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Periodically driven nonequilibrium many-body systems are interesting because they have quasi-energy
spectra, which can be tailored by controlling the external driving fields. We derive the general spectral
representation of retarded Green functions in the Floquet regime, thereby generalizing the well-known
Lehmann representation from equilibrium many-body physics. The derived spectral Floquet representation
allows us to prove the non-negativity of spectral densities and to determine exact spectral sum rules, which
can be employed to benchmark the accuracy of approximations to the exact Floquet many-body Green
functions.
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Nonequilibrium many-body physics is a vibrant field,
both from the experimental and from the theoretical side.
Largely, this has been triggered by the ease with which one
can tune and manipulate the time dependence of systems of
ultracold atoms in optical lattices [1,2]. But there also have
been significant advances in solid state systems, which
employ ultrafast pump-probe techniques to study electrons
on femto-second timescales [3–5].
Periodically driven many-body systems are simpler than

general nonequilibrium systems, because the Hamiltonian
repetitively cycles through the same functional form again
and again. Conceptually, Floquet theory for periodic linear
differential equations (and also periodic Hamiltonians)
[6–8] is a powerful tool to treat these periodically modu-
lated quantum systems. One fundamental development is
the notion of Floquet design, i.e., the possibility to engineer
quantum systems with certain desired properties, e.g., with
topological phases [9], by properly selecting the external
drive; see, e.g., Refs. [10–13]. An important issue for
experimentally realizing such systems is how long the
system has to be driven to display Floquet-like behavior
[14]? It turns out that the drive time needs not be so long for
many of these systems, as has been experimentally dem-
onstrated with topological insulators [15].
In spite of the large interest in periodically driven many-

body systems, rigorous statements about the properties of
measurable and computable quantities in the Floquet regime
are scarce. As a relevant example, we draw the reader’s
attention to the fact that the fermionic spectral density is non-
negative in equilibrium, allowing its interpretation as a
probabilistic density of states. But in Floquet systems, there
is no a priori guarantee that a spectral density will be non-
negative. As a result, others have employed weighted sums
over various elements of the response functions in the
Floquet representation [12,16–18], which have turned
out to be non-negative. But to our knowledge, no proof

of non-negativity has been offered. This is a nontrivial issue,
as the standard approach to constructing spectral functions,
which involves using Wigner coordinates of average and
relative time, and Fourier transforming the relative time to a
frequency, produces spectral functions Aðω; taveÞ that usu-
ally display negative values. However, they become non-
negative after further averaging over tave [14,19,20]. For
noninteracting single-band models, analytical proofs do
exist that show how averaging over one period T guarantees
non-negative spectral densities [14,21]. Nevertheless, neg-
ative densities are sometimes seen for interacting systems
[21], so far without explanation. This illustrates the need for
tangible analytic results which hold also in presence of
interactions.
We solve this problem by deriving a spectral represen-

tation for retarded Green functions in the quasistationary
Floquet regime. This spectral representation generalizes the
well-established Lehmann representation of equilibrium
quantum mechanics. Like the latter, our generalization
allows one to derive rigorous general conclusions, e.g.,
on the non-negativity of spectral functions and on their sum
rules. For this reason, the derived results will guide many
future studies in the field.
We consider a closed quantum-mechanical system

described by the time-dependent periodic Hamiltonian

HðtÞ ¼ Hðtþ TÞ ∀ t; ð1Þ

where T is the temporal period. Hence, any linear-response
function, e.g., a fermionic or bosonic propagator, generically
depends on two times t1 and t2 in a nontrivial way. In other
words, the relative time trel alone is not sufficient, in contrast
to time-invariant systems with constant Hamiltonians
∂tH ¼ 0, where only the relative time dependence enters.
Wigner’s prescription for the relative and average times

is given by
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trel ≔ t1 − t2 ð2aÞ

tave ≔ ðt1 þ t2Þ=2: ð2bÞ

Kubo’s formalism tells us that a retarded Green function
satisfies

Gðt1; t2Þ ≔ −ih½cðt1Þ; c†ðt2Þ��iΘðt1 − t2Þ; ð3Þ

where c can be any, possibly composite, fermionic or
bosonic operator, e.g., a fermionic annihilation operator in
position space or in momentum space or a Hubbard
operator. If it is overall fermionic (that means odd in the
number of fermionic creation or annihilation operators),
then the þ sign applies in the anticommutator ½·�þ; if it is
overall bosonic, then the − sign applies in the commutator
½·�−. We re-express Gðt1; t2Þ in terms of trel and tave and
transform the dependence on trel to frequency space

Gðω; taveÞ

≔ lim
δ→0þ

Z
∞

0

eiðωþiδÞtrelGðtave þ trel=2; tave − trel=2Þdtrel:

ð4Þ

We are interested in the spectral function Aðω; taveÞ, which
we define by the negative imaginary part of the retarded
Green function Aðω; taveÞ ≔ −ImGðω; taveÞ=π as usual. We
will derive a spectral representation for the Wigner repre-
sentation [21,22] of this quantity below. For clarity, we
deal with the greater Green function G>ðt1; t2Þ ≔
−ihcðt1Þc†ðt2Þi [23] in the explicit calculations; the
expressions for the lesser Green function G<ðt1; t2Þ ≔
�ihc†ðt2Þcðt1Þi (the upper sign refers to fermions) are
analogous. Finally, we are interested in the retarded Green
function Gðt1; t2Þ ¼ ½G>ðt1; t2Þ −G<ðt1; t2Þ�Θðt1 − t2Þ
[24] in order to define the spectral densities. Note that
we expect there to be stronger average time dependence to
the lesser and greater Green functions (due to heating
effects) than to the retarded Green function, because the
latter is determined primarily by the quantum states and not
by how those states are occupied.
For comparison, it is useful to recall the Lehmann

representation for a time-independent Hamiltonian H.
Let us assume that fjmig is an eigenbasis of H with
eigenvalues ϵ̃m and that the system is in the state jmi with
probability pm ≥ 0 and

P
mpm ¼ 1. We do not necessarily

require a thermal distribution pm ∝ expð−βϵ̃mÞ for these
probabilities, but we do require monotonicity for the
bosonic case, where pm ≥ pn if ϵ̃m ≤ ϵ̃n. Then the greater
Green function can be expressed as

G>ðt1; t2Þ ¼ −i
X
m;n

pmjhmjcjnij2eiðϵ̃m−ϵ̃nÞtrel : ð5Þ

The Fourier transform of Eq. (4) of the retarded Green
function leads to

AðωÞ ¼
X
m;n

ðpm � pnÞjhmjcjnij2δ(ω − ðϵ̃n − ϵ̃mÞ); ð6Þ

which does not depend on tave because H is time inde-
pendent. Recall that AðωÞ is strictly non-negative in the
fermionic case and in the bosonic case for ω ≥ 0 because
ϵ̃n ≥ ϵ̃m implies pn ≤ pm (due to our monotonicity require-
ment); for bosons and ω ≤ 0, AðωÞ is nonpositive.
For periodic Hamiltonians, the Schrödinger equation

i∂tjψðtÞi ¼ HðtÞjψðtÞi is generally solved by the linear
superposition of special solutions of the form [7,8]

jψmðtÞi ¼ expð−iϵmtÞjm; ti ∀ m ∈ N0; ð7Þ

where the Floquet states jm; ti are periodic in time with
period T jm; tþ Ti ¼ jm; ti. Different from the eigenvalue
ϵ̃m in equilibrium, the quasienergy ϵm is uniquely defined
only if it is restricted to the interval ϵm ∈ ð−π=T; π=T�. This
ansatz strongly reminds of the Bloch theorem transferred to
time. At any given instant t, the states jm; ti form a
complete, orthonormal basis. Hence, the unitary time
evolution Uðt1; t2Þ from time t2 to time t1 is expressed by

Uðt1; t2Þ ¼
X∞
m¼0

exp½−iϵmðt1 − t2Þ�jm; t1ihm; t2j; ð8Þ

which we will use next. These properties are derived in the
Supplemental Material [25].
Now we derive the spectral representation in terms of the

Floquet states jm; ti. Using Uðt1; t2Þ and assuming that the
system was at some time t0 in the Floquet state jm; t0i with
probability pm, we obtain for the greater Green function

G>ðt1; t2Þ

¼ −i
X∞
m¼0

pmhm; t0jUðt0; t1ÞcUðt1; t2Þc†Uðt2; t0Þjm; t0i:

ð9Þ

Inserting the result in Eq. (8) yields

G>ðt1; t2Þ ¼ −i
X∞
m;n¼0

pme−iϵmðt0−t1Þhm; t1jcjn; t1i

× e−iϵnðt1−t2Þhn; t2jc†jm; t2ie−iϵmðt2−t0Þ: ð10Þ

The dependence on t0 cancels out so that one may choose
any appropriate instant. We define the T-periodic functions

Φm;nðtÞ ≔ hm; tjcjn; ti; ð11Þ
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so that Φ�
m;nðtÞ ¼ hn; tjc†jm; ti, and we can express

Eq. (10) by

G>ðt1; t2Þ¼−i
X∞
m;n¼0

pmeiðϵm−ϵnÞtrelΦm;nðt1ÞΦ�
m;nðt2Þ: ð12Þ

This result strongly resembles Eq. (5), but cannot be
Fourier transformed directly due to the time dependence
of the functionΦm;nðtÞ. But the latter can be represented by
a Fourier series due to its time periodicity

Φm;nðtÞ ¼
X
α∈Z

fðαÞm;neiαΩt; ð13Þ

where Ω ¼ 2π=T. Inserting this expression (and its com-
plex conjugate) into the Wigner representation of the
modified greater Green function yields

G̃>
l ðωÞ≔

Z
∞

0

dtreleiωtrel
1

T

Z T
2

−T
2

dtaveeilΩtaveG̃
>ðt1; t2Þ: ð14Þ

Here, the modified greater Green function has an additional
ΘðtrelÞ multiplied in to allow us to produce the retarded
Green function. The two integrations can be done and yield

G>
l ðωÞ ¼

X∞
m;n¼0

pm

X
α∈Z

fðαÞm;nf
ðαþlÞ�
m;n

�
P
Δϵ

− iπδðΔϵÞ
�
; ð15aÞ

where P stands for the principal value of the pole and

Δϵ ≔ ω − ðϵn − ϵmÞ þ ðαþ l=2ÞΩ: ð15bÞ

If we combine this result with the analogous result for the
similarly modified lesser Green function G̃<, one obtains
the Fourier coefficients of the Fourier series of the retarded
spectral function Aðω; taveÞ ¼

P
l∈ZAlðωÞ expð−ilΩtaveÞ

AlðωÞ ¼ −
1

π
ImGlðωÞ ð16aÞ

¼
X∞
m;n¼0

ðpm � pnÞ
X
α∈Z

fðαÞm;nf
ðαþlÞ�
m;n δðΔϵÞ; ð16bÞ

where þ refers to fermionic operators and − to bosonic
ones. This equation yields the general spectral representa-
tion of Floquet response functions; it generalizes the
Lehmann representation in equilibrium and is the key
result of our Letter.
What can be deduced from Eq. (16)? For l ≠ 0, we do

not see any possibility for a general conclusion on
positivity or reality of the spectral function. But for
l ¼ 0, it is obvious that

A0ðωÞ ¼
X∞
m;n¼0

ðpm þ pnÞ
X
α∈Z

jfðαÞm;nj2δðω − ϵn þ ϵm þ αΩÞ

ð17aÞ

≥ 0; ð17bÞ

in the fermionic case; i.e., A0ðωÞ is non-negative and can be
interpreted as a density of states just like in equilibrium.
This conclusion is closely related to Bochner’s theorem
[26]. Note that no general conclusion is possible in the
bosonic case because the interplay of the factor ðpm − pnÞ
and the shift αΩ can be complicated. We stress that the case
l ¼ 0 corresponds precisely to the average of Aðω; taveÞ
over one period of tave as we used previously [14] to reach
physically meaningful results in the noninteracting case.
Other authors have also averaged over one period to avoid
negative spectral densities [19,20], but without explaining
why the results must be non-negative. The above derivation
puts this averaging procedure on a firm mathematical basis.
Sum rules are another useful spin-off from spectral

representations. Using Eq. (16), we consider the zeroth-
moment sum rule S and obtain

S ≔
Z

∞

−∞
A0ðωÞdω ð18aÞ

¼
X∞
m;n¼0

ðpm � pnÞ
X
α∈Z

jfðαÞm;nj2 ð18bÞ

¼ 1

T

X∞
m;n¼0

ðpm � pnÞ
Z

tþT

t
jΦm;nðt0Þj2dt0; ð18cÞ

where the last step results from Parseval’s identity.
Reinserting the definition from Eq. (11) for Φm;nðtÞ and
using the completeness relation [25] 1 ¼ P

njn; tihn; tj, we
arrive at the general sum rule

S ¼ 1

T

X
m

pm

Z
tþT

t
hm; t0j½c; c†��jm; t0idt0; ð19Þ

which is consistent with the value of Gðtþ 0; tÞ in Eq. (3)
averaged over one period T. While in equilibrium, the sum
rule is given by the expectation value of the (anti)commu-
tator for (fermionic) bosonic operators, it is given by the
temporal average in the Floquet regime. Hence, we find
tangible evidence that the equivalent of a constant expect-
ation value or a constant spectral density at equilibrium is
the temporal average of such an expectation value or of
such a spectral function, respectively. The sum rules for
higher moments of the spectral densities are commutators
of products of operators in time so that they become
convolutions after Fourier transformations in the Floquet
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representation. Examples of such sum rules are given in the
Supplemental Material [25].
The sum rule in Eq. (19) is particularly meaningful if we

consider fermionic or bosonic single-particle propagators;
i.e., c is a single-particle annihilation operator and c† the
corresponding creation operator. Then, every expectation
value on the right-hand side equals unity and so does the
temporal average and the weighted sum. Hence, the sum
rule is indeed rigorously the same as in equilibrium for the
averaged spectral functions. We then conclude that a
fermionic spectral density in the Floquet regime can be
interpreted to be a density of states similar to what happens
in equilibrium. This has been used already in many
numerical studies; see for instance Refs. [17,18,21].
Finally, we transform from the Wigner representation to

the often employed equivalent Floquet representation. They
are related by

GljðωÞ ≔ Gl−j(ωþΩðlþ jÞ=2); ð20Þ

wherel, j ∈ Z according toTsuji et al. [21]. It is obvious that
the Floquet representation does not containmore information
than the Wigner representation. Indeed, the Floquet repre-
sentation is redundant unless one restricts its argument ω to
the interval ð−Ω=2;Ω=2� [21], but this restriction is not
needed otherwise. Equation (20) implies that the physically
meaningful time-averaged Green functions appearing in the
Wigner representation at index zero occur in the Floquet
representation along the diagonal, i.e., for l ¼ j. One has
GllðωÞ ¼ G0ðωþ lΩÞ where different indices l corre-
spond to different shifts relative to G00. This Green function
and the spectral density A0ðωÞ stemming from its imaginary
part are generically used [17,18,21] because they behave like
equilibrium spectral densities. The negative spectral densities
found in Ref. [21] for the gauge-invariant Green function are
due to the gauge-invariant transformation, which can no
longer be proven to be non-negative.
For completeness, we also provide the general expres-

sion for the nondiagonal Floquet spectral functions
AljðωÞ ¼ −ImGljðωÞ=π which reads

AljðωÞ ¼
X∞
m;n¼0

ðpm � pnÞ
X
α∈Z

fðα−lÞm;n fðα−jÞ�m;n

× δ(ω − ðϵn − ϵmÞ þ αΩ): ð21Þ
This expression helps to understand why one obtains a
positive spectral function upon summing over all Floquet
indices l and j as done in Ref. [16]. Clearly

AΣðωÞ ≔
X
l;j∈Z

AljðωÞ ð22aÞ

¼
X∞
m;n¼0

ðpm�pnÞjFm;nj2
X
α∈Z

δðω−ϵnþϵmþαΩÞ;

ð22bÞ

which also yields a non-negative spectral density with

Fm;n ≔
X
l∈Z

fðlÞm;n ¼ Φm;nðt ¼ 0Þ: ð23Þ

Note that no dependence on α remains except a shift by αΩ.
Thus, the sum over α on the right-hand side of Eq. (22b)
implies a divergence. But if we fix α to one single value or
normalize with respect to the number of Floquet replicas
considered for this purpose, one obtains a nice sum rule
again

X∞
m;n¼0

ðpm � pnÞjFm;nj2 ¼
X
m

pmhm; 0j½c; c†��jm; 0i ð24aÞ

¼ h½c; c†��ijt¼0 ð24bÞ

¼ 1; ð24cÞ

where the last equation holds for c a fermionic or bosonic
single-particle annihilation operator.
Summarizing, we considered a broad range of non-

equilibrium systems which are in the Floquet regime; i.e.,
they are given in a mixture of quasistationary Floquet states
which solve the time-dependent Schrödinger equation. For
this setting, we rigorously established a generalization of
the Lehmann representation. The spectral representation of
two-time Floquet response functions include the cases of
fermionic and bosonic single-particle propagators. We
clarified the relation to the Wigner representation, which
exploits the periodicity in the average time of the two times
and to the Floquet representation.
Our results show precisely when fermionic spectral

functions must be non-negative and can be interpreted as
densities of states.We also established some exact sum rules.
As an outlook, we think that more information on the

mathematical properties of the self-energy in the Floquet
regime is also desirable. In equilibrium, for instance, one
deduces from the Dyson equation that the imaginary part of
the self-energy is also non-negative. Does a similar result
hold in the Floquet regime? One might conjecture that the
self-energy averaged over tave should also behave as in
equilibrium. But the Floquet Dyson equation is too
complicated and does not appear to permit one to establish
this fact.
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