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Abstract
The spinless Falicov-Kimball model is one of the simplest models of many-body physics. While the conduction-electron
density of states is temperature independent in the normal state, the f -electron density of states is strongly temperature
dependent—it has an orthogonality catastrophe singularity in the metallic phase and is gapped in the insulating phase. The
question we address here is whether the spectral gap is the same for both electron species as T → 0. We find strong evidence
to indicate that the answer is affirmative.

Keywords Mott transition · Falicov-Kimball model · Density of states · Orthogonality catastrophe

1 Introduction

The Falicov-Kimball model [1] is perhaps the simplest
solid-state model for describing strongly correlated electron
systems. The model possesses a Mott-insulator transition
and a charge-density-wave ordered phase and can be solved
exactly in the limit of infinite dimensions [2]. Initially, the
model was employed to understand phase transitions in
transition-metal oxides [1], and has since been used to study
a number of strongly correlated systems. Its solution via
dynamical mean-field theory has also been reviewed [3].

Recently, the Falicov-Kimball model has been used to
investigate core-level X-ray photoemission spectroscopy [4,
5]. It has been known for some time that the localized
f -electron Green’s function in the metallic phase of this
model is related to the X-ray edge singularity problem
[6, 7] (we only reference papers immediately relevant to
this work here; a more complete history of X-ray edge
and the Falicov-Kimball model appears elsewhere [4]). In
particular, at low temperature, the density of states in the
metal displays a power-law divergence with an interaction-
dependent power law.
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The f -electrons, unlike the conduction electrons, possess
a non-trivial and highly temperature-dependent spectral
function. This has been studied previously using the
numerical renormalization group [8] illustrating the power
law divergence of the f -electron spectrum at ω = 0 in
the metallic phase. Here we seek to understand the gapped
behavior of the f -electron spectral function in the Mott-
insulating regime, where NRG approaches are known to
have accuracy issues. Particularly, we ask if the f -electron
gap approaches the (temperature-independent) conduction-
electron gap in the limit T → 0 in the insulating phase. This
question may seem like it should have an obvious answer,
because the f -electron dynamics are inherited through their
interaction with the conduction electrons. But at nonzero
temperature, we clearly see f -electron spectral weight
within the gap, so the answer to the question is far from
obvious.

2 Formalism

The spinless Falicov-Kimball model describes two electron
species, conduction (c) and localized (f ) electrons,
which interact via a local Couloumb repulsion U when
occupying the same lattice site i. We represent the creation
(destruction) of a conduction electron at the site i by the
second quantized operator c†i (c

†
i ) and of a localized electron

by f
†
i (f †

i ). Assuming a common chemical potential μ for
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the two species, the spinless Falicov-Kimball Hamiltonian
is given by

HFK =
∑

ij

(−tij − μδij

)
c
†
i c

†
j + Ef

∑

i

f
†
i f

†
i

+U
∑

i

f
†
i f

†
i c

†
i c

†
i (1)

where Ef is the f -electron site energy, and tij is the
hopping matrix, with tij = t = tj i for nearest-neighbor
sites i and j with the hopping integral t a real constant. We
work at half filling (μ = U/2 and Ef = −U/2) on the
infinite-coordination Bethe lattice in equilibrium.

Scaling the hopping energy t with coordination number
Z as t = t∗/

√
Z then in the limit Z → ∞, we obtain

the noninteracting density of states on the Bethe lattice,
given by

ρZ→∞(ε) =
√
4t∗2 − ε2

2πt∗2
(2)

with t∗ = 1 our energy unit and we restrict to |ε| ≤ 2t∗.
The dynamical mean-field theory (DMFT) approach

solves the many-body problem by mapping the lattice
problem onto an impurity problem because the self-energy
has no momentum dependence. A self-consistent iterative
approach is employed to determine Green’s functions, with
details given in [3]. We do not need the full conduction-
electron solution here, instead, we require only the bare
time-ordered Green’s function for the conduction electrons
G0(t) given by

G0(t) = − i

π

∫ ∞

−∞
dω Im [G0(ω)] e−iωt [f (ω) − θ(t)] (3)

with f (ω) the Fermi-Dirac distribution,

G0(ω) = 1

ω + iδ + μ − λ(ω + iδ)
(4)

the effective medium, and the dynamical mean-field λ(ω)

obtained from the DMFT algorithm [3]. Here θ(t) is the
Heaviside unit-step function.

The conduction electrons behave like noninteracting
particles, in that they have a temperature-independent
density of states, but also like interacting electrons, since
they have a Mott metal-insulator transition at U = 2.

We define the greater and lesser f -electron Green’s
functions by

G>
f (t, t ′) = −i〈f (t)f †(t ′)〉, (5)

G<
f (t, t ′) = i〈f †(t ′)f (t)〉, (6)

where the angle brackets denote the thermal average,
〈. . .〉 = Tr (exp(−βHFK)(...))/Tr exp(−βHFK). The
creation and annihilation operators are in the Heisenberg
representation. These Green’s functions can be determined

by selecting t , t ′ on certain branches of the Kadanoff-Baym-
Keldysh contour (Fig. 1) and using the contour-ordered
Green’s function,

Gc
f (tc, t

′
c) = −i〈Tc(f (tc)f

†(t ′c))〉 (7)

where tc, t ′c are two times on the contour (Fig. 1). Tc is
the contour time-ordering operator. For example, if we pick
t ′c on the upper real-time branch of the contour and tc on
the lower real-time branch, we recover G>

f (t, t ′) from the
contour-ordered Green’s function.

It has been shown in Ref. [9], that in equilibrium, the
greater Green’s functions for the f -electrons take the form
of a Toeplitz determinant of a continuous matrix operator
over only the positive time branch of the contour

G>
f (t) = −iw0 e−i(Ef −μ)tDet[0,t]

∣∣δ(t1−t2)−UG0(t1−t2)
∣∣

(8)

where w0 is the average density of sites without an f -
electron (w0 = 1

2 at half filling), and G0(t) is the bare time-
ordered Green’s function determined from the dynamical
mean-field λ(ω). An example of G>

f (t) for U = 1.5 is
given in Fig. 2. The symbols t1 and t2 denote the matrix
indices of the continuous matrix operator for which we
evaluate the determinants; note that both times must fall
within the interval [0, t]. (There is a similar expression for
the lesser Green’s function.) To approximate this continuous
matrix operator, we discretize it to a conventional matrix and
calculate the determinant for three different discretization
time steps Δt . We then perform a second-order Lagrange
interpolation to extrapolate to the limit Δt → 0. These
numerical results are checked for accuracy against known
spectral moments of the Green’s functions [10].

In the limit of large times, an exact analytic formula
for the f -electron Green’s function in equilibrium can

Fig. 1 The Kadanoff-Baym-Keldysh contour, which starts at time 0,
moves along the real-time axis to time t , back along the real axis
to time 0, then proceeds down the imaginary time axis a distance
β = 1/T
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Fig. 2 Im G>(t) vs. t for
U = 1.5. Here we have no zero
crossing of the time axis,
corresponding to the metallic
phase of the model. The inset
shows the shorter time behavior

be obtained using a factorization technique from complex
analysis described by McCoy and Wu [11] and called the
Wiener-Hopf sum approach. It relies on a result for infinite-
sized determinants of Toeplitz matrices called Szego’s
theorem. Further finite-time approximations can be made
to improve the short-time agreement of this asymptotically
exact result with the determinant calculation given by (8)
[9], with slightly different formulas for the case when the
interaction energy U lies above or below Uc, a critical
interaction strength Uc = √

2 on the Bethe lattice where
the complex function C(ω) = 1 − UG0(ω) goes from no
winding around the origin for U < Uc to winding once in
the clockwise direction (IndC=-1) for U ≥ Uc; note that
this critical Uc is smaller than the critical U for the Mott

transition. In the regime with U > Uc, the analytic result
for the Toeplitz determinant in (8) is

Det[0,t] = exp

[
t

2π

∫ ∞

−∞
dω ln C̄(ω) +

∫ ∞

0
dt ′ t ′ḡ(t ′)ḡ(−t ′)

]

×Δt

2π

∫ π
Δt

− π
Δt

dω′ eiω′t P̄ (−ω′)
Q̄(ω′)

(9)

where C̄(ω) = exp[iωΔt][1 − UG0(ω)], ḡ(t) = ∫ ∞
−∞ dω

× exp[−iωt] ln(C̄(ω))/2π , and P̄ (Q̄) are integrals over all
positive (negative) time of ḡ(t) and satisfy

C̄(ω) = 1

P̄ (ω)Q̄(−ω)
. (10)

Fig. 3 Spectral function Af (ω)

vs. ω U = 1.5. Here we see the
well-documented [8] power-law
divergence of the orthogonality
catastrophe set in as T → 0
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Fig. 4 Time-domain plot of
Im G>(t) for high temperature
(T = 1) in the insulating phase
U ≥ 2. Here the analytic
formula works well for all times,
and the blending between the
two approaches is completely
smooth

An example of the spectral function for U = 1.5 is shown
in Fig. 3. This expression represents a significant reduction
in computational complexity and allows us to probe a
much wider parameter space when directly calculating the
discretized determinant is not possible. Our approach will
be to calculate the determinant directly for short times and
use the analytic expression for long times, allowing us to
obtain the spectral function of the f -electrons down to
temperatures significantly lower than previous calculations.
We need to patch the two solutions together smoothly,
as described below. We examine the behavior of the f -
electrons as they approach their T = 0 limit in both the
metallic phase near the Mott-insulator transition U = 2
and in the Mott-insulating regime.

Finally, we define the local density of states of the
f -electrons, Af (ω). At half filling, there exists a particle-

hole symmetry in our system [Af (ω) = Af (−ω)], and
consequently the full f -electron density of states can be
expressed as a Fourier transform of Im G>(t) alone [12],

Af (ω) = − 2

π

∫ ∞

0
dt cos(ωt)Im G>(t). (11)

3 Numerics

We examine the temperature-dependent dynamics of the f -
electron spectral function in the metallic regime near the
Mott transition as well as in weakly and strongly correlated
insulating phases above the Mott transition, which occurs at
U = 2. The spectral function is known to have a power-
law-like divergence in the metallic phase that disappears as

Fig. 5 Time-domain plot of
Im G>(t) for low temperature
T < 0.05 in the insulating
phase (for U = 2.5 here). Here
the direct determinant
calculation has not reached its
asymptotic limit at the
maximum time allowed by our
computational resources. Note
that both Green’s functions
oscillate with the same
frequency, but these oscillations
are damped much more quickly
when using (9). The appearance
of high-frequency oscillations at
lower temperatures are
characteristic of the f -electron’s
low-temperature dynamics
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Fig. 6 Af (ω) vs. ω for
U = 1.9. We see
power-law-like behavior, with a
central kink that sharpens with
decreasing temperature

we move into the Mott phase [8]. In the Mott insulator, the
f -electron density of states develops a gap with decreasing
temperature [13]. We explore the character of this gap to
see if it is the same as in the temperature-independent
conduction-electron density of states.

To utilize the Weiner-Hopf technique in (9), we perform
the discretized matrix calculation of (8) out to the longest
time computationally feasible for three different time steps
Δt in the ratio 1 : 2 : 4. Next, we employ a second-order
Lagrange extrapolation to take the limit Δt → 0. We
use (9) to calculate the determinant out to even longer
times and use a weighted blending of the two functions
over a time range where the analytic approximation is
roughly parallel to the discretized determinant results. This

procedure works exceptionally well for high temperature,
as shown in Fig. 4, but as we decrease the temperature,
the determinant calculation requires significantly smaller
time steps and takes longer to reach the “long-time” regime
where our analytic result holds (see Fig. 5). This effect
limits our low-temperature calculations, and along with
truncating the calculation at a finite time, leads to numerical
artifacts near ω = 0 (see Figs. 7, 8, and 9).

4 Results

In the metallic regime, for U = 1.5 (Fig. 3), we see
evidence of a power-law divergence as the temperature

Fig. 7 Af (ω) vs. ω at the Mott
transition, U = 2. We see a
gradual evolution whereby
spectral weight is transferred
from higher frequency states to
states near ω = 0. At the
lowest temperatures, the density
of states develops a pseudogap
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Fig. 8 Temperature evolution of
Af (ω) vs. ω at U = 2.5 and
(inset) the conduction-electron
density of states over two
different ranges of frequency.
We see that the gap in the lowest
temperature f -electron density
of states seems to be
approaching the gap width of
the conduction-electron density
of states labeled by c

approaches zero in agreement with [8]. In the time domain,
we observe a delayed decay towards zero with decreasing
temperature. Note there is no zero crossing in Im G>(t)

(Fig. 2), indicating we are still in the metallic phase.
For U = 1.9, closer to the Mott transition, we still see

the power-law-like increase in the spectral function (Fig. 6),
but with the development of a kink in the center of our
density of states, representing a precursor to the insulating
Mott phase.

At the Mott transition, U = 2 (Fig. 7), the f -electrons
partially fill the insulating gap at high temperature, with
a kinked density of states that does not reach zero at the
minimum temperature we were able to reach (T = 0.001).

We expect that the density of states should touch zero
precisely at T = 0. This is in contrast with the conduction
electrons, whose density of states touches zero at U = 2 for
all temperatures.

For U = 2.5 (Fig. 7), we see a similar transfer of weight
from high to low frequencies as described in [13]. Here we
see the spectral function becomes gapped around T = 0.1,
but continues to change shape down to T = 0.001,
below which the gap is frozen into place. Notice in the right
inset of Fig. 8, the small region where the density of states
becomes slightly negative. This is an artifact of not properly
capturing the long-time behavior, likely due to the finite
time truncation of some long period oscillations in G>(t)

Fig. 9 Temperature evolution of
Af (ω) vs. ω at U = 3; (inset)
the conduction-electron density
of states over two different
frequency ranges. We again see
that the lowest temperature
f -electron density of states
seems to be approaching the
width of the conduction-electron
density of states

2424 J Supercond Nov Magn (2020) 33:2419–2425



and possibly the blending of the numerical and asymptotic
results.

Finally, we examine the strongly correlated insulator with
U = 3 (Fig. 9). We see a similar temperature evolution to
U = 2 and U = 2.5. In this case, the system becomes
gapped around T = 0.25, higher than U = 2.5. Below
this temperature, Af (ω) changes more slowly as the low-
temperature behavior is frozen in. We observe a general
trend of the gap appearing and freezing into place at a
higher temperature for more strongly correlated materials.
Again we see the irregular behavior near ω = 0 from
the finite-time truncation. More interesting, however, is the
comparison with the conduction-electron density of states.
We see from the left inset of Fig. 9 that at low temperature
the width of the gap is nearly indistinguishable between
the two different electrons—this strongly suggests that the
T = 0 gap of the f -electrons is the same as the
conduction-electron gap.

5 Conclusion

We extensively studied the properties of the f -electron
spectra of the Falicov-Kimball model in a number of
interesting cases: just below the Mott transition, in the
strongly correlated regime, and at temperatures approaching
the T = 0 limit. By using the Weiner-Hopf technique,
we were able to examine these more complex situations by
obtaining an analytic expression for the long-time behavior
which is computationally much more efficient than the
direct determinant calculation, because the matrices grow
in size with increasing time. Due to the rich temperature-
dependent dynamics of the f -electrons, we asked if the
spectral gap in the f -spectrum approaches that of the
(temperature-independent) conduction electrons at T = 0.
We found strong evidence that this is the case. This
technique could be pushed further by making higher order
finite-time corrections to the asymptotic formulas given in
[9] and by carrying the calculations out to longer times.
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