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Anomalous magnetic response of the spin-one-half Falicov-Kimball model
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~Received 5 January 1998!

The infinite-dimensional spin-one-half Falicov-Kimball model in an external magnetic field is solved ex-
actly. We calculate the magnetic susceptibility in zero field, and the magnetization as a function of the field
strength. The model shows an anomalous magnetic response from thermally excited local moments that
disappear as the temperature is lowered. We describe possible real materials that may exhibit this kind of
anomalous behavior.@S0163-1829~98!00226-4#
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I. INTRODUCTION

The spin-one-half Falicov-Kimball model1 was intro-
duced in 1969 to describe metal-insulator transitions
transition-metal and rare-earth compounds. The me
insulator transition is a charge-transfer transition, where
system consists of both localized~insulating! electronic
states and delocalized~conducting! electronic states, and th
transition occurs when the electron filling switches from t
localized to delocalized states~or vice versa!. This is the
simplest possible metal-insulator transition, since the cha
ter of the individual electronic states does not change at
transition, rather it is just the occupancy of those states
varies.

The localized electrons are strongly interacting with ea
other, so double occupancy of the localized orbitals is f
bidden. The conduction electrons, however, are chosen t
noninteracting, since the Coulomb interaction between th
is screened. The only remaining interaction term in
Falicov-Kimball model is the mutual repulsion between
conduction and localized electron that sit on the same lat
site. For any fixed configuration of the localized electro
the quantum-mechanical problem for the conduction e
trons can be solved in a single-particle basis. The many-b
aspects enter from taking an annealed thermal average
all possible configurations of the localized electrons.

We are most interested in the situation where the loc
ized level lies just above the Fermi energy, so there are
localized electrons atT50. As the temperature rises, then
becomes more favorable to thermally occupy the locali
levels because of the gain in entropy of the local mome
This will have a dramatic effect on the uniform spin susce
tibility, as the localized electrons will generate a Curie-li
response, which is much larger than the Pauli-like respo
of the conduction electrons. The net effect is that the susc
tibility will show a peak at a characteristic temperatu
which is determined by the point where the localized el
tron occupancy saturates. In addition, we expect there to
interesting behavior as a function of magnetic field, wh
the proximity of the localized levels close to the Fermi e
ergy can induce a rapid change in the magnetization, prod
ing metamagnetism.

The Falicov-Kimball model was initially applied to
wide variety of transition-metal and rare-earth compoun
such as SmB6, V2O3, NiS, etc., which display both continu
PRB 580163-1829/98/58~1!/322~8!/$15.00
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ous and discontinuous metal-insulator transitions as a fu
tion of either temperature or pressure. However, the Falic
Kimball model has not been generally accepted as explain
the metal-insulator transitions of all of these different ma
rials for two reasons. First, it neglects all effects of hybr
ization, and hence all Kondo-effect physics, and secon
does not take into account the fact that most of these m
rials also undergo a structural phase transition.

Recently, however, a new material was discovered t
undergoes a classic charge-transfer metal-insulator trans
without any structural phase transition—it is NiI2 when put
under high pressure.2 This layered compound crystallizes i
the CdCl2 crystal structure, in which the Ni ions form
close-packed plane, with close-packed I planes lying b
above and below. The NiI2 planes are then stacked in a
alternating packing scheme. The Fermi level of NiI2 lies
within the Ni d bands, since the Ni donates one electron
each I ion that lies in the plane above and below. The gro
state is an antiferromagnetic insulator. As pressure is app
the I p bands move closer to the Fermi level causing the N´el
temperature to rise, until they reach the Fermi level, a
electrons from the I ions move onto the Ni11 ions changing
them to Ni1 and quenching the local magnetic moment. T
remaining holes in the Ip bands are conducting, and th
material becomes metallic.

Another class of materials that might be described by
effective Falicov-Kimball model is the class of Yb-base
valence-fluctuating~VF! compounds ~such as YbInCu4,
YbIn12xAgxCu4, and Yb12xYxInCu4! which exhibit large
anomalies in their thermodynamic,3–5 spectroscopic,3,6,7 and
transport properties,3,5,8 around a characteristic, sample
dependent temperatureTV ~40–60 K!. The magnetic suscep
tibility x(T) of these compounds is of a Curie-Weiss form
high temperatures, and the anomaly appears,5,8,9 as a pro-
nounced asymmetric peak just above this character
sample-dependent temperatureTV . Below TV , x(T) exhib-
its Pauli-like behavior, while at the lowest temperatures
weak Curie-like upturn is often seen. The x-ray analy
shows that the Yb-based VF compounds crystallize in
C15b structure, that the lattice constanta(T) changes atTV
by a small amount,6,8,10 and that there are no structur
changes. There is no evidence4,6 for magnetic ordering below
TV , instead the Yb ions fluctuate between a 21 and 31
state, but the average volume change atTV is much less than
322 © 1998 The American Physical Society



of

tio

Y

la
e
at

he
i

e

th
on
d
s-

ta

to
o
bl

e
ea
-

e
th
n
i

ou
nd
te

ts
n

it

on

o

we

lt-

e

are
tter
be-

mi
la-
uch
n a

not

t
and

-
e

by

a
ron

y
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what one would expect from a complete Yb31-Yb21

transition.3 The anomaly in the high-field magnetization
YbInCu4 ~Ref. 4! and YbIn12xAgxCu4 ~Ref. 11! appears as a
sudden increase of the slope and the saturation ofM (H) at
aboutHV.30– 50 T. The Zeeman energy atHV ~at T!TV!
is comparable to the thermal energy atTV ~at H!HV!. At
elevated temperatures, this metamagnetic transi
disappears.6 The magnetostriction data4 indicate that the
metamagnetism relates to the valence fluctuations of the
ions but the field-induced change of thef -electron valence is
even smaller than the temperature-induced one.

The large magnetic anomalies accompanied by small
tice changes can be reconciled by a model in which ther
some intrinsic disorder between Yb and In sites, such th
minority of Yb ions ~in the C15b lattice! lie at ‘‘ill-placed
sites.’’ The correctly placed Yb ions are hybridized with t
ligands and are in the VF state at all temperatures. The
placed Yb ions are unhybridized@because the Yb-In distanc
of an ill-placed Yb ion~that sits on an In site! is nearly twice
as large as the Yb-In distance for an Yb ion that sits on
correct lattice site# and undergo a charge-transfer transiti
at TV ~one 4f electron jumps into conduction band an
leaves behind a magnetic hole!. As a consequence, the su
ceptibility acquires a large asymmetric peak just aboveTV ,
while the low-temperature magnetization exhibits a me
magnetic transition for magnetic fields of the order ofkBTV .

This recent experimental work provides our motivation
study the magnetic response of the spin-one-half Falic
Kimball model, and to compare the results with the availa
susceptibility data for NiI2 and YbInCu4. On the theoretical
side, the Falicov-Kimball model has also received renew
interest, with work concentrating on the linear and nonlin
characteristics of the model12 and on the intermediate
valence and metal-insulator transitions.13

In Sec. II we present the formalism, showing how to d
termine the Green’s functions in a magnetic field, and
different magnetic and charge-density-wave response fu
tions in zero field, and the numerical methods employed
the exact solution of the problem. Section III presents
results for the infinite-dimensional hypercubic lattice a
Sec. IV summarizes the possible applications to real ma
als. Our conclusions appear in Sec. V.

II. FORMALISM

The Hamiltonian of the Falicov-Kimball model consis
of two types of spin-one-half electrons: conduction electro
~created or destroyed at sitei by dis

† or dis! and localized
electrons~created or destroyed at sitei by f is

† or f is!. The
conduction electrons can hop between nearest-neighbor s
with a hopping matrix2t i j 5:2t* /2AD, where we have
chosen to examine hypercubic lattices inD dimensions, and
we choose a scaling of the hopping matrix that yields a n
trivial limit in infinite-dimensions (D→`).14 The f elec-
trons have a site energyEf ~which will be chosen to lie just
above the Fermi energy atT50!, and a chemical potentialm
is employed to conserve the total number of electronsnd↑
1nd↓1nf↑1nf↓5const. Finally, there is a restriction of n
double occupancy of thef electrons on any site~implying
the Coulomb repulsionU f f between twof electrons is infi-
nite! and there is a Coulomb interactionU between thed and
n
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f electrons that occupy the same lattice site. In addition,
include a coupling to an external magnetic fieldh with a
Landég factor added for the localized electrons. The resu
ing Hamiltonian is1,15

H5(
i j ,s

~2t i j 2md i j !dis
† dj s1(

i ,s
~Ef2m! f is

† f is

1U (
i ,ss8

dis
† dis f is8

† f is81U f f(
i ,s

f i↑
† f i↑ f i↓

† f i↓

2mBh(
i ,s

s~2dis
† dis1g fis

† f is!. ~1!

We solve the Falicov-Kimball model by working in th
infinite-dimensional limit. The bare density of statesr~e! on
a hypercubic lattice becomes

r~e!5
1

Apt*
exp@2e2/t* 2#, ~2!

and we taket* as the unit of energy (t* 51). ~The alterna-
tive lattice to consider is the Bethe lattice, where the b
density of states becomes Wigner’s semicircle. The la
density of states is closer to a three-dimensional band
cause it increases asAE at the band edges. Since the Fer
level always lies far away from the band edge in all calcu
tions considered here, we do not expect there to be m
difference between the solution on a Bethe lattice versus o
hypercubic lattice. In fact, we have checked that this is
the case for our results in Sec. III.! In the infinite-
dimensional limit the local approximation becomes exac14

so that the self-energy has no momentum dependence,
the local conduction-electron Green’s function satisfies

Gs~ ivn!5:Gns5E r~e!

ivn1m2Sns2e
de, ~3!

where vnªpT(2n11) is the fermionic Matsubara fre
quency, andr~e! is the noninteracting density of states. Th
self-energy is determined by a three-step process:~i! first, the
site-excluded Green’s functionGs

0( ivn), which holds the
information about all of the other lattice sites, is found
adding back the self-energy

Gs
0~ ivn!5

1

Gns
211Sns

; ~4!

then ~ii ! the local Green’s function is calculated from
weighted sum over the different possible localized-elect
states

Gns5w0Gs
0~ ivn!1

w1
↑1w1

↓

@Gs
0~ ivn!#212U

, ~5!

where w0512w1
↑2w1

↓ and w1
s are the localized electron

occupancies for nof electrons (w0) and anf electron with
spins (w1

s); and finally~iii ! the self-energy is determined b
subtracting off the ‘‘bare’’ Green’s function
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324 PRB 58J. K. FREERICKS AND V. ZLATIĆ
Sns5@Gs
0~ ivn!#212Gns

21 . ~6!

The f -electron occupancies are found by explicitly calcul
ing the path-integral for the partition function15 ~generalized
to include the magnetic field! and are determined byw0

5Z0 /Z, w1
s5Z1

s/Z, andZ5Z01Z1
↑1Z1

↓ , with

Z05 )
n52`

`

Zn
↑Zn
↓ ,

Z1
s5expF2bS Ef1U2m2

1

2
gmBshD G

3 )
n52`

`

~Zn
↑2U !~Zn

↓2U !, ~7!

whereZn
s :5@Gs

0( ivn)#21.
The algorithm for finding the self-consistent solution

these equations is the same as was used in the Hub
model:16 ~i! begin with the self-energy set equal to zero;~ii !
determine the local Green’s function from Eq.~3!; ~iii ! de-
termine the site-excluded Green’s function from Eq.~4! and
the f -electron occupancies from Eq.~7!; ~iv! determine the
new local Green’s function from Eq.~5! and the new self-
energy from Eq.~6!. This new self-energy is plugged bac
into step ~ii ! and the process is iterated until it converg
~which typically takes less than 100 iterations for conv
gence to one part in 106!.

In addition to finding the Green’s functions in a magne
field, we can also determine the susceptibilities to b
charge-density-wave order and spin-density-wave orde
zero magnetic field. The derivation of these quantities
similar to that of Brandt and Mielsch,15 and we simply in-
clude details not presented before and summarize the ge
alizations needed when the electrons have spin.

We begin by adding an ordering field( jhj
sdj s

† dj s to the
Hamiltonian and examining the linear response in the li
as hj

s→0. The real-space conduction-electron correlat
functions can be expressed in terms of the Green’s funct
via

^~nis
d 2^nis

d &!~nj s8
d

2^nj s8
d &!&52T2(

n

dGns
i i

dhj
s8

. ~8!

Following the standard techniques,15 one can express th
correlation functions in terms of charge-density-wa
~CDW! (x̃) and spin-density-wave~SDW! ~x! susceptibili-
ties in momentum space

x̃n
dd~q!5xn

dd0~q!2T(
m

xn
dd0~q!G̃nm

dd x̃m
dd~q!,

xn
dd~q!5xn

dd0~q!2T(
m

xn
dd0~q!Gnm

dd xm
dd~q!, ~9!

where the susceptibility is found by summing over Matsu
ara frequencies@xdd(q)5T(nxn

dd(q)#, xn
dd0(q) is the bare

particle-hole susceptibility
-

ard

-

h
in
s

er-

it
n
ns

-

xn
dd0~q!52T(

k
Gn~k1q!Gn~k!

52E
2`

`

dy
r~y!

ivn1m2Sn2y

3E
2`

`

dz
r~z!

ivn1m2Sn2X~q!y2zA12X2~q!
,

~10!

where all of the wave vector dependence is included in
term X(q)5( j 51

d (cosqj)/d ~the Green’s function and self
energy in zero magnetic field have no spin dependence!, and

G̃nm
dd (Gnm

dd ) are the irreducible CDW~SDW! vertex func-
tions,

G̃nm
dd
ª

1

T F dSn↑
dGm↑

1
dSn↑
dGm↓

G , Gnm
dd
ª

1

T F dSn↑
dGm↑

2
dSn↑
dGm↓

G .
~11!

Now the self-energy can be expressed as an explicit func
of the Green’s function~of the same Matsubara frequenc!
and thef -electron filling@by substituting Eq.~4! into Eq.~5!
and solving the resulting quadratic equation forSn#

Sns52
1

2Gns
1

U

2

6
1

2Gns
A122~122w1!UGns1U2Gns

2 , ~12!

with w15w1
↑1w1

↓ the totalf -electron concentration. The dif
ficulty in calculating the derivatives~to find the irreducible
vertices! arises from the fact that thef -electron fillingw1 is
an explicit function of all of the Green’s functions.

The CDW vertex becomes

G̃nm
dd 5

1

T S ]Sn↑
]Gn↑

D
w1

dmn1
1

T S ]Sn↑
]w1

D
Gn↑

F ]w1

]Gm↑
1

]w1

]Gm↓
G .
~13!

In the zero-magnetic-field case, the two derivatives in
square brackets are equal to each other, which simplifies
analysis. Substituting into the Dyson equation Eq.~9! then
yields

x̃n
dd~q!5xn

dd0~q!
12~]Sn↑ /]w1!Gn↑

g~q!

11xn
dd0~q!~]Sn↑ /]Gn↑!w1

, ~14!

with the functiong(q) defined by

g~q!ª(
n

x̃n
dd~q!F ]w1

]Gm↑
1

]w1

]Gm↓
G . ~15!

Multiplying Eq. ~14! by ]w1 /]Gn↑1]w1 /]Gn↓ and sum-
ming over n yields an equation forg(q). Brandt and
Mielsch show how to massage that formula into a fo
where the individual derivatives can be explicitly calculate
The algebra is somewhat long, and entirely contained in th
work. The final result forg(q) is
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g~q!5
(n~]w1 /]Zn↑1 ]w1 /]Zn↓!@12Gn

2~]Sn /]Gn!w1
#/@11Gnhn~q!2Gn

2~]Sn /]Gn!w1
#

12(nGnhn~q!~]Sn /]w1!Gn
~]w1 /]Zn↑1 ]w1 /]Zn↓!/@11Gnhn~q!2Gn

2~]Sn /]Gn!w1
#
, ~16!
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with h(q) defined by

hn~q!ªGnF2
1

Gn
2 2

1

xn
dd0~q!G . ~17!

Finally, the CDW susceptibility is computed from

x̃dd~q!52T(
n

@12g~q!~]Sn /]w1!Gn
#Gn

2

11Gnhn~q!2Gn
2~]Sn /]Gn!w1

.

~18!

This susceptibility diverges wheng(q) diverges, which oc-
curs when the denominator of Eq.~16! vanishes. This yields
the same result as Brandt and Mielsch for the spinless c
except for an additional factor of 2 multiplying the sums
the numerator and the denominator arising from the two
rivatives ofw1 ~which are both equal!.

Each of the derivatives appearing in Eqs.~16! and ~18!
can be directly calculated. A straightforward differentiati
and simplification@employing the quadratic equation who
solution gave Eq.~12!# yields

S ]w1

]Zn↑
1

]w1

]Zn↓
D5

2w1~12w1!UGn
2

~11GnSn!~11Gn@Sn2U# !
, ~19!

12Gn
2S ]Sn

]Gn
D

w1

5
~11GnSn!~11Gn@Sn2U# !

11Gn~2Sn2U !
, ~20!

and

Gn
2S ]Sn

]w1
D

Gn

5
UGn

2

11Gn~2Sn2U !
. ~21!

For the cases examined here, we never found any di
gences of the CDW susceptibility.

We must follow a similar procedure to find the SDW
susceptibility, but the algebra simplifies tremendously
zero external field, because the irreducible SDW vertex
comes

Gnm
dd 5

1

T S ]Sn↑
]Gn↑

D
w1

dmn , ~22!

since the derivatives with respect tow1 are equal and henc
cancel. The SDW susceptibility then assumes the sim
form
se,

-

r-

e-

le

xdd~q!52T(
n

Gn
2

11Gnhn~q!2Gn
2~]Sn /]Gn!w1

,

~23!

which is never expected to diverge at any finite temperatu
Brandt and Mielsch also show how to calculate the mix

susceptibilities that correlate thed-electron charge~or spin!
with the f -electron charge~or spin!. The idea is that deriva-

tives ofw1i
s with respect to the ordering fieldhj

s8 produce the
mixed susceptibilities, so a direct calculation of thedd sus-
ceptibility involves total derivatives of the self-energy wi
respect to the Green’s functions, which can be expresse
terms of the irreducible vertex~as done above! to find the
susceptibility, or can be expressed as partial derivatives w
respect to the Green’s function and thef -electron filling
~since the self-energy is a function ofGn andw1!. Hence one
can solve directly for the mixed susceptibilities~the details
appear in Brandt and Mielsch’s work!. The final result for
the mixed CDW susceptibility is

x̃d f~q!5
@11Gnhn~q!2Gn

2~]Sn /]Gn!w1
#x̃n

dd~q!1Gn
2

Gn
2~]Sn /]w1!Gn

5g~q!, ~24!

in which the Matsubara-frequency dependence actu
drops out of the expression@after using Eq.~18!#, and it is
equal tog(q). Similarly, we find the mixed SDW suscept
bility vanishesxd f(q)50.

Now, we could have also calculated the mixed susce
bility by adding an ordering field for thef electrons, and
differentiating thed-electron Green’s function with respec
to the f -electron ordering field. The results of each of the
calculations must be the same, since thed f susceptibility is
equal to thef d susceptibility. However, if we write out the
expression for thef d susceptibility explicitly in terms of the
derivatives with respect to thef -electron-ordering field, we
find that it includes a dependence on thef f susceptibility.
Hence thef f susceptibility can be determined from thed f
susceptibility found above. In the CDW channel, one fin
that thef f susceptibility satisfies
plicitly
x̃ f f~q!5
1

2T

x̃d f~q!

(nGn
2@~]Sn /]w1↑!Gn

1~]Sn /]w1↓!Gn
#/@11Gnhn~q!2Gn

2~]Sn /]Gn!w1
#
. ~25!

This result can be further simplified following the same steps as above, to rewrite the derivatives in terms of ex
calculable quantities. After a significant amount of algebra, similar to what was done for thedd susceptibility in the CDW
channel, we find
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x̃ f f~q!5
~1/T! w1~12w1!

12(nGnhn~q!~]Sn /]w1!Gn
~]w1 /Zn↑1 ]w1 /Zn↓!/@11Gnhn~q!2Gn

2~]Sn /Gn!w1
#
, ~26!

FIG. 1. Magnetic susceptibility of thef electrons in the Falicov-Kimball model. The different curves correspond toEf /t*
50.0,0.5,...,4.5 ~in generalEf increases from top to bottom in these figures!. The different figures are~a! n52.5 andU510t* ; ~b! n
52.1 andU5t* ; ~c! n52.0 andU52t* ; ~d! n51.9 andU510t* ; and ~e! n50.5 andU510t* .
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which has the same denominator as thedd andd f suscepti-
bilities. The CDW transition temperature, is thereby det
mined by the condition that this denominator vanishes.

A similar analysis for the SDW channel does not yie
any useful information becausexd f(q)50. Instead, we can
directly compute the uniform (q50) f f susceptibility for
SDW order by differentiating the fillingsw1

s with respect to
the f levelsEf

s . The calculation is simplified by the fact tha
the factorsZn

s depend only on the totalf electron fillingw1

which does not change in a magnetic field~only the relative
fillings w1

↑2w1
↓ change!, and the final result is

x f f~0!5
w1

2T
, ~27!

which is in the Curie-Weiss form.
-
III. RESULTS

We present the magnetic response of our numerical s
tions for a variety of different cases in Fig. 1. Each figu
corresponds to a different value of total electron concen
tion (n5nd1nf), with ten values ofEf /t* ranging from 0
to 4.5 in steps of 0.5. Fig. 1~a! is a typical high-density
result. There are 2.5 electrons per impurity site, implyi
nfÞ0 at all temperatures, leading to a Curie contribution
the susceptibility at smallT. In this regime, the results ar
rather insensitive toU andEf ~U510t* here!. Figure 1~b! is
the n52.1 case. We choseU5t* here, and the results hav
a stronger dependence onEf , showing a downturn at mod
erateT, before the Curie-law divergence sets in forT→0.
Neither of these cases have a charge-transfer transi
rather they always display a Curie-like divergence asT→0.
As n is decreased to 2 and beyond, it is no longer neces
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for there to be anyf electrons remaining atT50, andx f f

can vanish in that limit. In Fig. 1~c! we plotx f f for n52 and
U52t* , showing an asymmetric peak that increases in s
and sharpens as the turnover temperatureTV decreases, and
which still has a weaker Curie upturn at the lowest tempe
tures, becausenfÞ0 asT→0. Here, the results depend onEf
andU, with the peak lowering in magnitude and broadeni
as U increases, and the low-temperature upturn becom
more prominent. The casen51.9 is shown in Fig. 1~d! for
U510t* . Once again we have a dependence onEf andU,
but the low-temperature upturn has disappeared. In s
casesx f f has a double-hump structure. Finally the low
density regime is plotted in Fig. 1~e! ~n50.5, U510t* !.
Here, as in the high-density limit, the results are insensi
to U. The reason why the results do not depend sensitiv
on U for both the high- and low-density limits is that whe
nf is small, then the Falicov-Kimball model looks similar
a noninteracting free band, because there are no loca
electrons for the conduction electrons to scatter off of. Si
larly, in the high-density regime, asnf approaches 1, the
model also becomes noninteracting, since there is anf elec-
tron at every site, and the conduction band is simply shif
in energy byU, which does not affect any of the qualitativ
physics.

The model also exhibits a metamagnetic transition,
large enough magnetic fields. This is shown in Fig. 2 for o
case:n52, Ef5t* , U52t* , g54.5, and eight temperature
from 0.05t* up to 6.4t* . The numerical analysis shows th
at T50, the Zeeman energy at the transition is of the orde
kBTV . The metamagnetic field,HV , decreases at higher tem
peratures but the transition becomes smoother. The m
magnetism disappears asT is increased beyondTV , because
the f electrons are already occupied in the zero-field limi

This anomalous behavior can be understood in term
simple thermodynamic considerations. ForEf.m and n
,2, the nonmagnetic emptyf orbital is energetically more
favorable than the magnetic state, so the ground state ha
f electrons. However, at highT, the large magnetic entrop
of the f -electron spins favors the magnetic state. The susc
tibility of these f electrons grows rapidly as the temperatu
is reduced until, close toTV , the entropy gain is insufficien
to compensate the energy loss and thef electrons disappea
to form a nonmagnetic state. Thus,x f f drops rapidly, which
is the origin of the sharp asymmetric peak in thex(T) data.

FIG. 2. Total magnetization of the Falicov-Kimball model as
function of magnetic field. The different curves correspond to d
ferent temperatures:T/t* 50.05,0.1,0.2,...,3.2,6.4~the temperature
increases from top to bottom in the large-h range!. The parameters
aren52, Ef5t* , andU52t* .
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IV. APPLICATION TO REAL MATERIALS

The insulating state of NiI2 is best described by a hol
picture. The localized holes lie in the Nid bands, and there is
one hole per site. The iodinep band is full, so there are no
conduction holes. Hence the total hole concentration is 1
in the regime where the pressure is tuned to lie just above
metallization pressure atT50, we expect the susceptibility
to look qualitatively similar to the low-density regime of Fig
1~e! ~this is because the only difference between the h
picture and the electron picture is that thef -level energy
changes sign!. So, we expect an interesting anomalous m
netic response of NiI2 when the pressure is sufficiently hig
that the system is just on the metallic side of the me
insulator transition point. In this case, there are few localiz
holes at low temperature, but they will be thermally excit
in large numbers as the temperature is raised. The susc
bility should be quite small at low temperature, and then r
dramatically as the metal-insulator transition point is pas
~before turning over again at higher temperature!. Also, we
predict that NiI2 should exhibit metamagnetism. Since ne
techniques allow one to inductively measure the magn
response of samples in a diamond-anvil cell,17 without the
need of attaching any wires within the cell, it is possible th
one could use this anomalous magnetic response to a
rately measure the phase diagram of NiI2. To our knowledge
no measurements of the magnetic response of NiI2 under
pressure have yet been carried out. Only the Ne´el tempera-
ture in the insulating phase was measured with the Mo¨ss-
bauer effect.2

For the Yb-based VF compounds, the mapping of t
system to an effective Falicov-Kimball model is more com
plicated than in NiI2, and more controversial, so we begin b
motivating how such a mapping can be made, and prov
experimental evidence that supports this point of view. W
notice first that there is no simple relation between
change in the lattice parameter~that is, the change in Yb-In
hybridization! and the onset of the anomalies.
Yb12xYxInCu4 an increase ofa(x) is accompanied by a de
crease ofTV and HV . In YbIn12xAgxCu4, a(x) does not
change when In ions are replaced by smaller Ag ions~for
x<0.4! while TV andHV increase and the anomalies becom
less sharp.18,8 In stoichiometric YbInCu4, TV and HV are
enhanced by thermal treatment, which introduces disor
between Yb and In sites but does not changea ~or the Yb-In
hybridization!. We notice also that systems which are simi
for T@TV (H@HV) andT!TV (H!HV) can show substan
tial variation in the onset and the shape of the anomalie
TV andHV . To account for such a behavior we assume t
the effectivef state is in the proximity of the chemical po
tentialm so that correctly placed Yb ions are in the VF sta
Hence, the important parameter is the renormalized posi
of the f level Ef2m, which provides the characteristic en
ergy scale~typically, about 100 K!.

The assumption that the majority of Yb ions are in the V
state forT@TV is supported by the unusual deviation fro
Vegard’s law found in YbIn12xAgxCu4 for x<0.4 at room
temperature.8 Here, the replacement of In ions by smaller A
ions does not modifya(x), since in a VF compound the Yb
ions reduce their average valence and preserve the volum
the unit cell. The assumption thatEf2m increases only
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slightly with x, explains the weak concentration dependen
of the high-temperature susceptibility and the high-field sa
ration magnetization.18,8 For x>0.4, Ef is pushed offm,
which results in a HF compound with a stablef shell.18,8

Furthermore, the linear coefficient to the specific heat d
not change forx<0.3, while TV changes by a factor o
three.19

To explain the anomalies atTV , we assume that the mag
netic response of these Yb compounds has its origin in
physically distinct components. The first one,xVF , is due to
the hybridized~correctly placed! Yb ions, and is large~on an
absolute scale!, isotropic, and sample independent. The s
ond component of the susceptibilityx f f arises from the un-
hybridized Yb ions which switch atTV ~or HV! from the
magnetic 31 to the nonmagnetic 21 configuration. Hence
x f f vanishes belowTV and is smaller thanxVF at high tem-
peratures, but dominatesx(T) nearTV ; it is strongly sample
dependent. At low temperatures and high fields these un
bridized states lead to a metamagnetic transition with a sm
energy difference between the low-field and the high-fi
states.

The lattice ofNl YbInCu4 unit cells separates into tw
distinct sublattices: the sublattice ofN unhybridized Yb ions
~localized f electrons! and the sublattice ofNl2N hybrid-
ized Yb ions. Conduction electrons from the In ions mo
~via nearest-neighbor hopping between unit cells of the
lattice! between any two unit cells of the unhybridized-Y
ion sublattice. Hence, if we focus only on the sublattice
grees of freedom, we can model thed band by asingle
effective bandthat couples any two sites of the sublatti
with a randomhopping matrix element~that depends on the
growth and thermal treatment of the sample!. Thesef andd
states have a common chemical potential~m! and interact by
a Coulomb repulsion (U) when they occupy the same un
cell. In addition, both thed and f particles carry a spin labe
s and thed level can accommodate 2 electrons~or holes! of
the opposite spin. The occupancy of thef level is restricted
to nf<1 because of the large Coulomb repulsion (U f f;`)
of the f particles of opposite spins. To discuss the Yb-ba
VF compounds we use the hole picture, in whichEf,m and
the total number of holes at the ill-placed sites is restricted
nh5nd

h1nf
h<3. ~In the electron picture, one would hav

Ef.m and would restrict the total number of electrons
ne5nd

e1nf
e<3.! The magnetic fieldh couples to thef andd

states but with differentg factors ~g54.5 for the f holes!.
This picture is thus described by the spin-one-half Falic
Kimball model. In the limit N→`,20,21 and N/Nl!1, our
choice for t i j maps this problem onto the infinite
dimensional~local! one, which allows the magnetic susce
tibility to be evaluated exactly using the methods describ
above.

The hole filling for these Yb-based VF compounds li
near n'2. The exact solution reproduces well the over
behavior of the experimental data. Figures 1~c!, 1~d! capture
most of the features shown3–5,8 by x(T), such as an asym
metric peak atTV that increases in magnitude and sharpe
asTV→0, while Fig. 2 explains the magnetization4,11 M (T),
with a metamagnetic transition that smoothes out and t
disappears asT is increased. Various samples will have d
ferent numbers of Yb impurities and will require differe
e
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d
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values oft* , Ef , andnh. Our analysis shows that the lowe
the transition temperature, the more pronounced and ste
the anomaly. For large fields, unhybridized Yb ions switch
a magnetic configuration at much lower temperatures, tha
the absence of the field.

We emphasize that in the model proposed here, mos
the Yb ions are in a hybridized~VF! state at all temperature
and that the anomalies aroundTV are due to an entropy
driven transition of a small number of unhybridized Yb ion,
so that the bulk of the lattice is unchanged atTV . On the
other hand, in the commonly used hybridization model it
assumed that all the Yb ions switch atTV from a stable 31
configuration to a hybridized VF configuration, which mak
the high-T and the low-T phases fundamentally differen
Thus, the appropriate model for describing the Yb-based
compounds can be determined by measuring the pres
dependence ofDa/a acrossTV . The Falicov-Kimball model
predicts a weak pressure dependence because the ion
volved in the transition are unhybridized, while the hybri
ization model predicts a strong pressure dependence bec
the hybridization rapidly increases with pressure.

V. CONCLUSIONS

In summary, we have exactly solved the spin-one-h
Falicov-Kimball model on an infinite-dimensional hyperc
bic lattice in an external magnetic field. We also examin
the magnetic response~as a function of temperature! in zero
magnetic field. The system showed anomalous behavior
to the proximity of thef -electron states~which have local
moments! to the chemical potential, which allows their oc
cupancy to change dramatically as the temperature chan
because of the entropy gain due to the magnetic mome
Thus, the uniform magnetic susceptibility shows an asy
metric peak at a characteristic temperatureTV , which decays
similar to a Curie-Weiss law for high temperatures~because
of the f moments! and typically decays exponentially rapidl
for temperatures much lower thanTV ~because thef elec-
trons are thermally excited across a gap!. The magnetization
~in an external magnetic field! shows metamagnetic behavio
because of the rapid switching of electrons from thed to the
f states whenT,TV , but shows a much smoother increa
with magnetic field for temperatures larger thanTV .

We applied this model to two candidate real materia
The first is NiI2, which is known to undergo a charge
transfer metal-insulator transition as a function of pressu
that is well described by the Falicov-Kimball model. W
propose that the metal-insulator phase diagram, and
anomalous magnetic behavior can be measured using n
developed techniques within a diamond-anvil cell. The s
ond are the Yb-based VF compounds whose anoma
magnetic properties can be attributed to an entropy-dri
transition of disordered Yb and explained by the Falico
Kimball model with random hopping. The Falicov-Kimbal
transition of unhybridized Yb ions and the VF behavior
hybridized Yb ions are both due to the proximity of thef
level to the chemical potential. The two inequivalent Yb sit
appear in these compounds because of their characte
crystal structure. Thus, the large changes in magnetic, tr
port, and elastic properties atTV andHV are explained, and
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reconciled with small changes in thef -electron valence and
Da. This proposed alternative explanation for the magne
response of the Yb-based VF compounds is controvers
and differs from the more conventional description~which
does not have any quantitative theoretical description!. We
propose high-pressure experiments to differentiate betwe
the two proposed theories.
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