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Anomalous magnetic response of the spin-one-half Falicov-Kimball model

J. K. Freericks and V. Zlatfc
Department of Physics, Georgetown University, Washington, DC 20057
(Received 5 January 1998

The infinite-dimensional spin-one-half Falicov-Kimball model in an external magnetic field is solved ex-
actly. We calculate the magnetic susceptibility in zero field, and the magnetization as a function of the field
strength. The model shows an anomalous magnetic response from thermally excited local moments that
disappear as the temperature is lowered. We describe possible real materials that may exhibit this kind of
anomalous behavio[S0163-18288)00226-4

[. INTRODUCTION ous and discontinuous metal-insulator transitions as a func-
tion of either temperature or pressure. However, the Falicov-
The spin-one-half Falicov-Kimball modelwas intro-  Kimball model has not been generally accepted as explaining
duced in 1969 to describe metal-insulator transitions irthe metal-insulator transitions of all of these different mate-
transition-metal and rare-earth compounds. The metalrials for two reasons. First, it neglects all effects of hybrid-
insulator transition is a charge-transfer transition, where thézation, and hence all Kondo-effect physics, and second it
system consists of both localizednsulating electronic  does not take into account the fact that most of these mate-
states and delocalizgdonducting electronic states, and the rials also undergo a structural phase transition.
transition occurs when the electron fl”lng switches from the Recent]y’ however, a new material was discovered that
localized to delocalized statesr vice versa This is the  yndergoes a classic charge-transfer metal-insulator transition
simplest possible metal-insulator transition, since the charaggithout any structural phase transition—it is Nikhen put

ter of the individual electronic states does not change at thg,qer high pressureThis layered compound crystallizes in
transition, rather it is just the occupancy of those states theﬁ1e CdC} crystal structure, in which the Ni ions form a

varies. close-packed plane, with close-packed | planes lying both

The localized electrons are strongly interacting W|th_ eaChabove and below. The Nilplanes are then stacked in an
other, so double occupancy of the localized orbitals is for-

bidden. The conduction electrons, however, are chosen to baé'ternatmg packing scheme. The Fermi level of ;Nies

noninteracting, since the Coulomb interaction between then‘ﬁ‘”thln Fhe Nid _ban_ds, since the Ni donates one electron to
is screened. The only remaining interaction term in thegach lion that lies in the plane above and below. The ground

Falicov-Kimball model is the mutual repulsion between asState is an antn‘erromagneticinsulator: As pressure is gpplied,
conduction and localized electron that sit on the same latticE1€ | P bands move closer to the Fermi level causing thelNe
site. For any fixed configuration of the localized electronstemperature to rise, until they reach the Fermi level, and
the quantum-mechanical problem for the conduction elecelectrons from the I ions move onto the 'Niions changing
trons can be solved in a single-particle basis. The many-bodiiem to Ni" and quenching the local magnetic moment. The
aspects enter from taking an annealed thermal average ovegmaining holes in the p bands are conducting, and the
all possible configurations of the localized electrons. material becomes metallic.

We are most interested in the situation where the local- Another class of materials that might be described by an
ized level lies just above the Fermi energy, so there are neffective Falicov-Kimball model is the class of Yb-based
localized electrons &f=0. As the temperature rises, then it valence-fluctuating(VF) compounds(such as YbInCy
becomes more favorable to thermally occupy the localized’bin; _,Ag,Cu,, and Yh_,Y,InCu,) which exhibit large
levels because of the gain in entropy of the local momentsanomalies in their thermodynamic? spectroscopié?®’ and
This will have a dramatic effect on the uniform spin suscepransport propertie?>® around a characteristic, sample-
tibility, as the localized electrons will generate a Curie-like dependent temperatufg, (40—-60 K. The magnetic suscep-
response, which is much larger than the Pauli-like responstbility x(T) of these compounds is of a Curie-Weiss form at
of the conduction electrons. The net effect is that the suscepitigh temperatures, and the anomaly app&rsas a pro-
tibility will show a peak at a characteristic temperaturenounced asymmetric peak just above this characteristic
which is determined by the point where the localized elecsample-dependent temperatdig. Below Ty, x(T) exhib-
tron occupancy saturates. In addition, we expect there to bigs Pauli-like behavior, while at the lowest temperatures a
interesting behavior as a function of magnetic field, whereweak Curie-like upturn is often seen. The x-ray analysis
the proximity of the localized levels close to the Fermi en-shows that the Yb-based VF compounds crystallize in a
ergy can induce a rapid change in the magnetization, produd¢s15b structure, that the lattice constaa{T) changes aTy,
ing metamagnetism. by a small amourt®!® and that there are no structural

The Falicov-Kimball model was initially applied to a changes. There is no evided€dor magnetic ordering below
wide variety of transition-metal and rare-earth compoundsTy,, instead the Yb ions fluctuate between & Zand 3+
such as SmB V,0,, NiS, etc., which display both continu- state, but the average volume chang&ats much less than
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what one would expect from a complete ¥bYb?" f electrons that occupy the same lattice site. In addition, we
transition® The anomaly in the high-field magnetization of include a coupling to an external magnetic figldwith a
YbInCu, (Ref. 4 and Ybin _,Ag,Cu, (Ref. 11) appears as a Landeg factor added for the localized electrons. The result-
sudden increase of the slope and the saturatiohl @fl) at ~ ing Hamiltonian i$*°

aboutH,=30-50 T. The Zeeman energyldt, (at T<T,)

is comparable to the thermal energyTat (at H<H,,). At _ Ct—usad d. o+ _ gt g
elevated temperatures, this metamagnetic transition H ”z(,( tj— w0ij)digdjs .2(, (Ei=m)fifio
disappear§. The magnetostriction ddtaindicate that the

metamagnetism relates to the valence fluctuations of the Yb t t T t

: o . +U d; di,f. fi,r+U filf £
ions but the field-induced change of thelectron valence is ,% torto ot e ”% T

even smaller than the temperature-induced one.

The large magnetic anomalies accompanied by small lat- _ + +
tice changes can be reconciled by a model in which there is Mth‘, 7(2di, it 9T Tio). D
some intrinsic disorder between Yb and In sites, such that a
minority of Yb ions (in the C15b lattice) lie at “ill-placed We solve the Falicov-Kimball model by working in the
sites.” The correctly placed Yb ions are hybridized with the infinite-dimensional limit. The bare density of stajgg) on
ligands and are in the VF state at all temperatures. The illa hypercubic lattice becomes
placed Yb ions are unhybridiz¢tecause the Yb-In distance
of an ill-placed Yb ion(that sits on an In sitds nearly twice 1
as large as the Yb-In distance for an Yb ion that sits on the ple)= ——_exf —e/t*?], )
correct lattice sittand undergo a charge-transfer transition Jat

at Ty (one_ 4 electron _jumps into conduction band and g4 we take* as the unit of energytt =1). (The alterna-
leaves behind a magnetic halé\s a consequence, the sus- tiye lattice to consider is the Bethe lattice, where the bare
ceptibility acquires a large asymmetric peak just abdye  gensity of states becomes Wigner's semicircle. The latter
while the low-temperature magnetization exhibits a metagensity of states is closer to a three-dimensional band be-
magnetic transition for magnetic fields of the ordekgT, . cause it increases afE at the band edges. Since the Fermi
This recent experimental work provides our motivation to|gg| always lies far away from the band edge in all calcula-
study the magnetic response of the spin-one-half Falicovions considered here, we do not expect there to be much
Kimball model, and to compare the results with the availableyifference between the solution on a Bethe lattice versus on a
susceptibility data for Nif and YbInCy. On the theoretical  yhercybic lattice. In fact, we have checked that this is not
side, the Falicov-Kimball model has also received reneweqhe case for our results in Sec. Jlin the infinite-
interest, vyith work concentrating on the Iineay and ”O'f‘”neardimensional limit the local approximation becomes e¥act
characteristics of the modéland on the intermediate- so that the self-energy has no momentum dependence, and

valence and metal-insulator transitidﬁs. _ the local conduction-electron Green’s function satisfies
In Sec. Il we present the formalism, showing how to de-

termine the Green’s functions in a magnetic field, and the

different magnetic and charge-density-wave response func- GU(iwn)zsz,:f
tions in zero field, and the numerical methods employed in

the exact solution of the problem. Section Il presents our . o
results for the infinite-dimensional hypercubic lattice andWhere w,:=7T(2n+1) is the fermionic Matsubara fre-
Sec. IV summarizes the possible applications to real materduency, andb(e) is the noninteracting density of states. The

p(e)

ia)n-f—,u—zna—edf' ©

als. Our conclusions appear in Sec. V. self-energy is determined by a three-step prodgsfirst, the
site-excluded Green’s functio®’(i w,), which holds the
Il. FORMALISM information about all of the other lattice sites, is found by

adding back the self-energy
The Hamiltonian of the Falicov-Kimball model consists
of two types of spin-one-half electrons: conduction electrons 0, 1
(created or destroyed at siteby d! or d;,) and localized Goliwn)= m;
electrons(created or destroyed at siteby fiTU or fi,). The " 7
conduction electrons can hop between nearest-neighbor sitqﬁen (i) the local Green's function is calculated from a

with a hopping .matrix—tij=:_—t*/_2\/5, where we have weighted sum over the different possible localized-electron
chosen to examine hypercubic latticesDndimensions, and  giates

we choose a scaling of the hopping matrix that yields a non-

trivial limit in infinite-dimensions D—).'* The f elec- wl+w!
trons have a site enerdy; (which will be chosen to lie just Gn(rzwoG?,(iwn)+ 0 ! 711 ,
above the Fermi energy @t=0), and a chemical potential [Goliwn)] "= U
is employed to conserve the total number of electrogs

+ng; +ng;+ng =const. Finally, there is a restriction of no where wo=1-w]—wj andw{ are the localized electron
double occupancy of thé electrons on any sitéimplying occupancies for nd electrons {vy) and anf electron with
the Coulomb repulsiotd;; between twof electrons is infi-  spino (w7); and finally(iii ) the self-energy is determined by
nite) and there is a Coulomb interactibhbetween thel and  subtracting off the “bare” Green’s function

4

®)
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3ho=[Ciwy)] =G, . (6)
" " " Xa®(@)= =T Go(k+a)Gn(k)
The f-electron occupancies are found by explicitly calculat-
ing the path-integral for the partition functibh(generalized _ Jw p(y)
to include the magnetic fieldand are determined bw, e Tiwptu—2,—Y
=2,/ 2, wi= 2| Z, and Z= Z,+ 2|+ 2}, with
o y f " 4z p(2)
zo= 11 zlz!, —=Toptu—3,=X(Q)y-2zy1-X*(q)’
=T (10
where all of the wave vector dependence is included in the

term X(q)=2?=1(cosqj)/d (the Green’s function and self-
energy in zero magnetic field have no spin dependemce

749 (rddy are the irreducible CDWSDW) vertex func-

1
Zi‘:exr{ —BlEi+U—u— §9M50h)

1_ I
xnﬂw (Z)=U)(Zi-V), D o,
~ 1[|dX daz dz dz
wherez]=[GY(iw,)] e
The algorithm for finding the self-consistent solution to ml m1 m|

these equations is the same as was used in the Hubbard (11)
model?® (i) begin with the self-energy set equal to ze(io)
determine the local Green’s function from E@®); (iii) de-  Now the self-energy can be expressed as an explicit function
termine the site-excluded Green’s function from Ef.and  of the Green’s functiorof the same Matsubara frequency
the f-electron occupancies from E7); (iv) determine the and thef-electron filling[by substituting Eq(4) into Eq.(5)
new local Green's function from Ed5) and the new self- and solving the resulting quadratic equation ¥gy]
energy from Eq.(6). This new self-energy is plugged back
into step(ii) and the process is iterated until it converges s - 1 + E
(which typically takes less than 100 iterations for conver- ne 2G,, 2
gence to one part in £p

In addition to finding the Green’s functions in a magnetic
field, we can also determine the susceptibilities to both _2Gm,
charge-density-wave order and spin-density-wave order in
zero magnetic field. The derivation of these quantities iswith w,=w]+w} the totalf-electron concentration. The dif-
similar to that of Brandt and Mielscht,and we simply in- ficulty in caIcuIatmg the derivative&o find the irreducible
clude details not presented before and summarize the generertices arises from the fact that thieelectron fillingw, is
alizations needed when the electrons have spin. an explicit function of all of the Green’s functions.

We begin by adding an ordering ﬂeEi]h"dJr dj, to the The CDW vertex becomes
Hamiltonian and examining the linear response in the limit

J1-2(1-2w;)UG,,+U%G2

no?

(12

as h7—0. The real-space conduction-electron correlation fdd _ (&zm) 1 (&Em) M 3W1}
funct|ons can be expressed in terms of the Green’s functions nm— T IGn; mET dwy G Gy G|
via "
(13
) G“ In the zero-magnetic-field case, the two derivatives in the
((nf,—(nf] ))(nw (n,g ))=-T?2 —7. (8  square brackets are equal to each other, which simplifies the
n dhj analysis. Substituting into the Dyson equation E®).then
yields
Following the standard techniqu&sone can express the
correlation functions in terms of charge-density-wave - ud 4o 1—(&2m/o7wl)emy(q)
(_CD\_N) (x) and spin-density-wav€SDW) () susceptibili- Xn ()=xn"(q) 1+de0(q)((9znT/aGnT)wl, (14
ties in momentum space
with the functiony(q) defined by
dd ddo ddo ¢y frdd 7 dd
Xn () =xn ()~ TE Xn mXm (Q), 0W1 Wy
’ " o @)= X0 55—+ 55 (15)
mt ml

ddo ddo ) dd  dd Multiplying Eq. (14) by dw,/0G,;+dw,/dG,, and sum-
(q) Xn (@)= TE X~ (@) amm (@), © ming over n yields an equatiorT1 fory(q). Erandt and
Mielsch show how to massage that formula into a form
where the susceptibility is found by summing over Matsub-where the individual derivatives can be explicitly calculated.
ara frequencies)(dd(q)=T2n)(n (a)]1, deo(q) is the bare The algebra is somewhat long, and entirely contained in their
particle-hole susceptibility work. The final result fory(q) is
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En(&Wl/&ZnT + &Wllazni)[l_ Gﬁ(&znlaen)wl]/[l"' Gnn(d)— Gﬁ(azn/&Gn)wl]

YO = 1S G (@) (5 TWs) o (W, 19Zy + W03 T2y JITAF G (@)~ GAT5 1G] 0
|
with defined b 2
7(0) y =TS an |
G [ 1 (17) n 1+ Gnnn(q)_Gn(ﬂzn/ﬂGn)wl
7n(0) =Gy Gﬁ m s

Finally, the CDW susceptibility is computed from
which is never expected to diverge at any finite temperature.

g [1—¥(@)(dZ,/owy)g 1G7 Brandt and Mielsch also show how to calculate the mixed
X“(q)= —TEn) 1+G,7 (q)—Gz(&E 19G ). susceptibilities that correlate thieelectron chargéor spin
o Mo 18 with the f-electron chargéor spin. The idea is that deriva-

tives ofw?, with respect to the ordering fieh” produce the
This susceptibility diverges whet(q) diverges, which oc- b P g fiely’ p

; . L mixed susceptibilities, so a direct calculation of the sus-

curs when the denominator of E({.6) vanishes. This yields L R .
: . ceptibility involves total derivatives of the self-energy with
the same result as Brandt and Mielsch for the spinless casé

except for an additional factor of 2 multiplying the sums in :éspect ft?hthef Grdeer_\l’)sl func?oﬁgs, (\;Vh'Ch c;rl):te ?Xﬂrﬁsed n
the numerator and the denominator arising from the two deSrms ol e jrreducible verietas done aboveto Tind the
rivatives ofw, (which are both equal susceptibility, or can be expre;sed as partial denvat_l\{es with
Each of the derivatives appearing in Eq$6) and (18) respect to the Green_s functhn and theelectron filling
can be directly calculated. A straightforward differentiation (since the self-energy is a function 6} andw, ). Hence one

N - . . can solve directly for the mixed susceptibilitiéhe details
28% t?é?ggt:tgqn([fg]p)l/%lgg the quadratic equation whose appear in Brandt and Mielsch’s wotkThe final result for

the mixed CDW susceptibility is

( AW, awl) 2w, (1-w;)UG2 19

+ = )
Pn O2n] (G2 (F Gl 20U [1+Gn7n(Q) — GA(9%4/3Gy), Jxa'(Q) + G5

(azn) (14 G2 (1+G[3,—U)) x*(a)= WA

2
1=Gq G, 1+G(23,—VU) » (20
=y(q), (24)
and
) a2, UGﬁ in which the Matsubara-frequency dependence actually
Now,) . 1+G.(25,—U) (21) drops out of the expressidmfter using Eq(18)], and it is
Cn equal toy(q). Similarly, we find the mixed SDW suscepti-

For the cases examined here, we never found any divehility vanishesy'(q)=0.

gences of the CDW susceptibility. Now, we could have also calculated the mixed suscepti-
We must follow a similar procedure to find the SDW bility by adding an ordering field for thé electrons, and

susceptibility, but the algebra simplifies tremendously indifferentiating thed-electron Green’s function with respect

zero external field, because the irreducible SDW vertex beto the f-electron ordering field. The results of each of these

comes calculations must be the same, since dfesusceptibility is

equal to thefd susceptibility. However, if we write out the
dd _E 92y expression for théd susceptibility explicitly in terms of the
Gni/,,.
1

nmT T derivatives with respect to thieelectron-ordering field, we
find that it includes a dependence on thfe susceptibility.
since the derivatives with respectuwg are equal and hence Hence theff susceptibility can be determined from tdé
cancel. The SDW susceptibility then assumes the simplsusceptibility found above. In the CDW channel, one finds
form that theff susceptibility satisfies

(22

_ 1 ~df
%)= X 9

2T 3,G7(95, /Wi )+ (95 1Wy, ) VLT Gyl @) — GE(TS 119G u 1 (25

This result can be further simplified following the same steps as above, to rewrite the derivatives in terms of explicitly
calculable quantities. After a significant amount of algebra, similar to what was done fddteasceptibility in the CDW
channel, we find
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FIG. 1. Magnetic susceptibility of thd electrons in the Falicov-Kimball model. The different curves corresponcEtft*
=0.0,0.5,..,4.5 (in generalE; increases from top to bottom in these figyrebhe different figures aréa) n=2.5 andU=10t*; (b) n
=2.1 andU=t*; (c) n=2.0 andU=2t*; (d) n=1.9 andU=10t*; and(e) n=0.5 andU =10t*.

(UT)wy(1—wy)

x'(@)= 2 , (26)
1-3,G, nn(q)(&znlﬁwl)Gn(awllznT + an/an)/[l+Gn”n(q)_Gn(aEn/Gn)wl]
which has the same denominator as dltbanddf suscepti- . RESULTS
bilities. The CDW transition temperature, is thereby deter-
mined by the condition that this denominator vanishes. We present the magnetic response of our numerical solu-

A similar analysis for the SDW channel does not yieldtions for a variety of different cases in Fig. 1. Each figure
any useful information becausg'’(q)=0. Instead, we can corresponds to a different value of total electron concentra-
directly compute the uniformg=0) ff susceptibility for tion (n=ny+n¢), with ten values of;/t* ranging from 0
SDW order by differentiating the fillings/ with respect to  t0 4.5 in steps of 0.5. Fig. (& is a typical high-density
the f levelsE? . The calculation is simplified by the fact that "€SUll. There are 2.5 electrons per impurity site, implying
the factorsz? depend only on the totdl electron fillingw; ny# 0 at all temperatures, leading to a Curie contribution to

. ) o . the susceptibility at small’. In this regime, the results are
which does not change in a magnetic figtahly the relative rather insgnsitiv)é te) andE; (U= 10t* %ere). Figure 1b) is

filings wj—w; changg, and the final result is then=2.1 case. We chodd=t* here, and the results have
a stronger dependence &3, showing a downturn at mod-
it ny W1 erateT, before the Curie-law divergence sets in fbor 0.
x(0)= 2T’ 27) Neither of these cases have a charge-transfer transition,
rather they always display a Curie-like divergenceTasO.
which is in the Curie-Weiss form. As n is decreased to 2 and beyond, it is no longer necessary
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IV. APPLICATION TO REAL MATERIALS

The insulating state of Njlis best described by a hole
picture. The localized holes lie in the Nibands, and there is
one hole per site. The ioding band is full, so there are no
conduction holes. Hence the total hole concentration is 1 and
in the regime where the pressure is tuned to lie just above the
metallization pressure &@t=0, we expect the susceptibility

M(h)

0 0.5 1 15 2 to look qualitatively similar to the low-density regime of Fig.
* 1(e) (this is because the only difference between the hole
h/t picture and the electron picture is that thdevel energy

FIG. 2. Total magnetization of the Falicov-Kimball model as a chqnges sign So, W.e expect an |nterest|r?g anqmalous mag-
function of magnetic field. The different curves correspond to dif-netIC response Of_ Ngllwhen the pressurg |s.suff|C|entIy high
ferent temperature§/t* =0.05,0.1,0.2,.,3.2,6.4(the temperature  that the system is just on the metallic side of the metal-
increases from top to bottom in the largeange. The parameters insulator transition point. In this case, there are few localized
aren=2, E;=t*, andU=2t*. holes at low temperature, but they will be thermally excited

in large numbers as the temperature is raised. The suscepti-
for there to be anyf electrons remaining af=0, andx'"  pility should be quite small at low temperature, and then rise
can vanish in that limit. In Fig. (t) we ploty'" forn=2 and  dramatically as the metal-insulator transition point is passed
U=2t*, showing an asymmetric peak that increases in sizébefore turning over again at higher temperaturdso, we
and sharpens as the turnover temperafiyelecreases, and predict that Nij should exhibit metamagnetism. Since new
which still has a weaker Curie upturn at the lowest temperatechniques allow one to inductively measure the magnetic
tures, because; #0 asT— 0. Here, the results depend Bn  response of samples in a diamond-anvil ¢Elyithout the
andU, with the peak lowering in magnitude and broadeningneed of attaching any wires within the cell, it is possible that
as U increases, and the low-temperature upturn becomingne could use this anomalous magnetic response to accu-
more prominent. The cage=1.9 is shown in Fig. ) for  rately measure the phase diagram of,Nio our knowledge
U=10t*. Once again we have a dependenceEgrandU, no measurements of the magnetic response of blilder
but the low-temperature upturn has disappeared. In somgressure have yet been carried out. Only thelNempera-
casesy'’ has a double-hump structure. Finally the low-ture in the insulating phase was measured with thesdvio
density regime is plotted in Fig.(® (n=0.5, U=10t*).  bauer effect
Here, as in the high-density limit, the results are insensitive For the Yb-based VF compounds, the mapping of this
to U. The reason why the results do not depend sensitivelgystem to an effective Falicov-Kimball model is more com-
on U for both the high- and low-density limits is that when plicated than in Nij, and more controversial, so we begin by
ns is small, then the Falicov-Kimball model looks similar to motivating how such a mapping can be made, and provide
a noninteracting free band, because there are no localizezkperimental evidence that supports this point of view. We
electrons for the conduction electrons to scatter off of. Siminotice first that there is no simple relation between the
larly, in the high-density regime, as; approaches 1, the change in the lattice parametghat is, the change in Yb-In
model also becomes noninteracting, since there i elec-  hybridization and the onset of the anomalies. In
tron at every site, and the conduction band is simply shiftedrb;_,Y,InCu, an increase of(x) is accompanied by a de-
in energy byU, which does not affect any of the qualitative crease ofT,, and Hy,. In YbIn;_,Ag,Cu,, a(x) does not
physics. change when In ions are replaced by smaller Ag itfos

The model also exhibits a metamagnetic transition, fox<0.4) while T,, andH,, increase and the anomalies become
large enough magnetic fields. This is shown in Fig. 2 for ondess sharpg®® In stoichiometric YbInCy, T, and Hy are
casen=2 E;=t*, U=2t*, g=4.5, and eight temperatures enhanced by thermal treatment, which introduces disorder
from 0.08* up to 6.4*. The numerical analysis shows that between Yb and In sites but does not chaager the Yb-In
atT=0, the Zeeman energy at the transition is of the order ohybridizatior). We notice also that systems which are similar
kg Ty . The metamagnetic fieldq,, decreases at higher tem- for T>T,, (H>H,)) andT<T, (H<H,) can show substan-
peratures but the transition becomes smoother. The met&al variation in the onset and the shape of the anomalies at
magnetism disappears &gs increased beyond, , because T, andH,,. To account for such a behavior we assume that
the f electrons are already occupied in the zero-field limit. the effectivef state is in the proximity of the chemical po-

This anomalous behavior can be understood in terms dfential x so that correctly placed Yb ions are in the VF state.
simple thermodynamic considerations. Faf>u and n Hence, the important parameter is the renormalized position
<2, the nonmagnetic empty orbital is energetically more of the f level E;— u, which provides the characteristic en-
favorable than the magnetic state, so the ground state has eogy scale(typically, about 100 K
f electrons. However, at high, the large magnetic entropy The assumption that the majority of Yb ions are in the VF
of the f-electron spins favors the magnetic state. The suscepstate forT>T,, is supported by the unusual deviation from
tibility of thesef electrons grows rapidly as the temperatureVegard's law found in Yblp_,Ag,Cu, for x<0.4 at room
is reduced until, close t@, the entropy gain is insufficient temperaturé.Here, the replacement of In ions by smaller Ag
to compensate the energy loss and thelectrons disappear ions does not modifi(x), since in a VF compound the Yb
to form a nonmagnetic state. Thyg," drops rapidly, which ions reduce their average valence and preserve the volume of
is the origin of the sharp asymmetric peak in #€l) data. the unit cell. The assumption th&;— x increases only
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slightly with x, explains the weak concentration dependenceralues oft*, E;, andn". Our analysis shows that the lower
of the high-temperature susceptibility and the high-field satuthe transition temperature, the more pronounced and steeper
ration magnetization®® For x=0.4, E; is pushed offu,  the anomaly. For large fields, unhybridized Yb ions switch to
which results in a HF compound with a statfleshell!®®  a magnetic configuration at much lower temperatures, than in
Furthermore, the linear coefficient to the specific heat doethe absence of the field.
not change forx<0.3, while Ty changes by a factor of We emphasize that in the model proposed here, most of
three!® the Yb ions are in a hybridized/F) state at all temperatures

To explain the anomalies at,, we assume that the mag- and that the anomalies arourid, are due to an entropy
netic response of these Yb compounds has its origin in twalriven transition of a small number of unhybridized Yb ions
physically distinct components. The first ong, is due to  so that the bulk of the lattice is unchangedTat. On the
the hybridizedcorrectly placeliYb ions, and is largéon an  other hand, in the commonly used hybridization model it is
absolute scale isotropic, and sample independent. The secassumed that all the Yb ions switch &} from a stable 3-
ond component of the susceptibiligy/" arises from the un-  configuration to a hybridized VF configuration, which makes
hybridized Yb ions which switch aTy, (or Hy) from the the highT and the lowT phases fundamentally different.
magnetic 3+ to the nonmagnetic 2 configuration. Hence, Thus, the appropriate model' for describing the Yb-based VF
x'T vanishes belowl, and is smaller tharyy at high tem- compounds can be determined by measuring the pressure
peratures, but dominatggT) nearT,; it is strongly sample depe_ndence oka/a acrossTy . The Falicov-Kimball model .
dependent. At low temperatures and high fields these unh)P—red'Cts. a weak pressure depe”d@ce beca}use the lons in-
bridized states lead to a metamagnetic transition with a sm olved in the transition are unhybridized, while the hybrid-

energy difference between the low-field and the high-fieldIzatlon mo_del_predlct_s a strong pressure dependence because
states. the hybridization rapidly increases with pressure.

The lattice of N, YbInCu, unit cells separates into two
distinct sublattices: the sublattice Nfunhybridized Yb ions
(localized f electron$ and the sublattice oN;,—N hybrid- V. CONCLUSIONS
ized Yb ions. Conduction electrons from the In ions move |, summary, we have exactly solved the spin-one-half
(via nearest-neighbor hopping between unit cells of the fullza|icov-Kimball model on an infinite-dimensional hypercu-
lattice) between any two unit cells of the unhybridized-Yb- pic |attice in an external magnetic field. We also examined
ion sublattice. Hence, if we focus only on the sublattice deyhe magnetic respongas a function of temperaturén zero
grees of freedom, we can model theband by asingle  mpagnetic field. The system showed anomalous behavior due
effective bandthat couples any two sites of the sublattice iy the proximity of thef-electron stategwhich have local
with arandomhopping matrix elemenithat depends on the moments to the chemical potential, which allows their oc-
growth and thermal treatment of the samplEhesef andd  cypancy to change dramatically as the temperature changes,
states have a common chemical potenigland interact by pecause of the entropy gain due to the magnetic moments.
a Coulomb repulsionl) when they occupy the same unit Thys, the uniform magnetic susceptibility shows an asym-
cell. In addition, both thel andf particles carry a spin label metric peak at a characteristic temperaftije which decays
o and thed level can accommodate 2 electrdius holes of  similar to a Curie-Weiss law for high temperatufegcause
the opposite spin. The occupancy of théevel is restricted  of the f momentg and typically decays exponentially rapidly
to ng<1 because of the large Coulomb repulsiti{~)  for temperatures much lower thah, (because thé elec-
of the f particles of opposite spins. To discuss the Yb-basegrons are thermally excited across a gafhe magnetization
VF compounds we use the hole picture, in whiEfi<x and  (in an external magnetic fielshows metamagnetic behavior
the total number of holes at the ill-placed sites is restricted tgecause of the rapid switching of electrons from dhie the
np=ng+nf=<3. (In the electron picture, one would have f states whem<T,,, but shows a much smoother increase
E¢>u and would restrict the total number of electrons towith magnetic field for temperatures larger tHRp.
ne=n§+nf{=<3.) The magnetic fieldh couples to thé andd We applied this model to two candidate real materials.
states but with differeng factors(g=4.5 for thef holes. The first is Nil, which is known to undergo a charge-
This picture is thus described by the spin-one-half Falicovtransfer metal-insulator transition as a function of pressure,
Kimball model. In the limitN—o,??> and N/N,<1, our that is well described by the Falicov-Kimball model. We
choice for t; maps this problem onto the infinite- propose that the metal-insulator phase diagram, and this
dimensional(local) one, which allows the magnetic suscep- anomalous magnetic behavior can be measured using newly
tibility to be evaluated exactly using the methods describedieveloped techniques within a diamond-anvil cell. The sec-
above. ond are the Yb-based VF compounds whose anomalous

The hole filling for these Yb-based VF compounds liesmagnetic properties can be attributed to an entropy-driven
nearn~2. The exact solution reproduces well the overalltransition of disordered Yb and explained by the Falicov-
behavior of the experimental data. Figurés)11(d) capture  Kimball model with random hopping. The Falicov-Kimball-
most of the features showm®by x(T), such as an asym- transition of unhybridized Yb ions and the VF behavior of
metric peak afl, that increases in magnitude and sharpensybridized Yb ions are both due to the proximity of the
asTy— 0, while Fig. 2 explains the magnetizatfort M (T), level to the chemical potential. The two inequivalent Yb sites
with a metamagnetic transition that smoothes out and theappear in these compounds because of their characteristic
disappears a$ is increased. Various samples will have dif- crystal structure. Thus, the large changes in magnetic, trans-
ferent numbers of Yb impurities and will require different port, and elastic properties &t, andH,, are explained, and
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