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We develop a quasi-systematic approach to continuous parameters in conformal and super- 
conformal field theory. The formulation unities continuous twists, ghosts, and mechanisms of 
spontaneous breakdown in a general hierarchy of conformal deformations about a given 
theory by its own currents. Highlights include continuously twisted Sugawara and coset 
constructions, generalized ghosts, classes of N= 1 and 2 superconformal field theories with 
continuous central charge, vertex-operators for arbitrarily deformed lattices, operator-valued 
conformal weights and/or central charges, and generalizations of continuous SO(p, q) families 
of conformal field theories. lc 1988 Academic Press. Inc. 
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1. INTRODUCTION 

Affine Lie algebra, or current algebra on S’, was discovered independently in 
mathematics [l] and physics [2]. The first representations [2, 31 (level-one of 
SU(N), SO(3, 1)) were constructed with world-sheet fermions [2, 41 to implement 
the proposal of current-algebraic spin and internal symmetry on the string [2]. 
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Many other conformal [S], affne-conformal [Z], and superconformal [4,6, 73 
constructions were advanced in those days, including Sugawara’s construction [8], 
Sugawara constructions on the string [2,9, lo], and the coset constructions 
[2,9, 111. The vertex-operator construction of fermions and level-one of N(N) 
from compactified spatial dimensions [ 12, 133 and the generalization to level-one 
of simply laced g [ 14, 151 was among the last developments before communication 
between mathematicians and physicists was established in the modern era [ 16181. 
A parallel development in physics was the gradual understanding of dual models as 
strings and conformal field theory [S, 19, 12, 20-223, in which the constructions 
above play the role of (chiral) conformal building-blocks for modular-invariant 
[23] theories. 

Continuous families of conformal and superconformal field theories have been a 
topic of recent interest as a mechanism for spontaneous breakdown on the string 
[24,25]. Two conformal constructions with continuous parameters 

(l.la) 

L,(Do)=;(&Q)2+Doi8;Q-;D;, c(D,) = 1 - 120; (l.lb) 

were known in the previous era: The fermionic SU(3) construction (l.la) was given 
in the original paper of Bardakci and Halpern [2] as a mechanism for the 
continuous breaking of internal symmetry on the string, and in fact contains the 
first continuously twisted aftine Lie algebra (see Section 4.1). The bosonic U( 1) 
construction (l.lb) given by Fairlie in [26] was the prototype ghost [27, 281 
construction, since the central charge varies continuously. Both constructions are 
linear in the currents of the theories defined at vanishing values of their respective 
parameters. 

The present work unities and generalizes these prototypes in a quasi-systematic 
approach to continuous parameters which we call conformal deformations. The for- 
mulation employs the full machinery of aftine, conformal, and superconformal 
systems to construct a general hierarchy of deformations about a given conformal 
or superconformal field theory by its own currents: 

1. the jlut-deformations, which unify continuous (inner-automorphic) twists 
and generalized ghosts (Sections 2--7) 

2. the linear-loaded deformations, which generalize the flat deformations and 
include known mechanisms of spontaneous breakdown (Sections 2 and S), and 

3. the arhitrarilJ> loaded deformations, which generalize the linear-loaded 
deformations and lie generically just outside the boundary of present model- 
building (Sections 2, 9, and 10). 

Each level of this hierarchy contains interacting generalizations of ( 1 .la, b) as 
prototypes of the categories 
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(a) the c-fi-xed deformations 

(b) the c-changing deformations 

within the hierarchy, which would separately describe generalized twists and ghosts. 
We mention in particular the analysis of Section 10 which interprets the c-changing 
deformations as auxiliary compactilied spacetime dimensions, effectively doubling 
the original compactified dimensions of the string. 

2. DEFORMATIONS 

A continuous family of (chiral) conformal field theories is a representation of the 
Virasoro [ 51 algebra 

whose elements are continuous functionals of a set of deformation parameters 
{D Pp,A } where p E IR is a mode number and A is an internal index. An alternate 
viewpoint is that each representation of the algebra (2.1) defines a connected target- 
space L,[D] of (chiral) conformal field theories on a connected, possibly infinite- 
dimensional, base-space of deformations D whose coordinates are {D-,,,}. 

Our strategy for the construction of such families focuses on the infinitesimal 
conformal deformations GL,[D] = C, 6Dp,.,J~,,[D] in terms of the bilocal 
deformation currents 

aL,CDl 
J~,,Pl -ao_ 

P.A 

(2.2) 

which are the tangent vectors of the target-space. We assume also a (chiral) confor- 
ma1 field theory L,[O], c[O] at an origin [0] of D such that 6D is arbitrary at that 
point. Then the linear condition 

1 am =(m-n)J~+.,,[OI+--6,.~.m(m2-1)~ 
12 abA 

(2.3) 

defines all possible deformation directions about that theory, and completion to 
finite deformation may be studied. 

As a first step, we search through all local deformation directions 
Ji,,COl =J;+,COl h h w ic are derivatives J;4[0] = r”Ff(h) of an (h, 0) conformal 
tensor 

(L,[O], F!(h)) = (m(h - 1) -r) F:+,(h) (2.4) 
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with r E R at the origin. The complete list of solutions in this class is 

(2.5a) 

(2.5b) 
(2.k) 

and (&/a&,,,)[O] = 0, which shows an infinite number of deformation directions 
for each (I, 0) operator at the origin in (2.5a), and a deformation direction for any 
integer-moded tensor in (2.5b). We have not systematized the general solution’ to 
(2.3), and we will not study all the solutions in (2.5), but our choice of deformation 
currents at the origin will generate non-tensor and bilocal deformations away from 
the origin, and eventually an example (see Section 7.2) of a continuous system in 
which a deformation current is never a tensor. 

The applications in this paper are primarily limited to simultaneous deformations 
of type (2.5a) and (2.5b) with the currents [ I,23 Fi,(h = 1) = Ti, m E Z of affine g 

(L,COl, T,A)= --nTi+,, (T;, T~)=ifABc7’~+n+kg~4Bm~m,~n, (2.6) 

where internal indices run over dim g, k is the central charge, and g,, is the Killing 
metric of g. The Sugawara construction of L,[O] for arbitrary level of g is given in 
Section 5. Then the finite deformation 

Lnl[d3 D~l = Lrn[ol + 1 (d-p.A + mD&A6,,,,) T t ,  p +&Cd, &I (2.7a) 

dd, DoI=+ Cd~,,,,d~+,+-2nlD,.d~-D,..D,4~m.D 1 P 
D: 0 = de,,,,.,, D,.BJ-.4Bc 

c( Do) = c(O) - I2kD,,. 4 D,A 

(2.7b) 

(2.7~) 

(2.7d) 

with p E Z and di - g.4Bd,,,B, D,A s gABDo,, is completed on the constrained space of 
deformations (2.7~). We call this construction the class ofji’ut deformations,’ dis- 
tinguishing also the c-fixed deformations d,,,A and the c-changing deformations 
D 0..4 3 which would separately describe twists and generalized ghosts. 

’ Many other solutions to (2.3) exist. including J,,, = (L,,[O], A,,), VA,. As an example, the defor- 
mation direction J, = nrL,,[O] is obtained with the choice A, = S r,oLo[O], but the finite completion 
L,(d,) = exp(imd,)f.,[O] is unitary-equivalent to L,[O]. 

‘The flat-deformation parameters can be taken as arbitrary functions cI~,~( To), Do, +( r,) of any 
mutually commuting set (Tt} of constants of the motion which commute with all the operators of the 
construction. The notation recalls that zero-modes of (0, 1) Cartan subalgebra currents are often 
available in a full conformal field theory. 
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The generally bilocal deformation currents JL,,,[d Do]/&-,,, and 
aLlId, W/W.A in 

GL,,[d, D,] = C 6d-,,, “L,;d’” Do’ + 6D,.. ““1: Do1 
P pP.A 0. A 

(2.8a) 

satisfy an analogous form of the linear condition (2.3) about the point [d, Do], but 
no path outside the space of deformations D in (2.7~) is obtained by following these 
directions, since the finite deformation 

L[Id+ 2, Do + fiol = L,Cd, Do1 + c d-p,, 
Kn Cd, Do1 

P 
ad 

pp.A 

+ 6 aLnC4 Do1 
0. A 

aD0.a 
+ d4 601 

(~-p,A~,~+d-p,A~O,~+~--p.A~O,~)fAB~=o 

(2.9a) 

(2.9b) 

is a quadratic form in the coordinates of ID. Among these deformation currents, 
only the currents T[d] about [d, 0] 

T;+p[d]=a~d’d’ol =T;+p+kd;+p 
-p.A 

(2.10b) 

are local, and, discussed in Section 3, these are not generally tensors of the defor- 
mation away from the origin. 

When the deformations are taken on the Cartan subalgebra (CSA) of g 
(‘4 + a = 1, . ..) rank g) we may also allow the deformation parameters d,,,(T,), 
Do,,(To) to be arbitrary functions of the zero-modes T;f of the Cartan currents, a 
procedure which we call loading the deformation parameters. The resulting 
arbitrarily loaded deformations 

LzCd(To), Do( =-LCOl +I (d-,,(T,)+mDo.,(T,)G,,)T~+. 

+ EmCd(To)r Do( (2.11a) 

Oo(To)) = 40) - 12~Do,,(ToP~(To) (2.1 lb) 

satisfy the constraint (2.7~) and may be rotated off the CSA (see Appendix B). We 
remark here that these deformations generally involve operator-valued conformal 
weights (see Section 9) as well as the operator central charge (2.1 lb) (see Sec- 
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tion lo), and that known mechanisms of spontaneous breakdown (see Section 8) 
are included in the c-fixed linear-loaded zero-mode deformations with only 
d, = e +fT, # 0. 

3. FLAT DEFORMATIONS 

The local formulation of the flat deformations in (2.7) is 

Ud> Do, 01 = LCO, 01 + (dA0) + DaAi8,) T”(0) +&Cd, Do, 01 (3.la) 

&Cd, D,, 01 = tk(d,(8)dA(8) + 2Do.s,iaedA(e) - D,,,D,A) (3.lb) 

D: D{,B( Tadj)dB(0) = dAB(Tadj, e)D,” = 0, (3.lc) 

where O(z) = C, CDmzwm, z = exp(i0) for any quantity 0, and 

Dt.B(Twlj) E (DO,CT,Cd,)ABY dAB(Tadjr 0) = (dc(e)TZd,)AB (3.2) 

with (Ttdj)‘, = - ifAB,. In this section, we discuss explicitly only compact g, with 

g AB = SAB, f ABC = f ABC, d, = dA, and Do, A = D{ . 
We first seek the tensors of the deformation. Natural candidates are the local 

deformation currents TA[d, z] about [d, 0] in (2.10b), but these are not tensors, 
since 

(L,[dt Do], TA[d, z])=z”(DAB[d, z, Tadj] +mhAB(D,, Tadj)) 

x TB[d, z] + z”km2Dt (3.3a) 

DAB[d, z, Tadj] E 6 ABza, - dAB( Tadj, z), hAB(Do, Tadj) ~ S”“-D,““(Tadj), (3.3b) 

where DAB and /rAB are a g-covariant derivative and a conformal weight-matrix, 
respectively. 

The covariant derivative in (3.3a) may be removed by introducing the orthogonal 
twist-matrix Q, 

Q[d, 8, Tadj] = O* exp (3.4) 

which is an anti-B-ordered Wilson integral satisfying ia,Q = Qd, and 

QAB[d, 8, Tadj] D,B= D,A 

(QCd 0, Tadjl, ADO, Tadj))=O 

(3Sa) 

(3Sb) 

according to the constraint (3.1~). The first relation and (3.3b) show that D, is a 
simultaneous eigenvector of Q and h, while the second relation, that Sz commutes 

595i I K/2-4 
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with h, is proven from the first in Appendix B. The twist-matrix is used to define 
boosted3 current operators T,,,,,,[d] = GV[d] or 

T&~st[dT Ol =QA”Cd, Ed TxljI(TB(B) + kdB(o)) (3.6a) 

=27CQAB[d, 8, Tadj] 

6 
- Loll4 &I 6dB( 0) 

(3.6b) 

which verify 

(-&Cd, DoI, T&,,t[4 zl)=z”(sA”za,+mhAB(D,, Tadj)) 

x T&,,,[d, z] + z”‘km2 D,A (3.7) 

with (3.3a) and (3.5). The twist- and weight-matrices will determine the modeings 
and conformal-weights, respectively, of Tboost , but we call attention to the extra 
r-changing Schwinger term in (3.7) which cannot be further absorbed in any local 
T boost * 

According to (3.5b), we may introduce the [d, D,]-dependent simultaneous 
eigenbasis ( UoIH. j( A)) of 8(27c) and h, 

QABC4 2x, Tadj] u,!, . j(B) = e2nioUrrpj(A) (3.8a) 

hAB(Do, Tadi) U~QZ.~(B) = hu/,, JDo) U,Z, i(A ) (3.8b) 

with o/Z = u mod Z =o- int(o) and j= 1, . . . . d(u/Z), where d(a/H) is the 
degeneracy of the eigenvalue exp(2zio). The basis is unitary 

dimg 

c U,*Iz,,(A)Uo,,z.k(A) = &-oy~.o~‘~ 
A=1 

c c &&(A) u,,,,/(B) = dAB 
o<‘o<I ‘=I 

(3.9a) 

(3.9b) 

and we take the convention U, = o., =, (A) = D~/lDol which labels the simultaneous 
eigenvector DO as the first with IS = 0. It follows that the Cartesian frame is unitary- 
equivalent to a completely homogeneous frame in which the [Id, Do]-dependent 
twist-eigenstates 

JX$W Do> 01~ uo,z. j(4 T;,,,,Cd, 01 (3.10a) 

T&$s{[d, Do, 0 + 2711 = e-z”“TgL$s{[d, Do, f3] (3.10b) 

have modeing a/Z, the weight-matrix is diagonal 

(LCd, DoI, Tg%Cd, Do, 21) = f”W, + mh,,,J -D,))Tg!$$Cd, 4, 21 
+ zmkm2 /Do/ b,,Z,OP~L, (3.11) 

3 T&,,,[d, O] =exp(&[d, &])T”[d O]exp( -i&[d, Do]) is the S&-boost [Z] of T”[d, 01. 
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and all operators except T;,;f;j=’ are tensors. It also follows from (3.8) that 

vi 3: 2 = ~&DO) + h(-,,,,,,(Dd (3.12) 

so all conformal-weight shifts are paired as h, +o,,L = 1 f A,. 
The existence of a completely homogeneous frame for each flat deformation 

followed as a direct consequence of conformal invariance, which dictated the 
constrained space of deformations D in (2.7~). 

The next question is the algebra of {T&,,,}. The continuous local 
automorphism 

(T&,,,[4 01, T,“,,,,[d, e’])=2ni(fABCT~~,,,[d, d] +6ABkd,)6(8-8’) (3.13a) 

(3.13b) 

is verified on the fundamental range 101, 10’1 <‘IL with the conjugation identity of 
Appendix B. Then, the Fourier analysis of the local automorphism in the com- 
pletely homogenous frame (3.10a) 

I 
n TE$t-4 &,I, + c, = dB ei’” +b)oT;-o.,:[d, D,, e] 
-,2x 

(3.14b) 

f ~f$$~fi” = Ua,~.j(A)‘~~,~,k(B)fABC’~+,,),~,,(C) (3.14c) 

Aik e ‘,,,,j(A)U(-,,,r,k(A) o/B (3.14d) 

is a continuous global automorphism. The convention U,;, j= Uc-oj,r,, may be 
adopted in the subspace with h(D,) = 1, so that A;& = 6jk in ‘this case. 

The modes of the invariant twist-class cr/Z =0 [30] define the invariant affine 
subalgebra g, of the global automorphism (3.14), while boosted operators with 
non-zero o/Z transform as representations of g, with d(a/Z)-dimensional represen- 
tation matrices 

for I= 1, . . . . dim g,. 

(T’(a/Z)); = -if;;,‘f.~ (3.15) 

It is particularly easy to extend the discussion to other tensor representations at 
the origin which do not have Schwinger terms with the deformation currents. In 

4 The existence of the local automorphism (3.13) was noted in [29] without an explicit form of ?“,,,,,. 
The equivalent form T&,,,(B) 7’& = .Q(O)( TA(0)T,4, - ika,,)Qt(0) of (3.6) shows that the automorphism 

group of (3.13) is the local gauge-group Q[d, O] EC, whose generators a&?‘~‘(fI)~ 
2nia,(aAB(e)s/adB(e)) verify the classical current-algebra (3.13) with k = 0. 
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this case, an (h, 0) tensor R’ transforming in any Hermitian representation ( TA)ii of 
g satisfies 

(IJO], R’(z)) = z”‘(zc?, + mh)R’(z), R’(z)= c R;rP, (3.16a) 
pGL+UO 

(T;, R’(z)) = z”R’(z)( TA)ji= -zm( TA)iiR’(~), (3.16b) 

where T= -T*. Then, the appropriate unitary left-twist-matrix for representation 
T commutes with the corresponding weight-matrix 

Q[d,O, T]rO*exp 
- 

d”(T, 0) z dA(B) T; (3.17a) 

(QCd, 0, Tl, ND,, T)) = 0, h”(D,, T) = h8- D,A T; (3.17b) 

and the conformal transformation 

(LCQ DoI, &,,,,, [d, z]) = P(~“z~, + mh”(D,, T))R{,,,,[d, z] (3.18a) 

R;,,,,[d, O] = W[d, 8, T] R’(8) (3.18b) 

is verified with no extra Schwinger term. 
The relations (3.17) and (3.18a) guarantee a completely homogeneous frame in 

which the boosted operators are tensors. Introduce the [d, Do]-dependent unitary 
eigenbasis { Vpln,,(i)} with degeneracy label r, 

@Cd, 271, T] VP,&) = e2”iPVp,,,,(i) 

WDo, T) J’,,,,,(A = h,,z,,(Do) ~p,zJiL 

(3.19a) 

(3.19b) 

so that 8,-,,,,,, (i) E V~L,,(i) is the right eigenbasis of Q(27r, T) and h(T). The result 

@:si[d, Do, 01~ Dc_,,,,,,(i)R~,,,,[d, e], a=a,-p (3.20b) 

follows with modes defined on the fundamental range. 
As an example, consider antiperiodic complex world-sheet (Weyl) fermions 

C&121 

(I& I@)+ = 6”6 P.--4’ A qez+t (3.21) 
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which satisfy (3.16) with i?‘= $‘, R’= $i in Hermitian representation T, T. The 
boosted fermions 

with G = i+ p, C+ = $ - p have definite conformal-weight and verify the continuous 
automorphism 

(Ic/g$[Id, Do, 01, $g$C4 Do, @I)+ = 271~,,+,.),L,06r.ss(e- 0’) (3.23a) 

C~E~C~~ bJm+o, &%Xd, hJn+o.)+ =6(,+,,,,n,o~“‘~m+a,~n~o, (3.2%) 

with 8,8’ and the modes defined on the fundamental range. 
When Rj has Schwinger terms with the deformation currents (see Section 7), 

Koost will both twist and shift in analogy with the currents (3.6a). 

4. TWIST-PICTURES 

4.1. Torus-Picture and the Fixed-State Phenomenon 

The c-fixed CSA (torus) deformations L,[d] for arbitrary level of g at the origin 
are obtained by setting J”, = (&, O), a= CSA, and D,=O in (2.7), but we focus on 
the zero-mode deformation 

L,(Jo) = L,[O] + &T; +; k&3,,, (4.1.la) 

=e p”L,[2]eA, A- c -$?,,T, (4.1.lb) 
rn#O 

since the higher modes $m fO are removable by unitary transformation. The twist- 
matrix Q = exp( -it&!, . Tadj) in this case gives the homogeneous (1,O) operators 
and their modes 

%,,,,(~o, e) = T?e) + kc?& E~,,,,(;I,, e) = x,(i) r~,,,,(20, e) = eiez.J~E*(8) 
(4.1.2a) 

%,,,C~o), = T; + k&L,,, Go,,,@oL~.~~=C, (4.1.2b) 

in the weight-basis {x, > of the adjoint (see Appendix A), which is a special case of 
the basis { U,,,, j} with a,(Jo) = --c( .a,. 

An aftine-conformal module [2, 30, 181 at the origin consists of a highest-weight 
state Ih, 11) (satisfying Lm,O= Ti,o= E;‘O=O, Lo= h, and T;=@ with p a 
highest weight of g) and the states formed by- multiple application of E;<O, 
L m<OCOl~ and Cc0 on Ih, p). A deformed module is defined in the same way by 
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operation with (Et,‘,:*),, and the negative-modes of ~&,,,(&,) and L(&) on a defor- 
med highest-weight state which is an eigenstate of L,(&) and (T&0s,)o with 
L m>o@ob)=(%,tL>o= (E$$“),, = 0. The deformed module exhibits a fixed-state 
phenomenon: Since the states of the undeformed module have definite values of T;, 
the same states remain eigenstates of Lo(&) throughout the deformation, and the 
deformed module is a continuous relabeling of the module at the origin. 

The fixed-state phenomenon is observed for all the zero-mode deformations d,A, 
D,A # 0 of the paper (see also Sections 6.3 and lo), since the deformation terms in 
L,(d,, D,) commute with Lo[O]. 

The characterization of any particular fixed state as a highest-weight state may 
change at a point of degeneracy. For example, constructions with antiperiodic fer- 
mions [2] have the ground-state 10),, = Ih, p = 0) which is a highest-weight state 
with E; [O),, = 0 and E:, IO) BH # 0. This state remains a highest-weight state so 
long as 1~1. &,I < 1 for all CI: When a . c?, < - 1 for a particular a the positive-moded 
operator E&,,,(&,) _ i _ a. a,, = ET i does not annihilate IO),, . The highest-weight 
state at and beyond the degeneracy point is determined as follows: Although not 
highest weight for Ia &,I < 1, the states 

(E”,)” IO),,= K,,,@oM” IO),,> nal (4.1.3) 

are degenerate with IO),, at a. 2, = - 1. Any such family terminates after n - 1 
applications of the raising operator 

O= ll(EY,)” Ih,p))Il~=n km-a.p- 
n-l 
-a* 

2 > 
ll(E~,,,)“-’ Ih, p)ll~ (4.1.4) 

when the module has a positive norm at the origin.’ In the present case 
n= 1 +2k/a*, and it is verified that IO),, is the highest-weight state at a . & = - 1 
when a-co; the state 

(E,)2k’OL2 IO),, = (E~,,,t(;So)~~~..ao)*~‘~~ IOh (4.1.5) 

is the highest-weight state at a. & = - 1 when a > 0, and becomes the new 
highest-weight state for a . & < - 1, until the twisted modeing of another boosted 
step-operator vanishes. 

The algebra of the boosted currents (4.1.2b) 

(G,,,,(~oL~ R,,,,(;sb),) = kmhab6,. + (4.1.6a) 

C%,,,,C~o),, E~,,,,(~oS,),~..a,)=a”E~,,,,(ao),+,~..a, (4.1.6b) 

b%,,,,@oL-,.ao, Ekmt@oLs.ao) 

Nay P)E~~~~(;S,),+.~,,+8).81 a + jl= root 
ZZ a . ~boostC~o)m +n + k(m - a .&)6,,,, -,,, a+p=O (4.1.6~) 

0, otherwise 

’ The positive number n = 1 + 2 III?, Ih, p)lli/a’ = 1 + 2(km - a .JI)/~* is an integer since 2k/a* and 
2a. p/a2 are integers. 
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is a simple example of the continuous global automorphism (3.14). The form (4.1.6) 
and the connection (4.1.2b) were obtained along different lines for the order-N 
inner-automorphisms NIX. &, E Z (VU) by Goddard and Olive [18]. The explicit 
form of the finite-order automorphisms is 

&=gyq?y5$ qiEz, (4.1.7) 
r=l I 

where ;l(;, and LX(,) are fundamental weights and simple roots, respectively, of g, and 
at least one q, is relatively prime to N, The boosted step-operators Et,,,, with 
CI = 1, ni(~)ccc,), n,(a) E Z, then fall into twist-class [30] p(a) = (a,(&)/Z)N= 
[-xi q,n,(a)] mod N between zero and N- 1. 

We have also examined the unitary-equivalent higher-mode deformation &[a] 
in (4.1.lb), for which r&,,,[d 0]= F(0)+@(0) and an extra factor 
expCCm.o (1 -exp( -ime))cc .zm/,] appears in (4.1.2a) for &,,,,[a, 01. The local 
automorphism (3.13) implies that the continuous global automorphism (4.1.6) is 
unmodified as expected, since the modeing of the operators does not change. 

Similarly, the twist-matrix (3.17a) for the arbitrary representation (3.16) at the 
origin is exp( - i@, . T). The (h, 0) twist-eigenstates are labelled by the weights of 
the representation 

R~,,,,(20, 8) = ~,(i)R~,,,,(&, Q) = e’“p”oRp(tl) (4.1.8) 

in the weight-basis of Appendix A, which is a special case of the basis (V,P,,,,,,} 
with a,(&) = co -p. &,. 

As application, consider the currents TA(Q) = J/TA$ [2] of the antiperiodic fer- 
mions (3.21) at the origin, and re-express the boosted currents (4.1.2b) in terms of 
the modes SS,,,,CabL r E Z + a,(&), of the boosted fermions (4.1.8), which satisfy 
(3.23). The form of the boosted step-operators is unchanged since no shift and no 
re-normal-ordering with respect to the boosted modes is required. The result for the 
boosted Cartan currents 

+~~UC~~cl,+int(-~L~o+~~+~6~,~o,r+,,21 (4.1.9) 
LJ 

is obtained with the relation khab = Tr T“Tb = Z, pUpb in the form k@ = C, p .&pa 
and the re-normal-ordering prescription which antisymmetrizes zero-modes. The 
generally non-vanishing constant term in (4.1.9) is zero for integer and half-integer 
modeing of the fermions. Similarly the relation 

(4.1.10a) 

(4.1.10b) 
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re-expresses the torus-deformation of the free-fermion construction [2] in terms of 
the boosted fermion modes. The absence of a linear term in the conventional form 
(4.1.10b) should be contrasted with the corresponding form of the twisted 
Sugawara constructions in Section 5.1. 

The original SU(3) deformation (l.la) of Bardakci and Halpern [2] is a simple 
example of a conformal construction with a continuously twisted affrne Lie algebra. 

The positive roots of SU(3) are the two simple roots a + = (l/a, f J3/2) and 
their sum fl. The afhne SU(3) at the origin breaks to go= SU(2)@ U(1) since 
E&&&?o)m = E;? T&,,,(&), = Ti, T,“,,,,(&), = Tit, + ais,,,, and the boosted 
step-operators of the simple roots E”,&,,(&,),,,, cr = 2: &, twist in opposite 
directions. Similarly, an application of (4.1.8) to the fermions in 3 gives +!I&,~,(&) = 

exp[~~~i(&)lICIi with p, = p2 = -@/d and p3 = 2: J?@. Deformation of a free 
Bose-Fermi system (see also Section 6.3) is analyzed as another example in 
Appendix C. 

4.2. Orbifold-Picture 

An inner-automorphic orbifold-type twist [31, 32, 30, 331 is a view of a finite- 
order torus-twist (4.1.la), (4.1.7) from a frame in which not all the CSA currents 
are integer-moded. These twists correspond to particular deformations of the form 
2: = (4, &i # 0) in our formulation: The rotation identity (D.5) of Appendix D in 
the form 

expresses the boosted currents of an arbitrary frame d{ = rAb( Tad,) 2: as a rotation 
TEG of the torus-twisted currents with 2; = (&, 0). As an example (see also 
Appendix F), a (complete) orbifold-involution occurs when it is possible to choose 
d,, = & so that all the Cartan currents on the left of (4.2.1) are half-integer moded, 

which requires Tab = 0 and hence the off-Cartan form @ = (0, &). The deformation 
also involves & # 0 when the involution is not complete, and homogeneous CSA 
components Tp in twist-class p of T&,,,(&) are employed in general twisted vertex- 
operator constructions [32, 331. 

We have also considered c-fixed deformation by the CSA components Tp#’ of an 
inner- or outer-automorphism at the origin, but such deformations are unitary- 
removable as in (4.1.lb). 

6 Twisted-scalar fields were introduced in [34, 351. 



CONFORMALDEFORMATION 271 

4.3. Magnetic-Analogue Picture 

The right-twist-matrix s2[d, 8, r] with T + T in (3.17a) for general flat c-fixed 
deformations and Hermitian representation T of g solves the d-dependent 
Schrodinger equation 

ia,S2’ = HQ’, H= -dA(B)TA (4.3.1) 

which corresponds to the evolution of a non-Abelian “spin” T in an arbitrary 
magnetic field P(B) = dA(0) with period 271. The zero-modes d,A + & rotated onto 
the CSA are generalized Larmor frequencies of the system, while the higher modes 
provide rotating fields with integer angular frequencies. The evidence of Appendix E 
indicates that these deformations are equivalent to those of the other pictures. 

5. DEFORMATION OF THE SUCAWARA AND COSET CONSTRUCTIONS 

5.1. Twisted Sugawara Constructions 

We remark further on the continuous torus-twist of the Sugawara construction 
[S, 2,9, 10, IS] for simple g, 

(5.1.la) 

;A,B,;= e(n>O)A,B,+B(n~O)B,A,, c(2,) = c(0) = 
2k dim g 
2k+Q,’ 

(5.1.lb) 

where QIL is the quadratic Casimir in the adjoint. A more conventional form of the 
construction is obtained by re-expressing L,(&,) in terms of the boosted modes 
with the inverse of (4.1.2b). The result is 

xa.&int(a.&)-iQ+ai-iCint(a.&,)(int(a.&,)+l)) 
1 

(5.1.2c) 
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after using the boosted current algebra (4.1.6) to re-normal-order with respect to 
the boosted modes. The generally non-vanishing term linear in ~&,,,(&,o) collects 
contributions from three sources: the original linear term, the k@, shift terms of the 
inversion (4.1.2b), and the re-normal-ordering. 

The condition for the vanishing of the linear term in (5.1.2a) 

&=iCa”int(a.&) 
Qti a 

(5.1.3 

e is interesting since it selects a certain class of linite-order twists for which th 
construction simplifies, as analyzed below. 

A weak upper bound N < 2Qti/ll/f on the allowed order N of such twists, with It/s 
a short root of g, is obtained by comparison of (5.1.3) and (4.1.7), and solutions & 
of (5.1.3) fall into representations of the Weyl group of g because 
wf(a,) E & - 2 CI% .&/a* is also a solution. Moreover, the p-solution 

Ia Jo( < 1 (5.1.4) 

and its Weyl-transforms are always available, since sign CI .a, = sign CI in this case 
and Q, = W + 2~). $ with Ic/ the highest root ofg. 

Completeness of the root system 2, c&’ = Q,&‘” in the form Q,& = C, ~1. Jo& 
recasts the condition (5.13) as 

(5.1.5) 

P(Z)>0 

where p(g) = (o,(a,)/Z)N = - N[a a0 + int( -o! . a,)] is the twist-class of the step- 
operator Et,,,, . It follows that the twisted Sugawara construction (5.1.2) is free of 
linear terms for any involution. 

Another form of (5.1.3) is 

N-- I 
o= 1 

p=l 
PZNI* 

rz: (l-5) Tr (F’(c)) 

P#NI* 

(5.1.6) 

for all JEg,, in terms of the twisted structure constants (3.14~) and traces of the 
representation matrices (3.15). Absence of the linear term follows when TJ(p/N) is 
traceless for all p, which is satisfied when go is semi-simple. 

Kac and Peterson [36] have given a Sugawara construction for all finite-order 
automorphisms. We have checked that the continuously twisted Sugawara con- 
struction (5.1.1) or (5.1.2) agrees with their construction in the region of overlap, 
namely for finite-order inner-automorphisms. In particular, the linear term obtained 
by normal-ordering their construction is proportional to the form (5.1.6 j-so no 



CONFORMAL DEFORMATION 273 

linear term will be required for outer-automorphisms [37], since g, is simple in 
these cases. 

5.2. Twisted Coset Constructions 

The G/H coset construction [2, 9, 34, 11, 181 with cK = cR - ch is 

K?COl = qJ1 - -cCOl, ULCOI, T:) = 0, (5.2.1) 

where L “,“[O] are the Sug awara constructions of g 2 h at the origin and T; are the 
currents of h. When g and h are simple the remaining currents Tk in g/h satisfy 

(K,[O], TL) = -nKIJTL+, -& ,c, :: (C,+,,.,TJ_,+ Ti+,+rTU_,) :: (5.2.2a) 

(K,COl, TLJ--CK,C~l, T~)=(m-n)K’JT~+. (5.2.2b) 

with 

QIJ dun h 

K”=61J-2k+Q:’ Q’J= C C ,IuLf”“, 

o= I LEgfh 

(5.2.3) 

Comparing (5.2.2b) with the linear condition (2.3) gives the allowed c-fixed 
deformations’ of the coset construction 

K,[d] = K,[O] + c d(‘!,$P:‘)Tf,+,,+ fkx d’l’,,d;)+,,, (5.2.4) 
lr),I=glh IF) 

where {LF,)‘} are the orthonormal null-eigenvectors of QIJ. The form bIQfJbJ is 
non-negative for all b,, so the deformation currents {P’j’)T’} commute with the 
currents of h and transform as (1, 0) tensors under LR and K. Equivalently, the set 
of deformation currents is the centralizer of h in g//z. The same steps are followed 
and the same conclusion is obtained for arbitrary G/H. 

A similar conclusion is reached for noncompact coset constructions [9] begin- 
ning with the Sugawara construction [2,9, 381 

1 dim g 

LE[O, z] = ~ c 2k+Q$, A=] 
i: T”(z)T,(z) ::, Q$&‘B=fACDfBCD (5.2.5) 

for non-compact simple g with c(0) = 2k dim g/(2k + Q$). In this case, the defor- 
mation currents Yy)T’ with Y,QIJ=O include the centralizer of h in g/h (( 1,0) 
tensors of K), but may extend beyond the centralizer since b,Q:b” can be negative. 

‘c-changing deformation of a coset construction is not possible with the original currents of the 
construction, since the quadratic terms of (5.2.2a) for n7-L cannot satisfy the linear condition (2.3). 
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As an illustration, we discuss the original’ coset constructions [9] 

SO(4,2) 3 SO(4, 1) =) SO(3, 1) (5.2.6) 

in which the (spinor representation) level-one SO(4,2) currents were expressed as 
the (four-dimensional) spacetime-fermion [2,21] bilinears T(T) = $f$ = 
(T, A, V, P) and their real fermion (defining representation) equivalents 
T(T) - (b,, 6,,). The constructions (5.2.6) correspond to TA VP 1 TA 1 T. The (5,6) 
rotation P = tjiy,tj commutes with Lh = TpvT,,,,/48 for h = SO(3, l), so an allowed 
deformation of K for SO(4, 2)/SO(3, 1) is 

-&T?+$-(v~-A~-P~) 
> 

+ c 4-J-2 1 4,-J, (5.2.7) 
m nrz IIGL 

in the original notation. The search for further deformation currents is completed 
with ordinary Diracology: QfJ is block-diagonal with two 4 x 4 blocks (YV 
and AA) and a zero corresponding to P. The VP’ block is Q; - 
Tr{P’(o,,, (oPV, YJ) - hP,4 and similarly for the AA block, so there are no defor- 
mation currents outside the centralizer in this case. On the other hand, no further 
search is necessary in any compact construction, so the example SO(m + n)/SO(m), 
n > 2, is deformable only with the currents of SO(n). 

We also remark that no deformations by the original currents of the construction 
are possible when g is compact and simple and G/H is a symmetric space, since the 
centralizer is an empty set. The same conclusion is verified for semi-simple g in the 
case H @ H/diag H, which includes the SU(2) construction of the (m, n) discrete 
series [40]. 

It follows more generally that there is no local (1,0) current in any construction 
for which analysis of the Kac-determinant [41] shows discrete highest weights, 
since c-fixed deformation by that current would generate a continuous highest- 
weight spectrum without affecting the norm (see also Section 10). 

6. TWISTS AND GHOSTS 

6.1. Torus-Ghosts 

We consider the general flat zero-mode deformation L,(d,, D,) after rotation of 
the c-fixed deformation onto the CSA. The resulting torus-ghosts 

L,(&,, D,) = L,[O] + (&’ + mD,A) T; + &k(+ 0;) c?m,O (6.1.la) 

ab” = c&, 01, D,A= b& 
( 

1 D,xa(i) > c(D,) = c(0) - 12kD; (6.1.lb) 
..ao=O > 

8 The Lz = L - L,, (L,, L2) = 0 phenomenon was discovered in the “spin-orbit” construction of [2], 
and coset constructions for discrete symmetry-breaking of g= W(3) were noted implicitly in [2, 
Sect. 31. The first explicit coset constructions were the “spin-spin” interactions in Eq. (3.9) (SO(4, 2) = 
SO(4, 1)) and Eq. (3.14) (SO(4, l)=SO(3, 1)) of [9]. Reference [34] suggests generalization of an 
example (SO(4, l)=SO(3, 1)) of coset factorization Vx= V,,@ VGIH of tensors, which implies that 
K-degeneracy is also interpretable as multiplicative renormalization. More general discussion of these 
ideas is found in [39]. 
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for arbitrary level of g at the origin are obtained by solving the constraint (2.7~) in 
this picture.’ Here {x,} is the weight-basis of the adjoint, {&} is an arbitrary torus- 
twist, and {&} is the generic c-changing deformation. The exceptional c-changing 
deformations D,* = D _ a are interesting but difficult, since their completely 
homogeneous frame is not the Cartan-Weyl frame. 

The discussion of Section 4.1 is extended with minor modifications for the generic 
c-changing deformations & = (d;, 0). The boosted currents (4.1.2) and their 
algebra (4.1.6) are unmodified, while the relations 

show conformal-weights 1 + c(. a, for the boosted step-operators-and that one of 
the CSA currents is not a tensor, in accord with (3.11). Similarly, conformal-weight 

h(,u, 6,) = 12 + p. d, (6.1.3) 

is found for the boosted form (4.1.8) of the arbitrary representation (3.16) at the 
origin. A proviso is that degeneracies such as (4.1.3) may be infinite when the norm 
at the origin is not positive, as seen in the explicit bosonic ghost constructions of 
Section 6.3. See also the further remark on norms in Section 10. 

6.2. Orbifold-Ghosts 

Any orbifold-twist a0 can similarly be promoted to an orbifold-ghost via the 
c-changing deformations B,, which satisfy f A”C@dc = 0, and an example is given in 
Appendix F. We remark in general that the CSA basis of an orbifold-ghost has 
indefinite conformal-weight since the conformal-weights of TP and TNep shift in 
opposite directions according to (3.12). 

6.3. JSL, ),-Preserving Deformations 

Any highest-weight state at the origin which is also an SL,-invariant state 

LCOI ISL,hl= 0, Iml < 1 (6.3.1) 

is automatically a singlet 

G’ ISL,>,=(T;4,L-,[O]) IsL2)o=o. (6.3.2) 

Define an lSL,),-preserving deformation as one which maintains the SL,-character 
of the fixed state ISL,), throughout the deformation. In the case of the generic 

9 The form D{ = (D& 0), di = (d;, z z oosod;x.(i)) is the general solution of the constraint (2.7~) in 
the picture where the c-changing deformation is on the CSA. 
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c-changing deformation L,(&, b,) in (6.1.1), the deformation with & = 6; is 
/SL,),-preserving since” 

L,@,, 8,) = L,[O] + (1 + m)d, . T,,,, c(B,) = c(0) - 12kBi (6.3.3a) 

L(~o, Do) ISL, >o = 0, lml< 1 (6.3.3b) 

and the central charge may be considered as a function of the twist. Further classes 
of ISL,),-preserving deformations are noted below, and a unified mechanism is 
given in Section 10. 

The ground-state of any free or Sugawara construction at the origin in terms of 
antiperiodic representations is always an ISL,),. We focus in this subsection on 
constructions with complex antiperiodic Fermi or Bose quarks [2] 

t)‘(z)= c l+q-‘, l)‘(z)= 1 4;z-r 
rtz+ l/2 rEZ+l/Z 

*:I& + zlJi*; = 6”6,* --s) 5= 
[ 

+ 1, Fermi 
- 1, Bose 

Ii/t IO),” = $1 IO)BH =o, r>O 

whose currents for Hermitian representation T [2], 

TA(z)= :i,bi(z) T;+‘(z);, k= ’ - Tr( TA TA), 
dim g 

I II are reducible in the Fermi case when T is antisymmetric. 
It follows that the constructions [2,42,28,43, 381 

L,,,[O] =; yy :pa,lp -+ crree(bo) = r dim T - 12kdi 
,=l 

1 dim g 

LsugCo’=2k+Qfi A=, x ---I x TATA 2 + cs,,(Bo) = Tkz”eg - 12k& 
rr, 

L,,,,,[O] = & ‘“f g ; T” T” 2 -+ ctorus( 8,) = rank g - 12k& 
Cl=1 

(6.3.4a) 

(6.3.4b) 

(6.3.4~) 

(6.3.5) 

(6.3.6a) 

(6.3.6b) 

(6.3.6~) 

in L(d,, do) of (6.3.3a) are lSL,),-preserving with ISL2)o= IO),, fixed 
throughout the deformation. The deformations also share the boosted currents and 
current algebra (4.1.2) and (4.1.6) with a,(d,)= 1 -h(cr, do)= -IX .a,, and all 

lo Similarly L,,,(d,A = b,R) is the general flat zero-mode JSL,),-preserving deformation, which includes 
IX&),,-preserkng orbifold-ghosts and reproduces (6.3.3) after rotation onto the CSA. 

‘r Bose-Fermi generalizations of the re-normal-ordered boosted currents (4.1.9) and free constructions 
(4.1.10b) are obtained with an extra factor r multiplying the constant terms in these results, while the 
discussion of the twisted Sugawara and coset constructions in Section 5 is unchanged for negative k. 
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deficits’* c’(&-,(a,) are independent of 6,. The SL,-state is no longer a 
highest-weight state when 1~1.6~1 exceeds one for any root tl (see Section 4.1): It is 
further verified for each Bose-module that the (Et,)” degeneracy at a. b, = -m is 
infinite, since the indefinite norm at the origin does not terminate the family, and 
the spectrum is generically bottomless beyond the first degeneracy point. Moreover, 
the choice with L,,,[O] at the origin, 

L@,, 6,) = L&O] + (1 + i&,)d, . T (6.3.7a) 

IClgoost(~o~ 0) = x,m&oost(~o~ Q) = e’““~““x,wP(e) (6.3.7b) 

$Qoosl(~o~ 0) = x,m&,,ost(&, 0) = e’““‘““x,w4w~) (6.3.7~) 

h(p, a,, = 4 + j.J &, a,(&) =$-p. 60, (6.3.7d) 

is the simplest non-Abelian generalization of the usual ghosts [28]. 
The case g = U( 1) in (6.3.7) has deficit c,,,(d,) - ,,,,(a,) = 1 - T, and the SL2- 

state is the ground-state of the deformation only for lb,1 <i (see Appendix C). 
Those sectors of the usual ghosts [28] with (SL,),= IO),, are located at the 
pointsI 

C = $[,s;‘(b, = ;), h = l+&;;,(b,, = t), T = 1 (reparam ) 

h($)=h(h)=2, a/Z=O, c(b,=$)= -26 (6.3.8) 

and 

1’= $‘do=&;‘(&,= l), fi= t&o=,;t(&= l), T = - 1 WS) 

h(lJ)=h(p)=& rs/Z=~, c(b,= l)= 11. (6.3.9) 

The complex Ramond (CR) sector of the superconformal ghosts is located at 
T = - 1, B, = 1 in the & = a, - $ deformation 

Lf,H[O]+(~,-~)T,+m&T,+~(~-&,)i5,,, 

= LLRIO] + (1 + m,&(T, - fd,,J (6.3.10) 

so that h(P) = 3/2, a/Z = 0, c(aO = 1) = 11, and there is no SL,-state. World-sheet 
supersymmetry of generalized ghost systems is discussed in the following section. 

We finally remark on the vertex-operator constructions [12-141 of the currents 

“The deficit es,,(O)-c,,,(O) was studied in [Z] (level-one of C/(3) with T in the fundamental, and 
equivalence with free fermions), [9] (level-one of SO(3, 1) with T in the (Dirac) spinor represen- 
tation = level-one of SO(3, 1) with T in the defining representation for real fermions, and equivalence 
with free fermions), and more recently in [44, 28. 281. 

I3 The Hermiticity convention 1281 ~~,,,,@U,,+ l,Z+ du = $boort(&)-,m+ l.Z+ do,, $t,&&,+ lr2 - a, = 
5~boort(b0)-,m+l,Z-do) is an option when 8, is integer or half-integer. Then 7”, = -T_,, which is 
included in the usual afline algebra for Abelian g, and Lk(b,, 6,) =L,(b,, 8,) in this case. 
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(6.35) in the Fermi and Bose cases, following the original method of [12,45]. The 
i= 1 , . . . . dim T Fermi [12, 13, 151 and Bose [28] quarks are 

i-l 

(Fermi) $I’= <iz1/2 :ep’Q&:, $f= <izli* :,iQk:, ti= n (-l)int’,o (6.3.11a) 
j= 1 

(Bose) $‘= :e-i(Qk+Qk.):, $‘= :(a,~$++, ,i(Q;+Q&, (6.3.11b) 

where Qr and Qs are time-like and space-like, respectively, li is the Klein transfor- 
mation (cocycle) [46, 12-141, and the normal-ordering notation [18] includes 
q-factors to the left of To-factors, which differs from the older notation [47]. The 
vertex-operator construction of the currents (6.35) is then 

(Fermi) TA =c T~doQ~ + c Ticiiz :ei’~‘Qs: (6.3.12a) 
I i#J 

(Bose) TA= -C Ttd,Qi+ 1 T; :(a,Q~+t)eiao.(QT+Qs):, (6.3.12b) 
I ifi 

where @g=ei-ej are the roots of SU(dim T) and cii=ri[jexp[ircO(i>j)]. These 
constructions form Bose-Fermi pairs with level &2 l/cl/$’ for arbitrary represen- 
tation T of g. The following cases of (6.3.12) are known: level 1 of SU(N) [12, 133 
with Tin the fundamental, (two copies of) level 1 of S0(2N) [ 151 when T is in the 
defining representation and level - 1 of SU(2) [43] with T in the fundamental. 
Moreover, the Fermi construction (6.3.12a) is presumably related to the construc- 
tions in [48]. 

7. FLAT SUPERCONFORMAL DEFORMATIONS 

7.1. IV= 1 (Non-linear) SUSY 

Begin at the origin with the non-linear N= 1 supersymmetric system [49-521 

UOI = f  :sA&JA: + e[O], &CO] = 
0 AP 
&dimg P 

(7.1.la) 

qo, =ifABC :sAsB,yC: = _ ’ 
6Jjt 

--:TASA; 
3& 

TA = 4 ; SB( Tg4djjBcSc a, c(0) = 4 dim g, k=fQ, 

(7.1.lb) 

(7.1.lc) 

for semi-simple g with structure constants f""' and periodic or antiperiodic 
fermions SA = C reZ + ,OS:‘z-‘. The algebra at the origin consists of an IV= 1 super- 
conformal system 

(I,[ol,~“Col)=(m-n)L,+,Co]+~M(m~-1)6~,~, (7.1.2a) 
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(7.1.2b) 

40) (G,COl, G,COl)+ =2-&+.COl+- 3 
(7.1.2~) 

and an auxiliary algebra [ 50, 5 1 ] 

(LCOI~ ?I= -nTL+,, (L,COl, St)= -(fm+r)SL+, (7.1.3a) 

(G,COl, Ti) = v/j;mSt+., (G,COl,S::)+ = -1 T;+s 
4 

(7.1.3b) 

((T;,Sf)=ifAECS;+r, cs:‘, s:,, =BAB6r.-.y (7.1.3c) 

(Ti, T~)=ifABCT~tn+kmSAB~m.--n (7.1.3d) 

which restricts the representations, as in (7.1.1). The auxiliary algebra also provides 
all the currents in this case, since the N = 1 algebra specifies none of its own. 

Maintenance of supersymmetry throughout a deformation is generally a restric- 
tion on allowed deformations of the conformal subalgebra. Our approach to this 
problem begins with a general (trial) conformal deformation L[ti, Do] which deter- 
mines a tensor (trial) Gboost along the lines which led to (3.18b) for Rboost and 
(3.6a) for Tboost . In particular, the G-multiplet for an N 2 1 SUSY algebra in 
representation T under the deformation currents will twist with the appropriate 
Q[d 0, T], and a shift, as in Tboost, will be necessary to cancel the contribution of 
any Schwinger term of the multiplet with the deformation currents. The 
requirement that Gboost has conformal-weight 5 eliminates c-changing deformation 
by currents which rotate G[O], since these automatically change the conformal- 
weight. If the resulting (trial) Gboos, fails to generate the rest of the automorphism, 
the deformation must be further restricted until it does. 

In the present case, G[O] is a singlet under g, so Gboos, will not twist or change 
its conformal-weight under deformation by the currents of g. On the other hand, a 
shift is necessary because (7.1.3b) involves a Schwinger term of the deformation 
currents with G[O], whose intuitive origin is the factor TA in [7.1.lb). The result 

~m[d~~l=~,COI + 1 dA,,T~+.+mDoAT~+E,[d, D,] 
II E P 

(7.1.4a) 

G boost[Id DoI = - i f”“” 

6Jj; 
SASBSc - 4 (dASA + 2iD,Ad,SA) (7.1.4b) 

i:,,Cd.D,1=~k c ~4,d~,.+2md~D,A-DDgADgA6,,0 
( 

(7.1.4c) 
nsiz 

c(D,) = c(0) - 12kD,A D,A (7.1.4d) 
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verifies a c-changing N= 1 superconformal automorphism without further restric- 
tion on the space of deformations D in (2.7~). 

The fermions SA twist (but do not shift) with the same Q[d, 8, Tadj] as their 
superpartners TA, so homogeneous operators for the entire system are easily found. 
A number of distortions in the auxiliary algebra are caused by D,A # 0, however, in 
analogy with (3.11). 

We illustrate in the case of zero-mode CSA deformations &;;, & # 0, for which 
the boosted operators are the currents in (4.1.2) and 

SL,(&h 0) = s”(e) (7.1.5a) 

%OOSt (&, e) = ~,(i)s~o,,,(2~, e) = ei~~-aw(e) (7.1.5b) 

with the weight-basis (x,} of Appendix A. Then the boosted auxiliary algebra 
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(4.1.6). Those relations which distort the auxiliary algebra (7.1.3) are denoted with 
(*), but they are harmless since the basic N= 1 SUSY is always preserved. 

We also remark that a large number, 

dim SO(dim g) -dim g = f dim g(dim g - 3), (7.1.7) 

of “hidden” currents (including int(+ dim g) - rank g hidden CSA currents), which 
generally fail to commute with G[O] in (7.l.b) may be constructed as bilinears in 
SA. These are the currents of hidden higher-N SUSYs within the N= 1 model: The 
original GIO] is a Cartesian component of the N > 2 G-multiplet and members of 
the multiplet are the twist-eigenstates of the hidden currents. Put another way, 
deforming the N = 1 model with respect to such hidden currents will twist G[O] to 
a G-multiple& yielding deformed higher-N models as in the following section. 

7.2. N = 2 SUSY 

We begin with an N = 2 SUSY [7] at the origin, 

(=L,COl, LPI = h--n)&+. CO] + +g) m(m2 - 1)6,,, ~,~ (7.2.la) 

(LCOI, T,) = -UT,+,,, (L,[O], G,? [0]) = (;m - r)G’[O] (7.2.lb) 

CT,, T,) = W)m~,. --n, CT,, G’COl)= +G;+,COl (7.2.1~) 

(G~CO],G,\~[Ol)+ =2L,,,[Ol+(r-s)T,+,+~ ; 
( > 

r2-- 6,,-. (7.2.ld) 

(G: PI, G: PI )+ = (G,~ WI, G; WI I+ = 0, c(0) = 3/k(O), (7.2.le) 

where m, n E Z and r, s E Z + 4, leaving the twisted-sector (outer-automorphism) for 
separate discussion. 

We also introduce an abstract auxiliary algebra at the origin, representations of 
which are discussed below: 

(7.2.2a) 

(7.2.2b) 

(7.2.2~) 

(7.2.2d) 
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(G,+ CO], II/z”“.“) + = J2 (TfY$ LI + ;l”rd, p.y), 

(G; [0], 1+5~“~~~) + = fi (T;“,,,, + X”rd,, -,) 
(7.2.2e) 

(G; [O], Tz”,“) = (G; [O], I++;““-“)+ = (G, [O], T;“-) = (G,? [O-j, $;‘-)+ = 0. 

(7.2.2f) 

The auxiliary fermions t,P”“, $‘“’ at the origin are weight 4, transform like G-, G+ 
under T, and commute with the auxiliary currents T”““, T”““. Moreover, the 
auxiliary currents are not tensors when A”, X“ # 0, and the parameter k can be 
scaled to zero or one. 

Following the method of Section 7.1, we begin with the general zero-model4 
(trial) conformal deformation 

by the N= 2 current T and the auxiliary currents. The distorted weights 
h k = t + Do of the resuIting (trial) supercharges 

G&,,,(D),~, = G,+ [0] + fi 1,6,“~,~ ( d;x-u + 2(r - do) s) (7.2.4a) 
0 

G,,,,(D)r + do = G; [0] + & 
i 

Jr,“+ 2(r + do) s 
> 

$y+ (7.2.4b) 
0 

reflect that G+ [0], G- [0] are singlets under the auxiliary currents but rotate 
under T. The result at Do = 0, 

L,,(D) = L,[O] + d,T, + (c$,“~~~ + WI&“=‘) T:x.u 

+ T;ydy*” + rizD~q + &(D)b,.o 

T,,,,,(D), = T,,, + 2T~x3aD7x3u- 2&“x~aF~x~a + r/(D)6,,, 

G&,,,(D),_ do = G: [0] + & I)~~.‘Y~~‘*~ + 2(r - do)D~“~“) 

G,,,,(D), + do = G; [0] + $ (L$J”~,~+ 2(r + d,)&““~“)Il/~““~” 

(7.2.5a) 

(7.2.5b) 

(7.2.5~) 

(7.2.5d) 

I4 Higher-mode deformations are removable with A =x,+,, (d-, T, + da’;ap;r.u + ~ny~.~p;~)/m. 
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verifies a c-changing N= 2 automorphism without further restriction on the 
deformation. The c-fixed representation-independent twist by T with only d, # 0 
was first given by Schwimmer and Seiberg [29]. 

The boosted auxiliary quantities 

generate a number of harmless distortions in the boosted auxiliary algebra. In 
particular, the boosted auxiliary currents T;“,;;( T;z;) are tensors of L,(D) only at 
the points A” = -2kD~“~” (1“ = -2,fDT”,” ), while the boosted auxiliary fermions 
remain tensors with h = $, since they commute with the auxiliary currents. 

Similarly, c-lixed superconformal deformations by half-integer-moded currents T, 
T Z3”X ) T”“” [34,35] can be introduced in the twisted-sector with Gz antiperiodic 
and G, periodic, but these deformations are unitary removable as in Section 4. 

The simplest representation of the full N = 2 algebra (7.2.1) (7.2.2) is the original 
construction [ 71 

L[O]= f ; $i%ux,bTaux.b ; +; ,$aux.b&yiux,b~ 

> 

(7.2.7a) 
b=l 

G+ [()I = & -f $aux,bTaux.b, G- [O] = $ f j=aux.b,)aux.h (7.2.7b) 
h=l b=L 

T =  f :,Jaux,b@w.hI (7.2.7~) 
b=l 

k(O)&?, I;= 1, ib=Jb=O (7.2.7d) 

in terms of the auxiliary fermions and currents. This representation is the hidden 
N=2 SUSY of the N= 1 system (7.1.1) with g=SU(2)2M and G”=‘[O] = 
(G+ [0] + G- [0] )/$. In particular, the auxiliary constructs are 

ICI am.6 TaUX.b =!-(T2’-‘+iT2b), b= 1, . . . . M (7.2.8) 
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in terms of the Cartan fermions S” and CSA currents T” of that model, and the 
N= 2 current is a sum over all the hidden CSA currents. The central charge 

c(D) = 3&D) = 3(M- 8&“x,hD~xJ’) (7.2.9) 

is obtained for the corresponding deformation (7.2.5), (7.2.7). 
Moreover, if we consider the point Df”, Dtux # 0, d,, = dp = CII;“~ =0 in the 

representation (7.2.5), (7.2.7) above as a new origin in the space of deformations, 
then T”““, $““” form a f = 1 representation of the auxiliary algebra (7.2.2) with 
1” = ,,yW, 2” = ,&WI. Further deformations by the non-tensor currents T”““, 
T -aux about this origin remain in the original space (7.2.5), (7.2.7) of tensor 
deformations, as seen above in (2.9). 

Another representation is a continuous generalization of the known N= 2 
superconformal ghost system [28]. Since our representation at the origin is not 
familiar, we give the final result 

+ (dyx + i&““a,)( TF + TB) + .s(d,,, @y) (7.2.10a) 

T,,,,,(D) = TF - 2Dy( TF + TB) + r](d,,, &““), G&,,,(D) = ,/5 eie‘%jFtiB 

(7.2.10b) 

G;o,,,(D) = - fi ie -i~~ya,$B)~F+Ji(d~X+ 2iDpY,)(eciedo$B$F) (7.2.10~) 

E(D) = id; + d&y” - @y, r](D)=d,-2d&““+@” (7.2.10d) 

c(Dy) = 3( 1 - 4or”) = 3k(&““)’ (7.2.10e) 

in terms of antiperiodic15 complex Fermi and Bose quarks [2] +“.” with 
TF,B = ,$F.B+FJJ I. The representation of the auxiliary algebra (7.2.2) corresponding 
to the construction (7.2.10) is 

$““” = $“$‘, T”“” = TF + TB, R=o, A=1 (7.2.11) 

so II/ au’ is not canonical and T”“” is not a tensor at the origin,16 while 1,6’“’ and T”“” 
decouple. The weights and modeings of the boosted quarks are 

h(lj~o,,,) = h(b) = 1 - h(t+qo,,,) = ;+ Dy (7.2.12a) 

~OfKOOSt )=cr(b)=l-o(~,&,,)=f-(d,,+e) (7.2.12b) 

WfF!OOS, ) = h(b) = 1 - h($Eo,,,,) = &“, (7.2.12~) 

4’fGLt ) = o(B) = 1 - a($;O,,,t) = 4 - *x (7.2.12d) 

” The equivalent form of (7.2.10) in terms of boosted quarks with arbitrary modeing is obtained with 

IL + l(lbuost and d,=dy=O. 
I6 In fact, T&$,(d,) = TF + d,6,,,, is never a tensor of L,(D) since I + 2lDy # 0 for any value of the 

parameters in this deformation. 
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and the known N= 2 superconformal ghost system is located at the points 
&ux = $ = do + &y with d, = i(NS), l(R). 

It is amusing to pretend that the continuous N= 2 superconformal construction 
(7.2.10) is the physical ghost system in a chiral sector of a D-dimensional super- 
string [4, 6, 53, 21, 17, 281. The requirement d,+ dtux =Dr maintains the 
I=,),= IO),, state of the reparametrization ghosts throughout the deformation, 
and the further requirement &J”’ = m + 4, m E Z, fixes integer-moding for these 
ghosts. i’ The resulting total central charge for matter plus ghosts in D dimensions 
is 3(D/2 - 1 - 4m) so the Weyl anomaly cancels for those dimensions 

D=8m+2 (7.2.13) 

which allow a spacetime Majorana-Weyl fermion. The ghost weights 

4ELt ) = h(b) = (D + 6)/8, h($~O,,,,) = h(a) = (D + 2)/8 follow with (7.2.12a, c) and 
(7.2.13). 

8. LINEAR-LOADED DEFORMATIONS AND SPONTANEOUS BREAKDOWN 

8.1. c-Fixed Chiral Deformations 

Begin at the origin with a Sugawara construction L,[O] for level 2k/t+b2 of g, 
whose CSA currents T;; are defined on a base-lattice which is a sublattice with basis 
vectors ~(0) of the weight-lattice of g. The simplest non-flat deformation is the case 
of c-fixed linear-loading” 

L(do(To)) = LCOI +&XT,) C + W;U-oL,o~ d;( TO) = e” +f”“Ti (8.1.1) 

characterized by linear-dependence of the deformation d, on the currents TO. The 
present section treats only this linear-loaded case, which includes spontaneous 
breakdown [24, 251, while more general non-linear deformations are discussed in 
Sections 9 and 10, and Appendix B. 

The boosted CSA currents 

TL,t(4dTo)), E TZJddTo)) = T: + k(e”+f”bTi)6,., (8.1.2) 

remain (1,0) operators throughout the loaded deformation and T;(d,) defines a 
level-dependent target-lattice which is a linear transformation of the base-lattice. 
The boosting of the charged operators is representation-dependent, and the mode- 
ing of these operators for arbitrary level of g at the origin is computed in Sec- 
tion 10. Although further analysis can be given with the constructions in (6.3.1 lb), 
(6.3.12b), and [54, 37, 481, we discuss here only level-one of simply lacedg. 

I7 The additional requirement ,r = &“’ - 4 (which implies d,=+ with the previous requirements) 

maintains the I.&),,= lO>~,O lO>L state of the NS sector, and the R sector is similarly constructed. 

I8 The deformation (8.1.1) is I&),-preserving when e = 0. 
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In this case, the Sugawara construction at the origin is equal to the construction 
on the maximal torus of g [ 12, 15, 181 so the loaded deformation (8.1 .l ) takes the 
simple form 

Wo(~o))=$ :: ~~+.(~o(~o))~“,(~o(~o)) :: =LWl lro~ro(~(ro)) (8.1.3) 
n 

and the physics of the level-one deformation is entirely in the target-lattice. The 
vertex-operator construction [ 12-141 for non-zero weight ~(0) of representation R 
at the origin boosts according toI 

where c,,(,) is the Klein transformation [46, 12-141 at the origin. The zero-mode 
factor is 

with 

p 
Y(O) 

(do, z) = ei~~O)~q(0)z~~r~o)(~o(~o)) (8.1.5a) 

= ewe (q(do) ~ iln=To(do)) (8.1.5b) 

P(do) = (1 +f)PL(o), 

ddo) = 4(0)( 1 +S) ~ l, 

ql(O,(~O(~O)) = -tP*vo) - Ado). z-o(do) 

(q”(do), C(~o(~o))) = ~@Kl,o 

(8.1.6a) 

(8.1.6b) 

and the higher-mode factors have the usual form rsdoj = exp(ip(d,) . Q * ). 
The base-lattice translation-factor in (8.1.5a) maintains the algebra of the Klein 

transformation with the boosted vertex-operators throughout the deformation. 
Moreover, the forms of the zero-mode factor in (8.1.5a), (8.1.5b) show that the 
boosted vertex-operators translate from point to point on both the base-lattice and 
the target-lattice, whose basis vectors are cl(&). 

The continuous shift of conformal-weight h(p(d,)) = $pU2(do) in (8.1.4a) 
corresponds to wavefunction renormalization in Thirring models [ 121, which is 
called change of compactification radius in Thirring strings L-55-571. Addition of a 
flat c-changing deformation (D;: # 0) does not modify the boosted vertex-operator 
constructions (8.1.4b) but further shifts their conformal-weight to 

Wdo), Do) = tP*vo) + iddo) ‘DO. (8.1.7) 

We also remark that linear-loaded deformation generically involves non-local 
distortion of the current algebra and other algebraic structure since P(c&) . I’ is 

I9 The flat-deformation limit f-0 of the boosted vertex-operators (8.1.4b) is the expected twist 
exp(iOe p)R”(B) by the lattice translation-vector d$ = P. 
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not generally an integer. Moreover, the modeing (8.1.6a) of the boosted tensors 
typically varies across the target-lattice, so that 

= C-~+~-~~O~~~o~~o~~l~~b~~)t.m+au,o,(TO(dO)) 
(8.1.8b) 

s 

x RP(&) 
boost,m + u,,,u)( To( = 

dB R~~~~~(e)ei~[m+~r~o,(Ta(~o))l 
-,2X 

(8.1.8c) 

which complicates ordinary commutator and anticommutator structure on states. 

8.2. Restriction by N= 1 World-Sheet SUSY 

Maintenance of N= 1 world-sheet SUSY [4,6], to prevent a flood of negative- 
norm states in the theory, is a serious restriction on linear-loaded deformations, as 
illustrated in the following simple model. 

Begin by compactifying 10 -d= 2M dimensions of a conventional (1,0) super- 
symmetry at the origin, and suppressing the d physical dimensions, since they play 
no role in the analysis. The fermionized form of the internal contribution is the non- 
linear SUSY of Section 7.1 with g = SU(2)2M, but analysis of linear deformations 
requires the bosonized form of the construction, with 3M bosonic fields 
Q’, I= 1, . ..) 3M. The CSA currents TB and hidden CSA currents TF of the non- 
linear representation 

TBGagQMto, a = 1, . ..) 2M; TF.’ = &Q”, b= 1, . . . . M (8.2.1) 

are defined on B = bosonic and F = fermionic sublattices, respectively. Then the 
supercharge at the origin 

G[O] =$ $, &&~~h(o)(~B."--l - iTB,2') + h.c. (8.2.2a) 

P:(o) = 6,,,, Z, b = 1, . . . . 3M (8.2.2b) 

is obtained with the vertex-operator construction of fermions [ 12, 13, 151 

b-l 
,)” = rb u-P~(‘-‘), cb =exp ix 1 int( T,F,‘) 

I=1 1 , b= 1, . . . . M (8.2.3) 

whose real and imaginary parts are the Cartan fermions S” of the non-linear 
construction. 

Our study of linearly loaded superconformal deformations follows the trial defor- 
mation method of Section 7. The starting point is the most general linear-loaded 
c-fixed conformal deformation 
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L,(d,,(T,J) = L,[O] + (e; +fu,“, T$‘+f$ T,F,‘) T:” 

+ (e”, +f& Ti.’ +f”B, T:“) T:” + E(~,J( T,,))6,., (8.2.4a) 

Ta”(d,,) = T$” + (e”, +f;t” T$b +f”,“, TF,b)G,,, (8.2.4b) 

Tz”(d,,) = T;” + (e; +f$ T;,’ +f;$ T,F*b)G,,, (8.2.4~) 

with respect to the complete set of CSA and hidden CSA currents. The explicit 
weights and modeings of the boosted “fermions” I+@,,,,(&,) = tb V&$“O’ are 

(8.2.5a) 

ab(T,(d,)) = -t&(4,) + { [(I +fw)=(l +fw) +f ;,f,,l G 

+ CU +fFdTfFB +f5& +fBdl T,B + (1 +fFdTeF +fkdby 
(8.2.5b) 

where T = transpose, and the modeing of the boosted antifermions is obtained with 
the opposite sign of the bracket in (8.2.5b). 

The (trial) boosted supercharge is constructed by boosting the components 
of G[O] and allowing a shift. Full normal-ordering is required because (b not 
summed) 

and the result 

(8.2.6) 

G,,,,,(4dTd) =+ b& { :v%,,(do)(TB~2b- ‘(4,) - iTB.b(d,)): 

-(f~~~l,b-lf.~~b)(i~H+~)i~~an(dn)}+h.c. (8.2.7) 

transforms with weight $ when pi(d,) = 1. 
Maintenance of the full N= 1 SUSY proceeds thru a sequence of further 

requirements on Gboost in a neighborhood of the origin: 

( 1) Locality of (G, G) + . The stronger condition pJd,) .pb(dO) = pa(O). 
I*b(O) = 6aby Or 

c1 +fFF)=(l +fFF) +f:FfBF = l, (8.2.8) 

is necessary for mutual locality of the boosted fermions, and hence locality of G 
with itself. 

(2) Homogeneity of G. TB(dO) in (8.2.7) remains integer-moded and any shift 
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of the modeing (8.2.5b) is opposite for the fermionic and antifermionic components 
of G, so we must require oh( T,(d,)) = ob( T,) = -i + T:,‘, or 

(1 +~FF)‘~FB +SL-(1 +~BB) = (1 +&FIT+ +fIFeB = 0. (8.2.9) 

The usual local anticomutation relations for t/,,,,,(0), I+&~~~~~(CZI’) are recovered at 
this point. 

(3) G closes to L. Direct computation of (G, G) + by operator product 
expansion exhibits several classes of spurious terms related to (8.2.6) whose 
elimination requires 

.fBF=O (8.2.10) 

and then the algebra of all components $bOost(dO), $boost(dO)r TB(d,,) is normal. The 
overall solution 

1 +fFF = orthogonal, fFB = eF = 0 (8.2.11) 

follows with (8.2.8))(8.2.10). 

Our conclusion is that c-fixed continuously deformed N= 1 world-sheet SUSY is 
only possible on the target-lattice 

T:(4) = (1 +.fBB) T :  + eB 

Ti(d,) = (1 +f&) Ti = (orthogonal). T,F. 

(8.2.12a) 

(8.2.12b) 

The orthogonal transformation (8.2.12b) on the fermionic lattice does not affect the 
eigenvalues of L,(d,) and the linear transformation (8.2.12a) of the bosonic lattice 
is of the Narain type [24], which is known not to spontaneously break spacetime 
SUSY. 

Although our argument required only (1,O) superconformal invariance, our 
conclusion is consistent with that of [25]. After completion of this work we learned 
that more general models have been discussed along these lines in [SS]. 

8.3. Conformal Field Theory and SO,(p, q) 

Define a c-fixed linear-loaded conformal field theory for levels 2k/$2, 2@j2 of Lie 
algebra g CBg at the origin by the doubling [59] 

LJddTo, To)) = LCOI + d;;(T,, &,)T: + $kd;(T,, T,,To)G,,o, a=1 1 . . . . p 
(8.3.la) 

~,,,(h,(~oh, T,)) = ~,[O] + @(To, T,)P; + $kd;(&, T,J6,,j.,, a=1 9 “.7 4 
(8.3.lb) 

d;(T,, T,.,)=e”(TO)+f”“(To)Tt, @(T,,, T,,)=P”(T,,)+f”6(To)~~ (8.3.1~) 
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and the level-matching condition below. The boosted CSA currents 

Wdo( To, To)) T: + k(e”( T,,) +f”“( To) T;)c~,.~ 
?+ff(do(To, T,,)) p; + k(F”( T,,) +p6( To) T;)c!~~,~ > 

(8.3.2) 

remain (1,0) and (0, 1) tensors, respectively, throughout the deformation, and 
(T,(d,), T,,(&,)) defines a (p + q)-dimensional level-dependent target-lattice. The 
level-matching condition 

Lo(do(To> To)) = Lo(do(Tob, To)) (8.3.3) 

decomposes into the condition at the origin L,[O] = &[O] and a restriction on the 
deformations 

T;(d,( To, To)) - x*T;(d,( T,,, To)) = T; - x2T;, x = fi. (8.3.4) 

The restriction defines an SO,(p, q) family of target-lattices 

(8.3.5a) 

SO.x(p, q) = K,‘SO(p, q)K,, K, = 
‘P O 

( > 0 x0, ’ 
(8.3.5b) 

where the group SO,(p, q) is isomorphic to SO(p, q) by the similarity trans- 
formation K,. A consequence of (8.3.5) is that P(O) =E’(O) =O, so this class of 
deformations is automatically [X,),-preserving (see also Section 10). 

The simplest example is the SO,(l, 1) deformation for arbitrary levels of 
g = g = SU( 2), 

(8.3.6a) 

(;i:i)=(:)asinha, ($~~)=(~,)~(cosha-I), (8.3.6b) 

which breaks the group to U( 1) @ U( 1) and corresponds to continuous compac- 
tification radius r(d,) = fi exp( --c~)/p(O) when k = k = 1 [60]. 

For level-one of simply laced g and g the Sugawara construction equals the 
construction on the maximal torus of g 02 [ 12, 15, 181, 

LAdo(To, To)) = bn[ol 1 roe- To(do(To.T(,)) 

L,(~o(~oO, To)) = &nCol I TOO- ~oo(ci,(~r,,rc,))’ 
(8.3.7) 

so the effective flat directions fill SO(p, q)/SO(p)@SO(q) in this case [24]. The 
further requirement of full modular invariance [23] apparently restricts the base- 
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lattice to even self-dual [24] and shifted odd self-dual [25] lattices. Finally, the 
boosted vertex-operators of the level-one closed string [59] 

(1 +f(Toh))P(o) 
($j>=( ) (1 +f(To))b(o) (8.3.8d) 

map from point to point on the base- and target-lattices and transform as 
($~‘(d,), ifi*( as expected. 

9. C-FIXED NON-LINEAR DEFORMATIONS 

9.1. Vertex-Operators for Arbitrarily Deformed Lattices 

This section discusses the arbitrarily loaded c-fixed deformation 

L,(do(To)) = LCOI + d;f(To) 7’: + fh’;(ToM,,,.o, d,“( To) = arbitrary (9.1.1) 

reserving off-CSA rotation for Appendix B and c-changing generalization for 
Section 10. The boosted CSA currents 

T” tm,st(do(To)Ln- T,(do(To))= T:+kd;;(To)G,,, (9.1.2) 

are (1,0) throughout the deformation and T,(d,) = To + kd,(T,) defines a level- 
dependent arbitrarily deformed target-lattice as a map from the base-lattice with 
basis vectors p(O). 

The local basis on the target-lattice 

idTo( P;(O)) - Totdo) I ro- ro+,,,,oj - To(do) (9.1.3) 

is the set of (one-step) translation vectors at the point T,(d,). It follows from (9.1.3) 
that translations on the target-lattice form a group, since multi-step translations are 
additive, 

and one-step translations are invertible, 

-PiTo( ~r(O))=~,(To(do) +Pi(To(do), p;(O)), -p(,(O)), (9.1.5) 
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which follows from (9.1.4) with ~~(0) = -p;(O). Moreover, the local basis reduces to 
the constant basis (8.1.6a) when the deformation is linear. 

The deformation terms in L,(d,) and L _ ,(d,,) of (9.1.1) are proportional to 
d,( T,), while any highest-weight- and SL,-state ISL,), at the origin has T; = 0 (see 
Section 6.3). It follows that any deformation with 

d,(O) = 0 (9.1.6) 

is ISL,),-preserving (see also Section 10). 
The boosting of the charged operators (see Section 10) is representation-depen- 

dent, and we discuss only level-one of simply laced g at the origin, for which 

(9.1.7) 

follows with the steps [12, 15, 181 of (8.1.3). Then the boosted vertex-operators of 
the arbitrarily deformed lattice 

&;‘J\dO’.~(o’)(z) = cjlco,( To) ug~~~do).~(W(z) (9.1.8a) 

%%do’~p’o”(z) = ~o,,o,(To(do),z)~,,,o,,,,,,o,,(z)f,+,,~,o~,(z) (9.1.8b) 

f;to,( T,(d,), z) = ,+“’ ~dO’Z-~p(o,(~o(do’) (9.1.8~) 

a,(o,(To(do)) = -h2(To(do), 140)) -ATo( p(O)). T,(d,) (9.1.8d) 

are constructed in terms of the local basis (9.1.3). 
The relations 

To(do)R 
‘d~~$o’d-‘“(z) = &~~~do’dVl 

(z)CTo(do) + ATo( P(O))I 

(9.1.9a) 

ToR,;~~d~‘+“o”(z) = R[;~~d”‘,“‘o”(z)( T, + p(O)) (9.1.9b) 

show that the boosted vertex-operators simultaneously generate the local basis on 
the target-lattice and the constant basis on the base-lattice, although there is no 
simple way to express the zero-mode factor (9.1.8~) entirely in terms of quantities 
on the target-lattice. Moreover, since the conformal-weight h - ~*/2 of a vertex- 
operator is a distance to the next lattice point, it is not surprising that the operators 
transform as local tensors 

(L,(d,( To)), Rg~~\dO)~~(o)‘(~)) = R~b~‘,do’,p(o’J(~)(~~z + mh,)z” (9.1.10a) 

= zm(zd, + mhL)R{;~;“‘.“‘o”(z) (9.1.10b) 

h, = +cl’(To(do), AO)), A, = fp2Vo(doL -MO)) (9.1.1Oc) 

with lattice- and direction-dependent conformal-weight. 
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9.2. Conformal Field Theory and Local SO,(p, q) 

The c-fixed non-linear loaded conformal field theory for level 2k/ti2, 2k/fi2 of Lie 
algebra g @ g at the origin is 

L,(do(To, To,,, = L,COl + n;;(T,, &)T: + +kd;(T,, &V&o, a = 1, . . . . p 

(9.2.la) 

~,(;s,( To, T,)) = L,[O] + a;( T,, T,) P; + fkd;( T,,, T,)J,,,,, a = 1, . . . . q 

(9.2.lb) 

T;(do(To, To)) = T: +kd;;(T,, T&L,,,, 

p;(d,( To, T,)) = P:, + k@(&, T&5,,,, 
-- - 

(9.2.1~) 

where T(d,( T,, I?=,)), T(d,( T,, T,)) are (1, O), (0, 1) operators throughout the defor- 
mation, and the local basis for the target-lattice (T,,(d,( T,,, T,)), TO(dO(T,,, T,))) is 

( 

ATo( PU(O)) 

PL(~oo(do), L-w)) = > ( 

To(do) I To+~o+P(o) - Totdo) 

~010(~00) I To+ To e@(O) - To,(do) > ’ 
(9.2.2) 

The level-matching condition L,(d,( T,, To)) = E,(d,( TO, To)) leads again to the 
restriction (8.3.4), which now defines a continuous local SO,(p, q) family of target- 
lattices 

= local SO,(p, 4). , local SO.,(p, q) 5 K, * local SO(p, q)K., 

(9.2.3) 

for arbitrary levels of g 02. The matrices of local SO(p, q) are formed by taking 
arbitrary base-lattice dependence for the parameters of SO(p, q), as in the local 
SO,( 1, 1) example 

1 xTosinha(To, 7’,)-T,[l-coshcr(T,, To)] 
(y!: ;I)=-( 

k XT, sinh c1( To, To) - x’T,,[ 1 - cash a( To, To)] > 
(9.2.4) 

which corresponds to c1-+ a( To, To) in (8.3.6a). 
The non-linear transformation (9.23) implies that d,(O, 0) = ;i,(O, 0) = 0 when the 

parameters of local SO,(p, q) are well-behaved, so this class of deformations is 
automatically 1 SL, ),-preserving (see Section 10). 

For level-one of simply laced g and g at the origin the equivalence (8.3.7) is main- 
tained, and the flat directions fill local SO(p, q)/localf SO(p) @ SO(q) ) in this case. 
The boosted vertex-operators U&A5t which generate the local basis (9.2.2) are 
obtained by the substitution 

/4 To(do), 140)) 

/a fob, P(O)) > 
(9.2.5) 
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in (8.3.8a)-(8.3.8c) and transform as local tensors with (AR, I&) = 
(ip2(TO(dO), 140))~ iiz2(To(do), P(O)), as expected. 

According to (8.3.4), the non-Gaussian lattice partition functions of the level-one 
non-linear deformations remain invariant under the modular subgroup r + r + 1, so 
long as the theory at the origin was invariant, but use of these constructions as 
conformal building-blocks for fully modular-invariant strings is problematic. 

10. GENERAL LOADED DEFORMATIONS 

The arbitrarily loaded deformation” L, [d( To), D,( To)] in (2.11) is unitary- 
equivalent to the zero-mode deformation 

bn(do(To)> Do(To)) = LCOI + (d:(To) + mD;;(To)) T: 

+~k(d~(To)-D~(To))6,,0 

Wo(To)) = 40) - 12W37’o)Di3T,) 

(lO.la) 

(lO.lb) 

with A(T,)=C,+, &,(T,) T$/m as in Section 4.1, and the boosted CSA currents 

TZ(do(To)) = T; + k~(T&L,o (10.2a) 

(-L(~(TOL~O(TO)~ T341(To)))= -~T~+.(do(To))+km2D~(To)6,,~. (10.2b) 

are not tensors in the direction of II,( as expected. The effect of the operator 
central charge on boosted charged operators is discussed below. 

The fixed-state phenomenon of Section 4.1 is generic: The states of each module 
at the origin are fixed eigenstates of Ttf and L,(d,( To), D,( To)) throughout the 
deformation, so the states of the deformed module are a continuous relabeling of 
the states at the origin. For application below we compute explicitly 

Ik P>: Mdo, Do, P) = h +P .do(p) + @Cd;(p) - @(pII (10.3a) 

TY,Ih,p): h(do,Do,p;a,m)=m+h+p~do(p)+~k[d~(p)-D:(p)] (10.3b) 

E”,Ih,p): h(do,Do,p;a,m)=m+h+(p+a)~d,(p+cr) 

+ $k[&Xp + a) - %(P + a)], (10.3c) 

where Ih, p) is a highest-weight-state at the origin with T; =p” and m 3 1. 
The fixed-state phenomenon also implies that a positive norm I( 11; at the origin 

is available throughout the c-changing deformation. As an illustration, consider the 

I0 See also Appendix B. 
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fermionic constructions of generalized ghosts in Section 6.3, whose $, 4 norm” at 
the origin is positive. In this norm, for example, 

while the sign of (h, pi L,(d,, D,)L-,(d,, Do) Ih, p) depends on c(DO) [41]. 
The general deformation (lO.la) is (SL,),-preserving when 

do(O) = 40) (10.5) 

which unities the c-changing and c-fixed mechanisms (6.3.3) and (9.1.6). 
The level-matching condition L,(4(To, To), Do(To, To)) = Gl(430(~0> To), 

6,(T,, To)) of the corresponding conformal field theory restricts the deformations 
according to 

[T;(d,)/k + @(To, T,)k] - [ T;(d,,)/k + D;(T,,, Tn)k] = T;/k - T;/k (10.6) 

which generalizes the SO,(p, q) condition (8.3.4) and interprets the c-changing 
deformations D,, 6, as auxiliary compactij?ed spacetime dimensions, doubling the 
original (T,, To). 

The particular solution” of (10.6) 

(10.7) 

employs the matrices of local SO&p + q, q +p) = KP1 local SO(p + q, q + p)K. In 

this case, the continuous family of target-lattices fills the coset-space 

local SOnr(p + 4, 4 +p)llocal SO,(q, P) (10.8) 

” It also follows that the b, c norm with L:(D) = L-,,,(D) of footnote 13 is not positive at the origin 
(c = 1) since the norm is not positive for most c < 1 [41]. 

” Other solutions to (10.6) exist which are not automatically /S&),-preserving, e.g., local SO,@, q) 
on (To. T,,) and @T,,,, r,) =.~*0$~,,, T,). The IS1,),-preserving restriction of this solution is 
contained in (10.7). 

595/188/?-6 
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and the solution is automatically 1 SL, ),-preserving since 

d,(O, 0) = D,(O, 0) =&Jo, 0) = D,(O, 0) = 0 (10.9) 

follows from (10.7) when the parameters of the deformation are well-behaved. 
We finally remark on the construction of the boosted charged operators in the 

general case. The moding o,/Z in the relations 

(LO(~O(TO)? Do(To)), %m(~O~ ~O)m+~~(TO(dO),DO,) 

zz- 
G00,,(~0~ DO)m+~,(To,do,,,,,(m+ gdTo(do), Do)) 

(lO.lOa) 

%3,,,(~0, ~OL+o,,TO(doO),Do) = s 
(lO.lOb) 

a,(To(doL Do) =; 
( 
g2+ a. To-&‘(To(do), a) -ct(To(do), cc). T,(d,) 

> 

+;k[D;(To+a)-D:(To), (lO.lOc) 

is computed from the energy gap in (10.3a), (10.3~) where a( T,(d,), a) is the local 
basis (9.1.3) with ~(0) = ~1. The result (10.10~) agrees mod B with the modeing of 
the local-tensor vertex-operators (9.1.8) when k = 1 and Do = 0. 

On the other hand, it follows from (A.3b) that a boosted representation R~,,,, 
satisfies (T;;, Rgoost ) # 0 for generic continuous deformation, and hence 

(Wo(To)), %m,,) + 0 (10.11) 

when the central charge is an operator. Then examination of the Jacobi identity 
among the operators { L,(d,, Do), L,(d,, Do), R{,,,,} shows that R$,,, cannot be a 
tensor or even a local tensor in this case. 

For example, construct general c-changing vertex-operators R{!,~~dOb-~co~)(Do, z) 
for level-one of simply laced g at the origin by replacing c,,(~,( T,(d,)) in 
(9.1.8a)-(9.1.8c) with 

~,,o,(To(~o), Do) = -f~'Vo(do), 140)) -ATo( 140)). To(do) 

+ +C%%To + P(O)) - WJTo)l (10.12) 

which agrees mod H with (10.10~) when ~(0) = LX, To is on the root-lattice, and 
k = 1. These vertex-operators transform as 

(L,(d,( To), Do(To)), R;;zf’o).p(“))(Do, z)) = ~a_R~b~l~~‘,~““(D,, z) (10.13) 

and generate the local basis (9.1.3) of the target-lattice, but the operators are not 
tensors in general since 
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is verified for tiz # 0. The c-changing vertex-operators reduce to the local-tensor 
vertex-operators (9.1.8) when Do = flat, and local-tensor transformation with 
conformal-weight 

is recovered in (10.13) and (10.14). 

APPENDIX A: WEIGHT BASESOF~ 

Consider an arbitrary Hermitian representation { T$} of g and its conjugate 
representation i=G = - TC’. The weights @, a = 1, . . . . rank g, and weight-basis 
vectors X~ satisfy 

PjL’,(j) = -p”x-,(i), T;L(J) = P”x,(~ (A.la) 

X,(i) e, = -p”X,(j), x-,w::=Pax Jj), (A.lb) 

where x,,(i) =x?,,(i), and 

CX,(i)x-,,,(i)=6,,,,., ~x-,(i)X,(~)=&j. (A.21 
I LJ 

The left-eigenvectors transform a corresponding representation R’ of g from a 
Cartesian-basis (3.16b) to a weight-basis 

R”(z) = c X,{(i) R’(z), R’(z) = 1 R’+)~p,(i) 
I 

(T;, R”(z)) = p”z”‘Ri(‘:). 

(A.3a) 

(A.3b) 

Real representations satisfy r; = T$ and X,, = x/1- The particular weight-basis 
{x,(i), i#CSA} of th e adjoint with ( TJdj)Bc. = -if”“’ and c( a root of g provides 
the transformation 

EE, = c x,(i) T;, Tk = c E;X-Ji) (A.4) 
I 2 

from a Cartesian basis to a Cartan-Weyl basis 
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(T$, Ti) = kmdab6,, ~nr (T;, E;)=cPE;+~ 

(Ek,Efl)= a’T,,,+,,+kmh,,-,,, 
1 

Way PIE;:!,, a + /3 = root 
LY+p=o 

0, otherwise. 

In this case, the further relations among the eigenvectors 

(ASa) 

(ASb) 

c x,(~)(T;,~),Q(~) = 
ij 

(A.6a) 

(A.6b) 

(A.6c) 

are obtained by comparing (AS) and (2.6) with g,, = 6,,. 

APPENDIX B: APPLICATIONS OF A CONJUGATION IDENTITY 

The conjugation identity for f(T) E G in representation T of g 

r-‘(T)Ti~T(T)=TAE(Tadj)~‘B (B.1) 

holds when ( TA, p”) = fABCFC. 
As a first application, take r(T) =Q[d, 9, T], the general twist-matrix of 

Section 3, and TA = Ii”. It follows that Q commutes with the weight-matrix 
h(l),,, T) in (3.17b), 

Q-‘(T)h(&,, T)S2(T)=h-D~OAB(T,dj)~B=h(Do, T) 05.2) 

since D,A is an eigenvector of 52, according to (3Sa). 
As a second example, we discuss the off-CSA rotation of the arbitrarily loaded 

deformation L,[d( T;), D,( T;)] in (2.11). A double application of (B.l) with 
T* = T{, PA = Ti gives 

L,lTd(T~),D,(T~)l=r~l(To)L,C~(T~),D,(T~)]~(T,) (B.3a) 

=~,COl+CdB_,(TOA)T~+.+mDoB(T~)T~ 
n 

+~mC4ToLhdTdl (B.3b) 

~,[4Td, DdT,)l =fk 
1 

1 #!,(T~)#+,(T,A) + 2md~(T~)D~(T~) 
n 

-%(Ti,%(T;hL.oj (B.3c) 
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d,B(T~)=d~(TuA(Tadj)TOA)yhe(T,dj), ooB(T~)=D~(TUA(Tadj)T~)TbB(Tadj) 

(B.3d) 

c(D,( Tt)) = c(0) - 12kD,B( T;)D,“( T;). (B.3e) 

The deformations (B.3d) satisfy the constraint (2.7~) and the construction (B.3b) 
includes arbitrarily loaded general orbifold-ghosts (see also Section 6.2 and 
Appendix F). 

The conjugation identity (B.l) is also employed in obtaining the local 
automorphism (3.13 ), and in Appendix D. 

APPENDIX C: C-FIXED DEFORMATION OF A BOSE-FERMI SYSTEM 

The simplest deformation begins with a single complex antiperiodic Fermi (r = 1) 
or Bose (t = - 1) quark [2] at the origin 

Jm1=; :$BHJu$BHr (C.la) 

$&z)= f (bnB~,,2z--(n+l’2)+dJ;B+H2Z”+“2), 
n=O 

$,,(z,= f (bf;~~,*zn+“2+d~~,,2Z-‘n+1’2)) 
?I=0 

(C.lb) 

(b!iH, 112) b:B+Hz) + = T(d!?i ,,2 3 dj;:?,,) + = 6,,, 2 b,BT,,2 IWm=45,2 IO),,=0 

(C.lc) 

in which the quark and antiquark are U( 1) representations R = II/, R = $ with 
T= -T= 1 of the level T current T(z)= ;I+~~~(z)$~~(z)~. 

The explicit form of L,(d,) in the c-fixed deformation 

L(do, 0) = L[O, 01 + do T(B) +; d; (C.2a) 

Lotdo) = f ~=o[(n+f+d,)b~8iri2hB~~i2+T(n+f-d,)d~~~,2d8~,,2]+~d~ 

(C.2b) 

shows that all the states at the origin {(b tBH)M(dtBH)N IO),,} are fixed, as dis- 
cussed in the text. The modes of the boosted operators (4.1.8) are a continuous 
relabeling of the original modes 

= f (b,+,,2+4z-(n+“2+do’+dJ,+,,2~doz”+”2~do) 
n=O 

(C.3a) 
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= f (bj,+1,2+J,,zn+1’2+rlo+d,+,,2~d,,-’”+”2-do’) 
?I=0 

(C.3b) 

so the states of each deformed module are a continuous relabeling of the module at 
the origin. Since T,,,,,(do, 2) = T(z)+ zd, does not twist, the identity of each 
highest-weight-state is maintained throughout the deformation. The ground-state in 
the Fermi case 

m+t<d,<m+$ (C.4a) 

Idol < 1 (C.4b) 

-(m+$)>d,> -(m+j) (C.4c) 

is passed from one highest-weight state to another at the degeneracy points 
do= H + 4, which are two-fold degenerate complex Ramond [4] vacua. The 
highest-weight states in the Bose case 

N;HY+’ lo),,, h = M(do+ $1; (4;H)H)M IO> BH, h= -M(d,-4) (C.5) 

are bottomless for Ido1 > 4. 
Another form of the deformation (C.2) is obtained with (C.3) in terms of the 

boosted quarks 

Udo) = 1 i.~,boost (dob%A,,,,(do)~,, + ddo) (C.6a) 

c(d,),,=i [do-int 
2 

(C.6b) 

Lotdo) = f ~_o[(n+f+do)b';,,,,b.+,,2+, 

+r(n+~-d,)d’+,,,-,d,+,,,,]+~d:. Idol <; (C.6c) 
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1 (n+f+d,)b.,,,,,h:,,,,,, 

OSnc -int(d”+l/Z) 

il c (n+--d) 
5 1 

2 o d~+,,*~dod,+,,z~-da+&,,(do), do < 0 (C.6d) 
n=O 

where the re-normal-ordering of the boosted operator terms (anti)symmetrizes with 
respect to (Fermi) Bose zero-modes. The relations (C.6a), (C.6b), (C.6d), (C6e) 
show that the system has unit period in do, and (C.6c) was given for the fermions 
in [56]. 

APPENDIX D: ROTATION OF FLAT-DEFORMED SYSTEMS 

We discuss Cartesian frame-rotation for the general flat deformation 
L,[ [d, Do; T] in (2.7) of a Sugawara construction for arbitrary level of g at the 
origin. The conjugation identity of Appendix B is freely used. Define rotated 
currents and deformations 

T~(T)~r(TO)T~T~'(TO)=r~rEA(Tadj) (D.la) 

d;(T) = d:TBA( Tad,), D,A(l-) E D,BPA( Tadj) (D.lb) 

for f( To) E G. Then equality of the deformed Virasoro operators in the two frames 

LCd Do; rl = L,Cd(U, 4dO; T(r)1 (D.2) 

follows since r( Tadj) is orthogonal and the Sugawara construction is invariant 
under SO(dim g). As an application, Eqs. (D. lb) and (D.2) may be used with the 
appropriate r to rotate any particular deformation mode, say d,A, onto the CSA. 

The boosted currents (3.6a) of L,[d, Do; T] and &Cd(T), D,(T); T(T)] are 

~&,,Cd, 01 =QAB[d 0, ra,l(TB(e) + kdB(d)) (D.3a) 

Ttoo,,Cr; d(r), 01 = QAB[d(r), 0, Tadj]( TB(T; 0) + kdB(T; 0)), (D.3b) 

respectively, while the conjugation identity 

(D.4) 

and the definition (3.4) relate the twist-matrices in the two frames according to 
f2[d(r)] = rplQ[d]f. Then the relation between the boosted currents of the two 
frames 

follows with (D.3). The rotation identity (D.5) is applied in Section 4.2. 
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APPENDIX E: MAGNETIC-ANALOGUE PICTURE AND (&),, 

The simplest magnetic-analogue twist is Gottfried’s [61] soluble model for 
g = SU(2) with dA = (d3, d’, d2) = (oO, B, cos 0, -II, sin 0)/d in which we have 
computed 

a,(d) = co - 14 1+ A ,l,h A=,/(1-wo)2+Bf (E.1) 

for the moding a/Z of the homogeneous boosted operators (3.10), (3.20b) 
corresponding to weight p of Hermitian representation T. The Cartesian frame is 
homogeneous on resonance (w,= 1) with B, = 4, and the SU(2)-orbifold 
automorphism (F.4) is verified for the boosted currents in this case. 

A homogeneous frame is obtained in the general case by rotating Q(2n) onto the 
CSA and using the weight-basis of Appendix A. The generic moding is 

o,Cdl = 50 -P . (~oMd1 (E-2) 

in terms of an equivalent effective CSA zero-mode deformation (a,),,, which is 
difficult to obtain in closed form. 

For small deformations. the result 

(E.3) 

is obtained from 52(27r), and the same result is obtained by comparison of the effec- 
tive highest-weight shift Iz((~~)~~) = h[O] + (do),, .p + tk(ao)& with a computation 
of the actual highest-weight shift by the method of Dalgarno and Lewis [62]. The 
coincidence leaves little doubt that general c-fixed flat deformations are equivalent23 
to the other pictures, but we have not found a comprehensive proof. 

We also remark that the moding o,[d] involves the holonomy of the space of 
deformations, since each particular deformation dA(8) defines a closed path C in the 
space, as 0 moves through a period The holonomy of magnetic systems is often 
studied in the adiabatic approximation, when I& <N with N the largest mode- 
number of the deformation. Then 

1 
a,Cdl =a,-% > 

, YJCI = 4 4dA)b 4 i& IK 4 L 
(E.4) 

x The Dalgarno-Lewis operator ,4, = Cm+,, df_Ti/m is the first term A =A, + “‘of a unitary 
equivalence-transformation exp A (from the general case to (c?,,)~~) which we have constructed explicitly 
thru O(d’). 
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is obtained, where E,(8) = p w(6) is the instantaneous eigenvalue of H 
corresponding to the instantaneous eigenstate (p, d) and y,[C] is Berry’s phase 
[63], currently known only for g = SU(2). 

APPENDIX F: AN ORBIFOLD-GHOST SYSTEM 

The simplest orbifold-ghost system is an involution of SU(2), 

Ln@o, m = LCOI + &+“rbu) Tk+ik($&) 6,,, (F.la) 

ci,” = (a;, ci;, a;, = (0, 1,0)/2 $, 6,” = (0, d,, 0) (F.lb) 

c(d,J=3k(&-Ad;), (F.lc) 

with L,[O] the Sugawara construction for arbitrary level of SU(2) at the origin. 
The orbifold currents may be considered with (F.l) and (3.6a) as a boost from the 
origin, or with (4.2.1) as a view of the torus-ghost 

2; = (1, 0,0)/2 fi, ’ a,A = (d,, 0,O) 

from the orbifold frame. The explicit form of the rotation (4.2.1) is 

(F-2) 

and the resulting orbifold automorphism 

(%&4)m + n, 3 cL,tc&L + ag) 

=i~EABCTbCoOst(LiO)m+n+~r+~R+k(m+~,)6AB~,+~l,~n_~B (F.4) 

with o1 = 0, g2 = o3 = 3 is Cartesian in this case. 

The charged currents of the torus-ghost have weights h( + &, a,) = 1 + J’? 6, 
and T~~~~:“” is not a tensor. It follows in particular that the antiperiodic Cartan 

current [34, 351 Tf&,,, (&,) = - (E&;~$torUs(&) + Eb,$~torus(&,))/& of the orbifold- 
ghost has indefinite conformal-weight, as noted in the text. 
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The equivalent form of the deformation 

follows for level-one because the difference of (F.5) and (F.la) is a Virasoro 
operator with c = 0 [IS]. With the further assumption of antiperiodic free fermions 
and deformation currents TA = $rA$/$ at the origin, Eqs. (4.1.8), (4.1.9), and 
(F.3b) express the orbifold currents 

CF.61 

in terms of the a-integral-moded fermions $:6,“,“,(&) of the torus-ghost. 
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Note added in prooj We have learned that a SL(2, ‘i@) example’of the Bat c-changing deformations 
was given by A. A. Belavin in his unpublished talk at the 1987 Kyoto Superstring Workshop. Some 
months after our preprint, two other papers on deformations appeared: The flat deformations have 
been independently rediscovered by N. Sakai and P. Suranyi (Imperial I.T.P. 87-88 (1988), 36) and 
deformations are discussed in A. A. Beilinson and V. V. Schechtman “Determinant Bundles and Virasoro 
Algebras,” Moscow, 1988. 
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