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Charge-transfer metal-insulator transitions in the spin- Falicov-Kimball model

Woonki Chung and J. K. Freericks
Department of Physics, Georgetown University, Washington, DC 20057-0995
(Received 25 November 1997

The spin% Falicov-Kimball model is solved exactly on an infinite-coordination-number Bethe lattice in the
thermodynamic limit. This model is a paradigm for a charge-transfer metal-insulator transition, where the
occupancy of localized and delocalized electronic orbitals rapidly changes at the metal-insulator transition
(rather than the character of the electronic states changing from insulating to metallic as in a Mott-Hubbard
transition). The exact solution displays both continuous and discontin(finss-orde) transitions.
[S0163-182¢08)02419-9

[. INTRODUCTION that was driving the transition, or whether it was driven by
other (electron-phonon or hybridizatipreffects.
The Falicov-Kimball modelFKM) (Ref. 1) is the sim- Furthermore, there are competing scenarios for metal-

plest model for a charge-transfer metal-insulator transitioninsulator transitions. In the Mott-Hubbard scendribjs the
In this model there are two types of electronic statés: electron-electron correlations that chanipe character of
localizedf or d orbitals which have a negligible overlap with the electrongwithin a single bangfrom an insulator to a
neighboring electronic orbitals but possess a strong on-siteonductor. In the Anderson pictutehowever, it is disorder
Coulomb repulsion(usually taken to be infinije and (ii) that produces states that are localized and delocafizithlin
delocalized conduction-band orbitals in which the Coulomba single bang and the metal-insulator transition takes place
repulsion between two conduction electrons is neglecteddy adjusting the Fermi level between the localized and delo-
The only “dynamic” Coulomb interaction that is included is calized states.
the Coulomb repulsion between a conduction electron and a Recently, however, a series of experiméritave been
localized electron that occupy the same lattice site. Thgerformed on Nib, which appears to be a paradigm for a
metal-insulator transition takes place when there is a rapigharge-transfer metal-insulator transition as described by the
change in the thermodynamic occupation of the electron levFKM. In this material, the Ni ions donate one electron to
els as a function of temperatufer some other thermody- each of the neighboring I ions, filling the iodimpeshell. The
namic variable such as pressuréience an insulatofor  Fermi level lies within thed band of the Ni ions. This ma-
semiconductdr which has most electrons lying in the local- terial is an insulator because of the strong electron correla-
ized states, rapidly changes its character to a metal as th®ns within thed band(which also lead to antiferromagnetic
electronic charge transfers from the localized levels to therder at low temperaturgsAs the pressure is increased, the
conduction band. This transition is similar to the liquid-gasNeel temperature increases, and then disappears at the same
phase transition, in which the density changes abruptly at thpoint where the conductivity has a discontinuous increase by
first-order transition temperature, or smoothly varies wheriwo orders of magnitude. Detailed x-ray-diffraction studies
the temperature is above the critical point. Here it is theshowed that there was no structural phase transition occur-
density of electrons in the conduction band that changes aing at the metal-insulator transition. Instead, the experimen-
the transition. tal evidence points toward a transfer of charge from the |
It was originally thought that this model described theions to the Niions, which quench the local momefuisang-
most important physics behind the metal-insulator transitionsng Ni* to Ni*), and leave behind conduction holes in the
in a variety of transition-metal and rare-earth compoundsiodine p band. Such a scenario is described by a FKM.
These materialgsuch as SmB, V,0;, Ti,O3, NiS, etc) The theoretical side of the FKM has also been controver-
exhibit a variety of metal-insulator transitions with either sial. The original solution of the modeinvolved just a
continuous or discontinuous changes in the conductivity ocmean-field analysis of the interband Coulomb interaction.
curring as the temperature is varied. This opinion, howeverThat approximate solution found both continuous and dis-
was not shared by everyone, since most of these materiatontinuous metal-insulator transitions. Later, an approximate
simultaneously exhibit structural and metal-insulator phaseersion of the coherent potential approximati@PA) was
transitions, and because the FKM ignores all effects arisingpplied to the model by different groups, and produced con-
from the hybridization between the localized andflicting results®’ the first-order metal-insulator transitions
conduction-band orbitalésuch as the Kondo effect, and the were obtained in one solutidhyhile only continuous tran-
screening of the localized momentsdt remained unclear sitions were obtained in the other solutibklence it is im-
whether it was the electronic system, modeled by the FKMportant to be able to solve the FKM in an approximation-free
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fashion (and in the thermodynamic limitto resolve the whered!, (d;,) is the creationannihilation operator for a
question of whether or not it contains discontinuous metalconduction-band electron of spin at sitei, tj; is the hop-
insulator transitions. ping matrix between lattice sitdsandj [which yields the
We present an exact solution of the simplest spin- band structure(k)], E¢=U—A—WI/2 is the localized elec-
Falicov-Kimball model on an infinite-coordination Bethe lat- tron site energy measured from the middle of the conduction
tice (in the thermodynamic limjt We find that the solution band, andU; is the on-site Coulomb repulsion betweén
possesses both continuous and discontinuous metal-insulatgiectrons. A chemical potential is introduced to satisfy the
transitions. In Sec. I, we describe the formalism used inconstraintng+n;=1 asU;— . This Hamiltonian has also
solving the problem, and describe the numerical techniqueseen used as a model for intermediate-valence probiess,
employed. In Sec. lll, we present our results, and end withy thermodynamic model for an annealed binary allag a

our conclusions in Sec. IV. simplified Hubbard modéf and as a model for metamag-
netism and anomalous magnetic respdhgmhen a mag-
Il. FORMALISM netic field is added

We choose to solve the FKM in the infinite-coordination-
The FKM consists of two types of electrons: a localizednumber limit following the method of exact solution devel-
(dispersionlegsvalence band and a conduction baisépa- oped by Brandt and Miels¢hand expanded by Freericks
rated by an energy gafp). The Fermi level lies within the and Zlatic!? In the infinite-coordination-number limit, the
energy gap at zero temperature, so that all of the elecaonslocal approximation becomes exact, implying that one can
priori occupy the localized valence band, and the system iseglect the momentum dependence of the irreducible self-
an insulator. Hence the FKM was originally described withinenergy and the irreducible vertex functions, but one needs to
an electron-hole picture, where one considers holes withigletermine the frequency dependence. Hence the problem on
the valence band. The valence holes have a direct Coulonthe lattice can be mapped onto a problem on a single site, but
repulsionU77, which disfavors two holes occupying the coupled to an effective medium, which represents the dy-
same localized orbital. In addition, there is an interband onnamical information of all of the other sites of the lattice.
site electron-hole Coulomb interaction—{J<<0) which  The effective medium needs to be determined self-
drives the charge-transfer metal-insulator transitions. Theonsistently in order to solve the lattice problem exactly.
Coulomb interaction is attractive, because the electron and We begin with the local Green’s function of the conduc-
hole have opposite charge. The resulting Hamiltonian is  tion electrons for each spirG(i w,)=G,, evaluated at the
fermionic Matsubara frequencies,=(2n+ 1)7kgT, and

W e express it explicitly in terms of the “bare” Green'’s function
H=> |e(k)+A+ > df ,deo—U > dldi i T Go(iw,,) (which contains all of the dynamical information of
Ko i,oo! the other sites in the lattige
+ U??Ei ST NEN 1) 1-n¢ N

()

= +

" Goliwn) Gpliwy)-U’
Wheredly(r (dy ,) is the creatiorannihilation operator fora \yhere
conduction electron of wave vectlrand spino, €(k) is the
dispersion of the conduction bartdith bandwidthw), and

Tl (f.,) is the creatioannihilation operator for a local-

ized hole at lattice sité (the on-site energy of the localized 1

hole is chosen as the origin of the energy ax@&nceU7s7 is % H [1-UGy(iwn) Y| . (4)
large' for most localized levels, we choose the limit where n oL

Ui7—, and restrict the number df holes per site tony
=<1. Since thed electrons in the conduction band originate
by thermal excitation from thé band, their number is con-

zfgtr;ggstonfn'f in-order to conserve the total number of FKM work, which tookqg=2. We do not expect the results

We have found it to be more convenient for our numericaltond?ipindI strongl);i osn tthhee J’S"ﬂ:? gf)s;)rr?ee SgiﬁmGreen S
calculations to study the model in the particle picture ratheJu ction aiso satistie y q
than in the original hole picture given in E(L). We employ Gal(iwn)=G;1+En, (5)

ni=|1+q exg{(E;—u—U)/kgT}

Hereq=(2Jy+1)/(2J+1) is the ratio of the spin degenera-
cies without Jy) and with @) anf electron at a lattice site,
and we takey= 3. (This is a different value from the original

a particle-hole transformationf(,—f/ and T f,,—1

io ic!io

_ T f,,), and represent the kinetic energy in the IocalizedghiCh can be viewed as a definition of the self-energy

(iw,)=%,. The loop for determining the Green’s func-
tions is completed by evaluating the self-consistency equa-
tion by summing the momentum-dependent Green’s function

H=—=St.d'd +E fhe df d. +f ¢ over all momentdi.e., integrating over the noninteracting

E ijYiaYjo f% iclioc M%( ioict figfic) density of state® (e)],

lo

basis to transform the Hamiltonian into

ij,o

* D(e)
+US dtd Ul S fhf 2 :f
i%’ icligligrTio ffEi itTipTipTiy (2 G, _wdeiwn+ﬂ_€(k)_2n, (6)
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yielding an exact solution of the model. We taket* as our energy unittt =1). The integral that
The algorithm for solving the FKM is the same as thatdefines the local Green'’s functid&g. (6)] can now be per-

used for numerically solving the Hubbard mod&li) Begin  formed analytically, to yield

with an initial self-energy 3 ,(init.) [we chose either

3 ,(init.) =0, or we interpolated from a higher-temperature z ~ \z2%—4t*2
run]; (i) use Eq(6) to find G,; (iii) then use Eq(5) to find G(2)= o2 sgrilm(z)] o2 (€)

Go(iwy). (iv) Next determinen; from Eqg. (4), and(v) deter-

mine a newG, from Eq. (3). (vi) Finally, use Eq(5) with  with Z=z+ x—3(z), andz an arbitrary complex number.

the new Green’s function and the old “bare” Green’s func-  |n addition, one can also calculate susceptibilities for

tion to extract a new self-energy, afdi) go back to stefii)  charge-density-wave or spin-density-wave orders. When

to repeat the iteration until convergence is reached. these susceptibilities become infinite, the system has a
Since we are interested in dynamical properties, we alsgecond-order phase transition to an ordered state. We will

need to solve for the retarded Green’s functions on the reaiot describe in detail how to calculate such susceptibilities

axis. We do this by first performing an imaginary-axis cal-here (a discussion has appeared alréady), because the

culation to find the filling of thef electrons (1), and then  system never underwent any second-order phase transitions

solving the analytically continued equatiof®, (5), and(6)  for all of the parameters we considered in this work.
where the Matsubara frequencies are simply replaced by the

real frequenciesi,— w+i0d). Convergence of these equa- lIl. RESULTS
tions is rapid under iteration on both the real and imaginary
axes(less than 100 iterations on average for a convergence We begin our discussion in the low-conduction-band-
of the self energy to one part in 1@n the imaginary axis, density limit (ng—0) which leads to the “excitonic phase”
and to one part in f0on the real axis considered by Ramirez, Falicov, and KimbalThe excitons
Note that the self-consistent equations for fixed i.e.,  (bound electron-hole pairs which do not contribute to the dc
Egs.(3), (5), and(6), are identical to those employed in the conductivity) can be shown to form whed is larger than a
CPA. Howevern; is explicitly determined by Eq4) in the critical valueU . The critical value olJ was determined by
infinite-coordination-number limit, while, in the CPA, it is Solving the single-exciton problerfin the hole picturg*
determined thermodynamically by minimizing the trial free where the Hamiltonian in Eql) with one hole and one
energ;?” FcpalN¢] as a function of; electron produces a bound state just below the conduction
band. This occurs when the Green’s function, evaluated on
the real axis at the lower band edge, is equat-tt/U, or

FcpA[nf]=—2kBTJ de A(€) In(1+e keT)

B Fd D(e) G(-2+i8)=1, (10
W —_— €E———=— — | = ,
+(M—U+A+E)(1—nf) Ue J-2 et2+io

N for the infinite-coordination-number Bethe lattice after using
}, (7)  Eq.(9). This is the same critical value df§ at which the
interacting density of states splits into two bandsigs>0.14
However, it is not clear whether this simple criterion for
which, for the conduction electrons, has the form of a non€xciton formation(based on the single-exciton problefis
interacting electron system with the noninteracting density ofufficient to create an excitonic insulator when the
states D(€) replaced by the interacting oneA(e)= conduction-electron density is small, but finite. Thus we ana-
(—1Um)ImG(e€). Heree is measured from the chemical po- lytically determine the conduction-band Green’s functions at
tential . Since the conduction electrons are effectively non-finite temperatures and finite, but small electron density. We
interacting for fixed value ofi; (Ref. 14 (i.e., the interacting  find the solutions separate into two regimes: a weak-coupling
density of states for fixed; does not vary with temperatyre  "€gime withU<1 and a strong-coupling regime with>1.
the trial free energy in Eq7) is also exact. Naturally, the; The functional form of the self-energy is expressed as a
obtained in the CPA by minimizing the trial free energy function of_ the local Green’s function and tleelectron
agrees with they, found within the Brandt-Mielsch formal- concentration &3
ism using Eq.(4).
We solve the model on an infinite-coordination-number
Bethe lattice. As the coordination numbgrincreases, the S(w)= N

+kgT| ns In ns+(1—ny)In

hopping integralt between the nearest-neighbor sites is 2 2G(w)
scaled ag—t*/+/Z in order to have a nontrivial kinetic en- — 5>

ergy, and the density of states for the noninteracting system X{1=V1+2(1-2n9)UG(w) + U*G*(w)},
becomes Wigner's semicircle with=4t*; (11

where the sign is chosen for each frequency in such a way

that the self-energy is analytic. Since we are interested in the
D(e)= 1 472 &2, (8) insulating phasern(;—0), we expand Eq11) aboutny=0
27t*?2 by factoring out (*UG)? from the square root. 1J<1
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(single-band regime the factor - UG(w) never vanishes ngu
[from Eq. (10)], so we must choose the negative sign, in U—m ifU<1
order to have a vanishing self-energy ds-0. If U>1 S(w;ng—0)=
(two-band regimg we must choose the positive sign fer _ 1 n ngU i U>1
< —2 in order to ensure analyticity.e., the right sign for Im G(w) 1+UG(w) ! '
Y), since HUG(w) is negative there. Consequently, we 12
choose the minus sign far <1 (single-band regimeand the Combining this with Eq.(9), we obtain the functional
plus sign forU>1 (two-band regimg Hence, in the limit form of the local Green'’s function for each case. The result-
where|ngU/[1+UG(w)]|<1, we have ing form is
NgUGpo(@w—U) .
Gow—U)— > if U<1
Glwing—0)= [1+UG{w—U)]V(w—U)"—4 13
1 1 4k * T
—U+ndGn0n(w+U,t —Jngt if U>1,

where we used the noninteracting form of the Green’s func{14) that the insulating phase is unstable A+2—-U

tion, found in Eq.(9), with Z— w+i 8. Note that the Green's —(LU)<0  (or  equivalently if U>1+(A/2)

function for U>1 represents only the split-off lower band. +VA[1+(A/4)]) since the ground-state energy is lowered
WhenU<1, as expected, the Green’s function has just dor small, but nonzeray .

perturbed form from the noninteracting Green’s function There is another phase of the FKM that is also noninter-

which is shifted byU, G,,{w— U), and the gap to particle- acting. It is the metallic phasgor largeU) where the elec-

hole excitations all =0 remains ag\. Thus the number of trons(one per sitgin the valence band are all promoted to

the conduction electrons, at finite temperatures is activated the conduction bandng=1). In this case, the conduction

as in a semiconductor with a fixed energy gap. On the othepand “feels” no Coulomb repulsion, because there aref no

hand, whenU>1, the Green’s function for the lower band electrons to scatter them. Thus the system is characterized by

becomes a band-narrowedt* (-n4t*) noninteracting the half-filled noninteracting conduction band. The energy of

Green'’s functiof* (plus a constant shift by- 1/U), and has  this metallic phase is then

a weightngy (the upper band has weight-Ing). The unit-

charge conditionrf; +ny=1) implies that this lower band is

always half-filled, and the energy of the syst@mthe limit

T—0 andny fixed) becomes

0 8
EmetaF2j72d5 eD(e)=— 3. (15

Therefore, afT=0, there is a transition from an insulating

,1IU .
B ground state to a metallic ground state wh&,ey
Eisuator— (1 nd)Ef+ZJ‘—(1/U)—2VrFG,dE <Einsulator OF
1 8
X el — —=ImMG(w;ng—0U>1) U>A+2— —. (16
T 37
1 8 Surprisingly, there is a small region &f, A+2—(8/3w)
=U-A-2+ng A+2-U~ - g\/”—d> (14 >U>1+(A/2)+JA[1+(A/4)], and a small region of the

gap energy 8CA<(37/8)[1—(8/37)]?~0.026 923, where
where the factor of 2 in the integral arises from the spinthe ground state iseither metallic nor insulatingIn this
degeneracy of the conduction band. We will see below thanontrivial region, there must exist either an intermediate-
this strong-coupling phase is not an excitonic insulator, ayalence state, or a charge-density-wave-ordered insulator.
believed by Ramirez, Falicov, and Kimbaflor any finite  Detailed studies in this regime will appear in a future publi-
temperature. It is interesting to note, though, that this insueation.

lating limit [where all of the electrons lie in the localized In this paper, we are interested in examining the discon-
states with an empty conduction banal;&0)] is noninter-  tinuous phase transitions between states that are connected
acting atT=0, because there are no conduction electronsgither to the insulating phase or to the metallic phasé@ as
and hence the localized electrons do not feel any Coulomb-0. So we choose the bare gap to be large enough (
repulsion. The ground-state energy B$syao=U—A—2. =1), in order to be sufficiently far from any intermediate
The gap to particle-hole excitatiofat T=0 for the insulat- valence or charge-density-wave ordered phases. Welary
ing phasgis A for U<1, but decreases toward zero &4s and for each value df) calculate the thermodynamic prop-
+2—-U—(1/U) for U=1. At the critical value olU, where erties of the system. We expect interesting behavior to occur
the gap closes, one can see from the insulator energy in Efpr U close to the metal-insulator transition pointlat 0, or
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FIG. 1. Number density of the conduction electrans(on a
logarithmic scalgplotted as a function df* /T for various values of FIG. 2. Density of stated\(w) at different temperatures for
U, whereA=1.0t*. Four different regimes are show@ the me-  gome representative cases of Fig. (B U=2.16a*, (b) U
tallic regime for allT (U=2.16aG* and 2.15%*); (b) the discon- =2.150*, (c) U=2.12G*, and (d) U=0.500* when A=1.0t*.

tinuous  metal-insulator-transition  regime U€2.150*  and  Here the energw is measured from the chemical potentiali.e.,
2.14G%); (c) the continuous metal-insulator-transition regime ( he Fermi level lies atr=0).

=2.12Ga*, 2.000*, and 1.70€"); and (d) the semiconducting re-
gime (U=0.50G%).

gime, where the corresponding density of states in the lower
U~2.151 17[from Eq.(16)]. We also expect simple semi- band discontinuously collapses to the insulating phase at a
conducting behaviotwith a gapA) to occur forUu<1. critical temperatureT, (0.060<T.<0.065 for U=2.150);

In Fig. 1, we present our numerical resultsmyf(vertical ~ (c) the continuous metal-insulator-transition regime, where
axig) as a function of I (horizontal axi$ for different val-  the lower band is continuously reduced as the temperature
ues of U, when A=1. The conduction-band fillingy is  decreases; an@l) the semiconducting regime, whemg has
plotted on a logarithmic scale, so that the linear behavior iran activated behavior, an®( ) displays a finite pseudogap
1/T indicates activated carriers as in a semicondu¢see from the perturbed single conduction band. Note that all of
U=0.5). On the other hand, the metallic limit obtained inthe temperature dependence of the interacting density of
Eq. (16) for U>2.151 17 also agrees with the numerical re-states arises from the temperature dependencg pokince
sults, since the system remains metallic for all temperatureshe FKM with fixed ny and n; has a temperature-
Figure 1 shows both discontinuout) €2.150 and 2.140 independentlensity of states?
and continuousl =2.120, 2.000, and 1.70@etal-insulator The exact solution of the FKM also allows the optical
transitions. In the discontinuous transitions, the conductioneonductivity to be calculated from the following formufal®
electron concentratiomy follows the metallic solutions at
high temperatures, but drops to the insulating solution at a
sharp transition temperatur¢-or U=2.150, ny drops by e L[ 2 ,
two orders of magnitude as the temperature changes by ‘T(“’)Z‘TOWJ%OI“’ lede("'_e )D(e)A(e,0")
~10"3)) This electron concentration can be viewed as an
approximation of the electrical conductivity, if we assume , flo)—f(ow+w)
that in a real material there is also static disortfesm de- XA(e,0'+w) w ’ (17)
fects, impurities, et¢.so that at low temperatures the relax-
ation time = approaches a constant and the conductivity is
proportional tony7. We also calculate thitrinsic conduc-  wheref(w) is the Fermi distribution function, ang, gives
tivity of the FKM below, assuming that all of the scattering the conductivity unit. This formula for the conductivity is the
of the conduction electrons arises from the localifeglec-  result of a derivatiort® which corrects the error of using the
trons. formula derived for the hypercubic lattiteby adding the

The conduction-electron density of stated\(w)= factor 4- €. (In most cases, the addition of this factor does
—(1/7)ImG(w) (where w is measured from the chemical not significantly change the qualitative features of the con-
potentialu) provides additional information about the metal- ductivity.) The dc conductivityo . is then found from Eq.
insulator transitions. We calculate it by solving for the (17) in the limit w—0.

Green’s functions on the real axis. Figure 2 pléisv) for Substituting the spectral function into E(L7), and as-
some of the representative cases from Fig. 1 at various tensuming that the self-energy has a negligible frequency de-
peratures:(a) the metallic regime =2.160), where the pendence near the Fermi level, produces the following lim-
half-filled lower band increases in size as the temperaturéing form for the dc conductivity withf =0 andny—0 (i.e.,
decreasegp) the discontinuous metal-insulator-transition re- for the insulating phase
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FIG. 3. Theintrinsic dc conductivityo g of the Falicov-Kimball ‘ ‘ | —0.0005
model as a function of*/T for the corresponding values &f 0.0 0.2 0.4 0.6
shown in Fig. 1. Note how the intrinsic conductivity diverges for Ng
low temperature and low electron concentration, as described in the . .
text FIG. 4. Free energy as a function of the number density of the
conduction electrons near the first-order transition temperature. The
2132 parameters arA=1.0t* andU=2.15Q@*. The free energy has two
oo{4—[n—Rex(0)]%} local minima with the global minimum switching between these

04 T=0;ng—0)=— 47Im3,(0) ’ local minima as temperature varies through the critical temperature

(18) (0.060<T.<0.065), indicating a first-order transition.

which is proportional to the product of thatrinsic relax-
ation time (~1/Im%) and the “conductivity” density of
states at the Fermi surface. Calculating the self-en&i(@)
from Egs.(12) and (13) with the proper chemical potential
for each caseyg=U—-2+6u for U<1, andu=—1/U for
U>1), we obtain

tion of L/T for the corresponding values &f in Fig. 1. The
conductivity in Fig. 3, with moderate,, appears to be pro-
portional to the electron concentration shown in Fig. 1, but
o4 Starts to diverge as temperature decreases,ngnioe-
comes small enough for the limiting form in E4.9) to hold.
(For example, see the casés=2.000 and 1.700. FoU

p 1 2/ g \13 =0.500, gy is always in the low-density limit. Thus the
0'0(—— 1) ) if U<1 relevant dc conductivity for a real material is approximated
U 27Ny better bynyr with a constant relaxation rate rather than
ogd T=0:ng—0)={ 1)3/2 using theintrinsic dc conductivity.
oo\/4—|1+— Finally, we examine the discontinuous metal-insulator
U ifU>1. transitions in more _detail to show Fhat they are.indeed first-
L 47T(U—1)\/n—d order phase transitions. We do this by employing the CPA

(199  formalism to calculate the trial free energy as a function of
ng (or, equivalently,n;=1—ng,) at different temperatures.
Thus theintrinsic o4 (Which is obtained from the pure elec- The minimum of the trial free energy determines the thermo-
tronic system of the modgln the insulating phase at=0 dynamic electron density. We first solve the real-axis self-
actually divergesasnyg— 0. Even in the strong-coupling re- consistent equations for each value sf03<1 to find the
gime (U>1), the electron-hole excitations do not bind to interacting density of states(w). Then we evaluate the ex-
form an excitonic insulator[The dc conductivity actually act form of the free energy in E7) as a function ohy, and
diverges faster{ 1/\ny) than in the weak-coupling regime repeat the process for different temperatures. We present our
(~1/n§’3) asnyg—0.] Therefore, the excitonic phase consid- results near the critical temperature in Fig. 4, whéfe
ered by Ramirez, Falicov, and Kimbhtoes not exist on the =2.150 andA=1. The free energy has a double minimum
infinite-coordination-number Bethe lattice. Moreover, the di-near the critical temperature (0.060.<0.065), and, as the
vergence of thentrinsic o4, occurs because the relaxation temperature is lowered, the conduction-electron density dis-
time 7 increases more rapidly than the “conductivity” den- continuously changes as the global minimum switches be-
sity of states at the Fermi surface decreases wijen0 [see tween the two local minimaindicating a first-order transi-
Eg.(18)]. But in a real material the relaxation time can nevertion). At T., where the two minima are degenerate, the
diverge, because there always exists some static disordeystem exhibits phase coexistence between the insulating and
which forces the relaxation time to approach a constant ametallic phases. In the region where the changejnis
low temperature. Hence the dc conductivity will approachcontinuous, the free energy does not have multiple minima,
zero amng—0 in any real material. In Fig. 3, we present our but rather the minimum of the free energy varies smoothly
numerical results of thentrinsic dc conductivity as a func- with ny as the temperature is changed. We also verified that
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the minimum of the CPA form of the free energy agrees withcontinue to hold in three dimensions, and to have applica-
the form for the free energy determined by Brandt andtions to real materials such as Ml
Mielsch? We also found that the intrinsic conductivi(getermined
by the scattering of thd electrons off thef electron$ actu-
IV. CONCLUSIONS ally diverges for the “insulating” phases withy— 0, be-
cause the relaxation time grows faster than the density of

_In conclusion, we have exactly solved the spiRalicov-  giates at the Fermi level decreases. In a real material, the
Kimball model on an infinite-coordination-number Bethe lat- conductivity will go to zero asi;—0 though, because the

tice, which is shown to have both continuous and discontinu-remx‘,mOn time is bounded by scattering off of impurities.

ous (fi.rst—ordeb charge-transfer metal-insulator transitioln.s.\,\,e also discovered a small region of parameter space that
By being able to solve the model exactly, we have clarified,ssesses intermediate-valence or charge-density-wave or-

the theoretical controversy of the model, and have proveRyer. Fyrther studies of this region are currently underway.
that the model does display first-order metal-insulator transi-

tions. The simplicity of the model, based on only the elec-
tronic system(which has both a localized and a conduction
band, emphasizes the fact that the electronic system itself We would like to acknowledge stimulating discussions
(the Coulomb interaction between a conduction electron andiith J. Byers, Ch. Gruber, M. Jarrell, N. Macris, P. van
a localized electron can cause dramatic discontinuous Dongen, and V. ZlaticThis work was supported by the Of-
charge-transfer metal-insulator transitions without requiringfice of Naval Research Young Investigator Program under
other effects(such as phononsWe expect our results to Grant No. ONR N000149610828.
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