq. ~9!. This is the same critical value ofU at which the
interacting density of states splits into two bands asnd→0.14

However, it is not clear whether this simple criterion f
exciton formation~based on the single-exciton problem! is
sufficient to create an excitonic insulator when t
conduction-electron density is small, but finite. Thus we a
lytically determine the conduction-band Green’s functions
finite temperatures and finite, but small electron density.
find the solutions separate into two regimes: a weak-coup
regime withU,1 and a strong-coupling regime withU.1.

The functional form of the self-energy is expressed a
function of the local Green’s function and thed-electron
concentration as12

S~v!5
U

2
2

1

2G~v!

3$16A112~122nd!UG~v!1U2G2~v!%,

~11!

where the sign is chosen for each frequency in such a
that the self-energy is analytic. Since we are interested in
insulating phase (nd→0), we expand Eq.~11! aboutnd50
by factoring out (11UG)2 from the square root. IfU,1
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~single-band regime!, the factor 11UG(v) never vanishes
@from Eq. ~10!#, so we must choose the negative sign,
order to have a vanishing self-energy asU→0. If U.1
~two-band regime!, we must choose the positive sign forv
,22 in order to ensure analyticity~i.e., the right sign for Im
S), since 11UG(v) is negative there. Consequently, w
choose the minus sign forU,1 ~single-band regime! and the
plus sign forU.1 ~two-band regime!. Hence, in the limit
whereundU/@11UG(v)#u!1, we have
nc

.
t
on
-

d
th
d

pin
h
a

su
d

n
m

E

S~v;nd→0!5H U2
ndU

11UG~v!
if U,1

2
1

G~v!
1

ndU

11UG~v!
if U.1.

~12!
Combining this with Eq.~9!, we obtain the functional

form of the local Green’s function for each case. The res
ing form is
G~v;nd→0!55 Gnon~v2U !2
ndUGnon~v2U !

@11UGnon~v2U !#A~v2U !224
if U,1

2
1

U
1ndGnonS v1

1

U
;t*→Andt* D if U.1,

~13!
ed

er-
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where we used the noninteracting form of the Green’s fu
tion, found in Eq.~9!, with z̃→v1 id. Note that the Green’s
function for U.1 represents only the split-off lower band

WhenU,1, as expected, the Green’s function has jus
perturbed form from the noninteracting Green’s functi
which is shifted byU, Gnon(v2U), and the gap to particle
hole excitations atT50 remains asD. Thus the number of
the conduction electronsnd at finite temperatures is activate
as in a semiconductor with a fixed energy gap. On the o
hand, whenU.1, the Green’s function for the lower ban
becomes a band-narrowed (t*→Andt* ) noninteracting
Green’s function14 ~plus a constant shift by21/U), and has
a weightnd ~the upper band has weight 12nd). The unit-
charge condition (nf1nd51) implies that this lower band is
always half-filled, and the energy of the system~in the limit
T→0 andnd fixed! becomes

Einsulator→~12nd!Ef12E
2~1/U !22And

21/U

de

3eF2
1

p
ImG~v;nd→0,U.1!G

5U2D221ndS D122U2
1

U
2

8

3p
AndD , ~14!

where the factor of 2 in the integral arises from the s
degeneracy of the conduction band. We will see below t
this strong-coupling phase is not an excitonic insulator,
believed by Ramirez, Falicov, and Kimball1 for any finite
temperature. It is interesting to note, though, that this in
lating limit @where all of the electrons lie in the localize
states with an empty conduction band (nd50)# is noninter-
acting atT50, because there are no conduction electro
and hence the localized electrons do not feel any Coulo
repulsion. The ground-state energy isEinsulator5U2D22.
The gap to particle-hole excitations~at T50 for the insulat-
ing phase! is D for U,1, but decreases toward zero asD
122U2(1/U) for U>1. At the critical value ofU, where
the gap closes, one can see from the insulator energy in
-

a

er

at
s

-

s,
b

q.

~14! that the insulating phase is unstable ifD122U
2(1/U),0 „or equivalently if U.11(D/2)
1AD@11(D/4)#… since the ground-state energy is lower
for small, but nonzerond .

There is another phase of the FKM that is also nonint
acting. It is the metallic phase~for largeU) where the elec-
trons ~one per site! in the valence band are all promoted
the conduction band (nd51). In this case, the conductio
band ‘‘feels’’ no Coulomb repulsion, because there are nf
electrons to scatter them. Thus the system is characterize
the half-filled noninteracting conduction band. The energy
this metallic phase is then

Emetal52E
22

0

de e D~e!52
8

3p
. ~15!

Therefore, atT50, there is a transition from an insulatin
ground state to a metallic ground state whenEmetal
,Einsulator, or

U.D122
8

3p
. ~16!

Surprisingly, there is a small region ofU, D122(8/3p)
.U.11(D/2)1AD@11(D/4)#, and a small region of the
gap energy 0,D,(3p/8)@12(8/3p)#2'0.026 923, where
the ground state isneither metallic nor insulating. In this
nontrivial region, there must exist either an intermedia
valence state, or a charge-density-wave-ordered insula
Detailed studies in this regime will appear in a future pub
cation.

In this paper, we are interested in examining the disc
tinuous phase transitions between states that are conne
either to the insulating phase or to the metallic phase aT
→0. So we choose the bare gap to be large enoughD
51), in order to be sufficiently far from any intermedia
valence or charge-density-wave ordered phases. We varU,
and for each value ofU calculate the thermodynamic prop
erties of the system. We expect interesting behavior to oc
for U close to the metal-insulator transition point atT50, or
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U'2.151 17@from Eq. ~16!#. We also expect simple sem
conducting behavior~with a gapD) to occur forU,1.

In Fig. 1, we present our numerical results ofnd ~vertical
axis! as a function of 1/T ~horizontal axis! for different val-
ues of U, when D51. The conduction-band fillingnd is
plotted on a logarithmic scale, so that the linear behavio
1/T indicates activated carriers as in a semiconductor~see
U50.5). On the other hand, the metallic limit obtained
Eq. ~16! for U.2.151 17 also agrees with the numerical r
sults, since the system remains metallic for all temperatu
Figure 1 shows both discontinuous (U52.150 and 2.140!
and continuous (U52.120, 2.000, and 1.700! metal-insulator
transitions. In the discontinuous transitions, the conducti
electron concentrationnd follows the metallic solutions a
high temperatures, but drops to the insulating solution a
sharp transition temperature.~For U52.150, nd drops by
two orders of magnitude as the temperature changes
;1023.! This electron concentration can be viewed as
approximation of the electrical conductivity, if we assum
that in a real material there is also static disorder~from de-
fects, impurities, etc.! so that at low temperatures the rela
ation timet approaches a constant and the conductivity
proportional tondt. We also calculate theintrinsic conduc-
tivity of the FKM below, assuming that all of the scatterin
of the conduction electrons arises from the localizedf elec-
trons.

The conduction-electron density of states,A(v)5
2(1/p)ImG(v) ~where v is measured from the chemica
potentialm) provides additional information about the meta
insulator transitions. We calculate it by solving for th
Green’s functions on the real axis. Figure 2 plotsA(v) for
some of the representative cases from Fig. 1 at various t
peratures:~a! the metallic regime (U52.160), where the
half-filled lower band increases in size as the tempera
decreases;~b! the discontinuous metal-insulator-transition r

FIG. 1. Number density of the conduction electronsnd ~on a
logarithmic scale! plotted as a function oft* /T for various values of
U, whereD51.0t* . Four different regimes are shown:~a! the me-
tallic regime for allT (U52.160t* and 2.155t* ); ~b! the discon-
tinuous metal-insulator-transition regime (U52.150t* and
2.140t* ); ~c! the continuous metal-insulator-transition regime (U
52.120t* , 2.000t* , and 1.700t* ); and ~d! the semiconducting re
gime (U50.500t* ).
n

-
s.

-

a

by
n

s

m-

re

gime, where the corresponding density of states in the lo
band discontinuously collapses to the insulating phase
critical temperatureTc (0.060,Tc,0.065 for U52.150);
~c! the continuous metal-insulator-transition regime, whe
the lower band is continuously reduced as the tempera
decreases; and~d! the semiconducting regime, wherend has
an activated behavior, andA(v) displays a finite pseudoga
from the perturbed single conduction band. Note that all
the temperature dependence of the interacting density
states arises from the temperature dependence ofnd , since
the FKM with fixed nd and nf has a temperature-
independentdensity of states.14

The exact solution of the FKM also allows the optic
conductivity to be calculated from the following formula:15,16

s~v!5s0pE
2`

`

dv8E
2`

`

de~42e2!D~e!A~e,v8!

3A~e,v81v!
f ~v8!2 f ~v81v!

v
, ~17!

where f (v) is the Fermi distribution function, ands0 gives
the conductivity unit. This formula for the conductivity is th
result of a derivation,16 which corrects the error of using th
formula derived for the hypercubic lattice15 by adding the
factor 42e2. ~In most cases, the addition of this factor do
not significantly change the qualitative features of the c
ductivity.! The dc conductivitysdc is then found from Eq.
~17! in the limit v→0.

Substituting the spectral function into Eq.~17!, and as-
suming that the self-energy has a negligible frequency
pendence near the Fermi level, produces the following l
iting form for the dc conductivity withT50 andnd→0 ~i.e.,
for the insulating phase!:

FIG. 2. Density of statesA(v) at different temperatures fo
some representative cases of Fig. 1:~a! U52.160t* , ~b! U
52.150t* , ~c! U52.120t* , and ~d! U50.500t* when D51.0t* .
Here the energyv is measured from the chemical potentialm ~i.e.,
the Fermi level lies atv50).
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sdc~T50;nd→0!52
s0$42@m2ReS~0!#2%3/2

4pImS~0!
,

~18!

which is proportional to the product of theintrinsic relax-
ation time (;1/ImS) and the ‘‘conductivity’’ density of
states at the Fermi surface. Calculating the self-energyS(0)
from Eqs.~12! and ~13! with the proper chemical potentia
for each case (m5U221dm for U,1, andm521/U for
U.1), we obtain

sdc~T50;nd→0!55
s0S 1

U
21D 2S 9

2pnd
D 1/3

if U,1

s0A42S 11
1

U
D 3/2

4p~U21!And

if U.1.

~19!

Thus theintrinsic sdc ~which is obtained from the pure elec
tronic system of the model! in the insulating phase atT50
actually divergesasnd→0. Even in the strong-coupling re
gime (U.1), the electron-hole excitations do not bind
form an excitonic insulator.@The dc conductivity actually
diverges faster (;1/And) than in the weak-coupling regim
(;1/nd

1/3) asnd→0.] Therefore, the excitonic phase consi
ered by Ramirez, Falicov, and Kimball1 does not exist on the
infinite-coordination-number Bethe lattice. Moreover, the
vergence of theintrinsic sdc occurs because the relaxatio
time t increases more rapidly than the ‘‘conductivity’’ den
sity of states at the Fermi surface decreases whennd→0 @see
Eq. ~18!#. But in a real material the relaxation time can nev
diverge, because there always exists some static diso
which forces the relaxation time to approach a constan
low temperature. Hence the dc conductivity will approa
zero asnd→0 in any real material. In Fig. 3, we present o
numerical results of theintrinsic dc conductivity as a func-

FIG. 3. Theintrinsic dc conductivitysdc of the Falicov-Kimball
model as a function oft* /T for the corresponding values ofU
shown in Fig. 1. Note how the intrinsic conductivity diverges f
low temperature and low electron concentration, as described in
text.
-

r
er

at

tion of 1/T for the corresponding values ofU in Fig. 1. The
conductivity in Fig. 3, with moderatend , appears to be pro
portional to the electron concentration shown in Fig. 1, b
sdc starts to diverge as temperature decreases, andnd be-
comes small enough for the limiting form in Eq.~19! to hold.
~For example, see the casesU52.000 and 1.700. ForU
50.500, sdc is always in the low-density limit.! Thus the
relevant dc conductivity for a real material is approximat
better byndt with a constant relaxation ratet, rather than
using theintrinsic dc conductivity.

Finally, we examine the discontinuous metal-insula
transitions in more detail to show that they are indeed fi
order phase transitions. We do this by employing the C
formalism to calculate the trial free energy as a function
nd ~or, equivalently,nf512nd) at different temperatures
The minimum of the trial free energy determines the therm
dynamic electron density. We first solve the real-axis se
consistent equations for each value of 0,nd,1 to find the
interacting density of statesA(v). Then we evaluate the ex
act form of the free energy in Eq.~7! as a function ofnd , and
repeat the process for different temperatures. We presen
results near the critical temperature in Fig. 4, whereU
52.150 andD51. The free energy has a double minimu
near the critical temperature (0.060,Tc,0.065), and, as the
temperature is lowered, the conduction-electron density
continuously changes as the global minimum switches
tween the two local minima~indicating a first-order transi-
tion!. At Tc , where the two minima are degenerate, t
system exhibits phase coexistence between the insulating
metallic phases. In the region where the change innd is
continuous, the free energy does not have multiple minim
but rather the minimum of the free energy varies smoot
with nd as the temperature is changed. We also verified

he
FIG. 4. Free energy as a function of the number density of

conduction electrons near the first-order transition temperature.
parameters areD51.0t* andU52.150t* . The free energy has two
local minima with the global minimum switching between the
local minima as temperature varies through the critical tempera
(0.060,Tc,0.065), indicating a first-order transition.
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the minimum of the CPA form of the free energy agrees w
the form for the free energy determined by Brandt a
Mielsch.12

IV. CONCLUSIONS

In conclusion, we have exactly solved the spin-1
2 Falicov-

Kimball model on an infinite-coordination-number Bethe la
tice, which is shown to have both continuous and disconti
ous ~first-order! charge-transfer metal-insulator transition
By being able to solve the model exactly, we have clarifi
the theoretical controversy of the model, and have pro
that the model does display first-order metal-insulator tra
tions. The simplicity of the model, based on only the ele
tronic system~which has both a localized and a conducti
band!, emphasizes the fact that the electronic system it
~the Coulomb interaction between a conduction electron
a localized electron! can cause dramatic discontinuo
charge-transfer metal-insulator transitions without requir
other effects~such as phonons!. We expect our results to
,

n,
-

v

d

-
.
d
n
i-
-

lf
d

g

continue to hold in three dimensions, and to have appli
tions to real materials such as NiI2.

We also found that the intrinsic conductivity~determined
by the scattering of thed electrons off thef electrons! actu-
ally diverges for the ‘‘insulating’’ phases withnd→0, be-
cause the relaxation time grows faster than the density
states at the Fermi level decreases. In a real material,
conductivity will go to zero asnd→0 though, because th
relaxation time is bounded by scattering off of impuritie
We also discovered a small region of parameter space
possesses intermediate-valence or charge-density-wave
der. Further studies of this region are currently underway
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