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Abstract. The electron-phonon interaction corresponding to the Holstein
model (with Coulomb repulsion) is simulated in infinite dimensions using a
novel quantum Monte Carlo algorithm. The thermodynamic phase diagram
includes commensurate charge-density-wave phases, incommensurate charge-
density-wave phases, and superconductivity. The crossover from a weak-coupling
picture (where pairs both form and condense at Tc) to a strong-coupling pic-
ture (where preformed pairs condense at Tc) is illustrated with the onset of a
double-well structure in the effective phonon potential.

1. Infinite-dimensional formalism

Strong electron-electron correlations are responsible for many important and
exotic phenomena in condensed-matter systems including superconductivity,
magnetism, heavy fermions, etc. Strongly correlated electronic systems are
those in which the average electronic correlation energy is equal to or larger
than the electronic kinetic energy. Exotic phenomena arise from the compe-
tition of simultaneously minimizing the kinetic and potential energy of the
electrons. Models of these systems usually do not have analytic solutions.
However, recently, Metzner and Vollhardt [1] discovered that these many-body
problems simplify in the limit of infinite spatial dimensions. The limit must
be taken in such a fashion that the electronic kinetic energy remains finite, so
that the effects of the strong electron correlations remain.

Consider the electronic kinetic energy determined by a tight-binding model
with hopping between nearest-neighbor sites (with hopping integral t) on a
hypercubic lattice in d dimensions. The band structure ǫ(k) becomes

ǫ(k) = −2t

d
∑

i=1

coski . (1)

In the infinite-dimensional limit (d → ∞) the set of {coski} can be thought
of as “random” numbers distributed between −1 and 1 for a general point
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in the d-dimensional Brillioun zone. The sum of d “random” numbers grows
as

√
d, so the band structure remains finite if the hopping integral scales as

t = t∗/2
√

d [1]. Furthermore the central limit theorem states that the den-
sity of states corresponding to this band structure [ρ(y)] becomes a Gaussian
distribution

ρ(y) =
1√
πt∗

exp
(

− y2

t∗2

)

, (2)

in the infinite-dimensional limit. The number of nearest neighbors (2d) di-
verges, but the hopping between nearest neighbors (t = t∗/2

√
d) vanishes in

such a fashion to maintain a finite kinetic energy for the electrons.
The phonon density of states has a very different behavior in the infinite-

dimensional limit. The phonon density of states for the Debye model (phonons
with a linear dispersion from zero frequency to ωD) is

N(ω) =
Cd

ωD

[ ω

ωD

]d−1

, 0 ≤ ω ≤ ωD , (3)

in d dimensions. In the limit as d → ∞, the phonon density of states becomes
a delta function at the Debye frequency.

These two observations for the electron and phonon densities of states moti-
vate one to examine the Holstein-Hubbard model [2, 3] (in which the electrons
couple to localized phonons) as the simplest electron-phonon model in infinite-
dimensions:

H = − t∗

2
√

d

∑

〈j,k〉σ

(c†jσckσ + c†kσcjσ) +
∑

j

(gxj − µ)(nj↑ + nj↓ − 1)

+ Uc

∑

j

(nj↑ −
1

2
)(nj↓ −

1

2
) +

1

2
MΩ2

∑

j

x2
j +

1

2

∑

j

p2
j

M
. (4)

Here c†jσ (cjσ) creates (destroys) an electron at site j with spin σ, njσ = c†jσcjσ

is the electron number operator, and xj (pj) is the phonon coordinate (momen-
tum) at site j. The hopping matrix elements connect the nearest neighbors of
a hypercubic lattice in d-dimensions and the unit of energy is chosen to be this
rescaled matrix element t∗. The phonon has a mass M (chosen to be M = 1), a
frequency Ω, and a spring constant κ ≡ MΩ2 associated with it. The electron-
phonon coupling constant (deformation potential) is denoted by g so that the
effective electron-electron attraction becomes the bipolaron binding energy

U ≡ − g2

MΩ2
= −g2

κ
. (5)

The Coulomb repulsion is represented by a local Hubbard interaction Uc and
the chemical potential is denoted by µ with particle-hole symmetry occurring
for µ = 0.
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The observation of Metzner and Vollhardt [1] is that the many-body prob-
lem also simplifies in the infinite-dimensional limit—both the self energy and
the irreducible vertex functions become independent of momentum, and are
functionals of the interacting Green’s function [1, 4, 5]. The Green’s func-
tion, self energy, and irreducible vertices still retain their complicated time
(frequency) dependence.

The many-body problem is solved by mapping it onto an auxiliary impurity
problem [6, 7] in a time-dependent field that mimics the hopping of an electron
onto a site at time τ and off the site at a time τ ′. The action for the impurity
problem is found by integrating out all of the degrees of freedom of the other
lattice sites in a path-integral formalism [8]. The lattice is viewed as a reservoir
of electrons that can hop onto and off of the local site. Once an electron hops
off of the local site, it never returns, because the number of paths that loop
through the local site are a factor of 1/d smaller than the number of paths
that do not loop through the local site. Therefore, the effective action for the
impurity problem becomes

S =
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′c†σ(τ)G−1
0 (τ − τ ′)cσ(τ ′)

+
∑

σ

∫ β

0

dτ [gx(τ) − µ][nσ(τ) − 1

2
]

+ Uc

∫ β

0

dτ [n↑(τ) − 1

2
][n↓(τ) − 1

2
] +

M

2

∫ β

0

dτ [Ω2x2(τ) + ẋ2(τ)] (6)

where G−1
0 is the “bare” Green’s function that contains all of the dynamical

information of the other sites of the lattice. The interacting Green’s function,
defined to be

G(iωn) ≡
∫ β

0

dτeiωnτG(τ) , G(τ) = −Tr〈e−βHTτ c(τ)c†(0)〉
Tr〈e−βH〉 , (7)

then satisfies Dyson’s equation

G−1
n ≡ G−1(iωn) = G−1

0 (iωn) − Σ(iωn). (8)

A self-consistency relation is required in order to determine the bare Green’s
function G0. This is achieved by mapping the impurity problem onto the
infinite-dimensional lattice thereby equating the full Green’s function for the
impurity problem with the local Green’s function for the lattice

Gjj(iωn) =
∑

k

G(k, iωn) =
∑

k

[iωn + µ − ǫ(k) − Σ(iωn)]−1

= F∞[iωn + µ − Σ(iωn)]. (9)
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Here F∞(z) is the scaled complimentary error function of a complex argument.

F∞(z) ≡ 1√
π

∫ ∞

−∞

dy
exp(−y2)

z − y

= −isgn[Im(z)]
√

πe−z2

erfc{−isgn[Im(z)]z}. (10)

The dynamics of the (local) impurity problem is identical to the dynamics of
the Anderson impurity model [4, 6, 7, 8, 9]. This many-body problem can be
solved exactly with the quantum Monte Carlo (QMC) algorithm of Hirsch and
Fye [10] (see the next section). The impurity is self-consistently embedded in
the host, since it must satisfy the self-consistency relation in Eq. (9). Note
that this mapping of the infinite-dimensional lattice problem onto a single-site
impurity problem is in the thermodynamic limit. There are no finite-size effects
in infinite-dimensions.

Static two-particle properties are also easily calculated since the irreducible
vertex function is local [11]. The static susceptibility for CDW order is given
by

χCDW (q) ≡ 1

2N

∑

jkσσ′

eiq·(Rj−Rk)T

∫ β

0

dτ

∫ β

0

dτ ′

[〈njσ(τ)nkσ′(τ ′)〉 − 〈njσ(τ)〉〈nkσ′(τ ′)〉]
≡ T

∑

mn

χ̃CDW (q, iωm, iωn) = T
∑

mn

χ̃CDW
mn (q) , (11)

at each ordering wavevector q. Dyson’s equation for the two-particle Green’s
function becomes [9, 11]

χ̃CDW
mn (q) = χ̃0

m(q)δmn − T
∑

p

χ̃0
m(q)ΓCDW

mp χ̃CDW
pn (q) , (12)

with ΓCDW
mn the (local) irreducible vertex function in the CDW channel.

The bare CDW susceptibility χ̃0
n(q) in Eq. (12) is defined in terms of the

dressed single-particle Green’s function

χ̃0
n(q) ≡ − 1

N

∑

k

Gn(k)Gn(k + q) = − 1√
π

1√
1 − X2

×
∫ ∞

−∞

dy
e−y2

iωn + µ − Σn − y
F∞

[

iωn + µ − Σn − Xy√
1 − X2

]

(13)

and all of the wavevector dependence is included in the scalar [6, 12] X(q) ≡
∑d

j=1 cosqj/d. The mapping q 7→ X(q) is a many-to-one mapping that de-
termines an equivalence class of wavevectors in the Brillouin zone. “General”
wavevectors are all mapped to X = 0 since cosqj can be thought of as a random
number between −1 and 1 for “general” points in the Brillouin zone. Further-
more, all possible values of X (−1 ≤ X ≤ 1) can be labeled by a wavevector
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that lies on the diagonal of the first Brillouin zone extending from the zone
center (X = 1) to the zone corner (X = −1). The irreducible vertex function
ΓCDW

mn is determined by inverting the Dyson equation in Eq. (12) for the local
susceptibility (which is determined by the Monte Carlo techniques of the fol-
lowing section). Once the irreducible vertex function is found, then Eq. (12) is
employed to calculate the momentum-dependent susceptibility.

A similar procedure is used to explore the superconductivity of the model.
Here, as in the Hubbard model, it is only necessary to look for superconductivity
with the same symmetry as the lattice (s-wave) since other superconductivity
with other symmetries do not have pairing interactions [13]. For the singlet
s-wave SC channel, the corresponding definitions are as follows: The static
susceptibility in the superconducting channel is defined to be

χSC(q) ≡ 1

N

∑

jk

eiq·(Rj−Rk)T

∫ β

0

dτ

∫ β

0

dτ ′〈cj↑(τ)cj↓(τ)c†k↓(τ
′)c†k↑(τ

′)〉

≡ T
∑

mn

χ̃SC(q, iωm, iωn) = T
∑

mn

χ̃SC
mn(q) , (14)

for superconducting pairs that carry momentum q; Dyson’s equation becomes

χ̃SC
mn(q) = χ̃0

m
′(q)δmn − T

∑

p

χ̃0
m

′(q)ΓSC
mpχ̃SC

pn (q) , (15)

with ΓSC
mn the corresponding irreducible vertex function for the SC channel; the

bare pair-field susceptibility becomes

χ̃0
n
′(q) ≡ 1

N

∑

k

Gn(k)G−n−1(−k + q) =
1√
π

1√
1 − X2

×
∫ ∞

−∞

dy
e−y2

iωn + µ − Σn − y
F∞

[−iωn + µ − Σ∗
n − Xy√

1 − X2

]

(16)

with the special value χ̃0
n
′(X = 1) = −ImGn/Im(iωn − Σn) for the SC pair

that carries no net momentum; and finally the irreducible vertex function is
also determined by inverting the Dyson equation in Eq. (15) for the local sus-
ceptibility.

2. Monte Carlo Algorithm

The dynamics of the impurity problem are identical to that of an impurity
embedded in a host metal described by the “bare” Green’s function G0 [4, 8, 9].
Thus, given G0, the impurity problem may be solved by using the quantum
Monte Carlo (QMC) algorithm of Hirsch and Fye [10] (an alternative derivation
of this algorithm is presented in the appendix). In the QMC the problem is
cast into a discrete path formalism in imaginary time, τl, where τl = l∆τ ,
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∆τ = β/L, and L is the number of times slices. The values of L used ranged
from 40 to 160, with the largest values of L reserved for the largest values
of β because the time required by the algorithm increases like L3. Since the
bare Green’s function G−1

0 in Eq. (8) is not a priori known, the QMC algorithm
must be iterated to determine a self-consistent solution for the Green’s function
of the infinite-dimensional lattice. The procedure [9] is to begin with a bare
Green’s function G−1

0 , use the QMC algorithm to determine the self energy
Σ, calculate the lattice Green’s function from Eq. (9), and determine a new
bare Green’s function from Eq. (8). This process is iterated until convergence
is reached (typically 7 − 9 iterations). At each step, the precision (the total
number of field-configurations generated) is increased. In addition, results from
high temperature runs are used to initialize lower temperature runs. These last
two steps, are commonly used to to anneal out the state with the lowest free
energy.

The details of the (Hirsch-Fye [10]) impurity algorithm, as modified for
the Holstein-Hubbard model, are reproduced in the appendix. For the re-
mainder of this section, we will discuss the modifications necessary to apply
this algorithm to the infinite-dimensional limit. The main difficulty is that
the Hirsch-Fye algorithm requires an imaginary-time path integral technique
which only produces data for G(τ) at a discrete set of points in Euclidean
time 0 < τ < β; whereas, the self-consistency step requires either the Matsub-
ara frequency Green’s function or the corresponding self energy. This involves
a numerical approximation of the integral in Eq. (7). Fourier transforming
discretely sampled data presents some well known difficulties [14]. The prin-
ciple difficulty is that Nyquist’s theorem tells us that above some frequency
ωn = 1/2∆τ , unpredictable results are produced by conventional quadrature
techniques. Typically this problem is overcome by fitting the discrete data G(τ)
with a smooth cubic spline, and then performing the integral on the splined
data [14]. Since the integral on the splined data may be sampled on a much
finer grid than the original data, this process is referred to as over sampling.

However, a problem still remains at high frequencies, since the resulting
G(iωn) goes quickly to zero for frequencies above the Nyquist cutoff 1/2∆τ .
This presents a difficulty since causality requires that

lim
ωn→∞

G(iωn) ∼ 1

iωn
. (17)

In order to maintain causality [15] of the Matsubara frequency Green’s func-
tions, we condition the Fourier transform with a perturbation theory result.
That is, we write

G(iωn) = Gpt(iωn) +

∫ β

0

dτeiωnτ (G(τ) − Gpt(τ)) . (18)



7

where Gpt is a Green’s function obtained from perturbation theory, and the
integral here is performed by the oversampling method described above.

There are two obvious advantages to this approach. First, the integral
goes to zero for frequencies greater than the Nyquist frequency 1/2∆τ , so
that the resulting Green’s function has the same asymptotic behavior as the
perturbation theory result, and is thus causal. Second, often, the perturbation
theory result is asymptotically exact (i. e. results from a high temperature
expansion etc.), and this then presents a way of appending exact QMC results
at low frequency with asymptotically exact perturbation theory results at high
frequency. The flow chart for the resulting algorithm is shown in Fig. 1.

QMC
  and
  PT

G =       + Σ
- 1 - 1

d ε ε
ρ(ε)G =

G
0

Gpt

Σ =  G  -
- 1 - 1

G
0

 G  
0

F (    )   G  
   0

(τ) =

}(τ) 

F(                 ) G = G
pt
+

G (τ) 

G(τ) G (τ) 
pt

−

- - Σ (      )ωniωni

-1

Fig-

ure 1. Flowchart for the d = ∞ algorithm. The symbol F denote that a Fourier
transform is to be performed by oversampling, and F−1 denotes its inverse.

Once convergence of the algorithm in Fig. 1 is reached, the physical prop-
erties of the system are calculated with the QMC. A variety of two-particle
properties may be calculated in the QMC approach since the irreducible vertex
function is also local. For most quantities, this is straight-forward; however,
the two-particle Green’s functions χloc

mn are difficult to measure efficiently. For
example, consider the local opposite-spin particle-particle propagator

χloc
nm =

∫ β

0

dτ1 · · · dτ4e
[iωm(τ2−τ1)−iωn(τ3−τ4)]

×〈Tτ c↑(τ4)c↓(τ3)c
†
↓(τ2)c

†
↑(τ1)〉 . (19)

For a particular configuration of the Hubbard-Stratonovich fields, the Fermions
are noninteracting, thus the expectation value indicated by the angle brackets
above may be evaluated in two steps. First, using Wick’s theorem, its value
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is tabulated for each field configuration {sl, xl}. Second, using Monte Carlo
techniques these configurations are averaged over. After the first step, the
equation becomes

χloc
nm =

〈

∫ β

0

dτ1 · · · dτ4e
[iωm(τ2−τ1)−iωn(τ3−τ4)]g↑(τ4, τ1)g↓(τ3, τ2)

〉

m.c.

(20)

where the m.c. subscript means that the Monte Carlo average is still to be
performed.

To measure this on the computer, the integrals must be approximated by
sums. Since the Green’s functions change discontinuously when the two time
arguments intersect, the best integral approximation that can be used here is
the trapezoidal approximation. Using this, we will run into Green’s functions
with both time arguments the same g(j, j). This is stored as g(j+, j) (i.e. it is
assumed that the first time argument is slightly greater than the second), but
in the sums we clearly want the equal time Green’s function to be the average
{g(j+, j) + g(j, j+)}/2 = g(j+, j) − 1/2. If we call g, with 1/2 subtracted
from its diagonal elements, g, then

χloc
nm =

〈





∑

j,k

∆τ e+iπj(2n+1)/Lg↑(j, k) ∆τ e−iπk(2m+1)/L



 (21)

(

∑

p,q

∆τ e−iπp(2n+1)/Lg↓(p, q) ∆τ e+iπq(2m+1)/L

)〉

m.c.

This measurement may be performed efficiently if each term in parenthesis is
tabulated first and stored as a matrix, and then the direct product of the two
matrices taken as the estimate of χloc. When done this way, the time required
for this measurement scales like ∼ L3 rather than ∼ L4 as would result from a
straight-forward evaluation of the sums implicit in Eq. (20).

Finally, the irreducible vertex function is determined by inverting the rele-
vant local Dyson equation. The momentum-dependent susceptibility may then
be calculated from Eq. (12) or (15).

3. Results

For the results presented here, we chose an intermediate phonon frequency Ω =
0.5t∗ (which is approximately one-eight of the effective electronic bandwidth)
for which there is a competition between CDW and SC order. As shown in
Fig. 3, CDW order is favored near half filling (due to Fermi surface nesting)
and SC order is favored away from half filling. As shown in Fig. 2b, there is a
maximum CDW transition temperature, because it decreases as the coupling
strength increases in the strong-coupling regime.
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Fig-

ure 2: (a) Effective potential for the phonon (after integrating out the effects
of the electrons) as a function of electron-phonon coupling and (b) the CDW
transition temperature at half filling as a function of the coupling. The param-
eters chosen here are Ω = 0.5t∗ and Uc = 0. Note that the maximum in the
Tc curve occurs when the barrier height of the double-well potential is equal in
magnitude to Tc.
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In order to shed some light on the transition from weak to strong cou-
pling the QMC simulations were sampled to determine a time-averaged ef-
fective phonon potential. The probability P (x) that the phonon coordinate
x(τℓ) lies in the interval from x to x + δx was calculated for each time slice τℓ

and averaged over all time slices. An effective phonon potential Veff.(x) was
then extracted from the probability distribution P (x) ∝ exp[−βVeff.(x)] [17].
This effective potential is plotted in Fig. 2 (a) for four different values of the
electron-phonon coupling strength at a temperature T = 1/7. In the case of
weak coupling (g = 0.325), the potential appears harmonic. The potential flat-
tens when U ≈ t∗ (g = 0.5) and as g increases further, a double-well structure
develops [18]. The barrier height grows linearly with g as does the separation
of the minima. The peak of the Tc(g) curve for the CDW transition [see Fig.
2(b)] is reached at the point where the barrier height is on the order of Tc

(g = 0.625). Beyond this point (g = 1.0) the system enters the strong-coupling
regime and Tc decreases.

In the region where the double-well potential has developed, the phonon
coordinate tunnels between the wells and the tunneling rate decreases as the
temperature is lowered below the barrier height. At this point the system
may be considered to be a random mixture of empty sites and bipolarons
that fluctuates in time. Tunneling through the barrier produces correlations
between the empty-sites and the bipolarons resulting in a condensed CDW
phase. However as the barrier height increases, the transition temperature
drops because the tunneling is suppressed. The transition temperature reaches
its maximum at the point where the barrier height is equal in magnitude to Tc.

As the system is doped away from half-filling there is a competition be-
tween CDW order and superconductivity . We find that the CDW-ordered
state remains “locked” at the “antiferromagnetic” point (X = −1) for a wide
range of dopings away from half-filling. Figure 3 displays the results for the
transition temperature of the Holstein-Hubbard model as a function of electron
concentration for two different values of Uc at g = 0.5t∗. In the case where
Uc = 0 the system must be doped out to a concentration of ρe = 0.52 before
it becomes superconducting. There was no evidence for any incommensurate
order when Uc = 0. We expect that a Coulomb repulsion will favor the SC
phase over the CDW phase because the Coulomb repulsion directly reduces
the CDW interaction, but is not as effective at reducing the SC interaction
because of the retardation between the pairing electrons which allows the elec-
trons to attract each other without being at the same site at the same time
(the so-called pseudopotential effect). This result is clearly seen in Figure 3,
where the phase space for the SC order increases when Uc = 0.5. Note that a
finite Coulomb repulsion also favors the appearance of incommensurate phases,
which now can be detected with the QMC techniques.
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Fig-

ure 3: Transition temperature for the Holstein-Hubbard model at Ω = 0.5t∗ and
g = 0.5t∗. As the Coulomb repulsion is increased, the SC phase becomes more
stable, as do incommensurate CDW phases.
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Appendix. Derivation of Quantum MC algorithm of Hirsch and Fye

The purpose of this section is to derive the Hirsch-Fye algorithm [10] using
Grassmann algebra. We begin by splitting the single impurity Anderson model
Hamiltonian, into bare and interacting parts, H = H0 + H1 + H2, where

H0 =
∑

kσ

ǫ(k)c†kσckσ + V
∑

kσ

(f†
σckσ + c†kσfσ)
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+ (gx − µ) (nf↑ + nf↓ − 1) +
1

2
MΩ2x2 , (22)

H1 = U(nf↑ − 1/2)(nf↓ − 1/2) , (23)

and

H2 =
p2

2M
. (24)

To obtain the Trotter-Suzuki decomposition for the partition function [19] we
divide the interval [0, β] into L sufficiently small subintervals such that the
commutators ∆τ2 [H0,HI ] etc. may be neglected. This leads to

Z = Tre−βH = Tr

L
∏

l=1

e−∆τH ≈ Tr

L
∏

l=1

e−∆τH0e−∆τH1e−∆τH2 . (25)

The interacting part of the Hamiltonian, H1, may be further decoupled by map-
ping it to an auxiliary Ising field via a discrete Hirsch-Hubbard-Stratonovich [20]
transformation,

e−∆τHI = e−∆τU(nf↑−1/2)(nf↓−1/2) =
1

2
e−∆τU/4

∑

s=±1

eαs(nf↑−nf↓) (26)

where cosh(α) = e∆τU/2. Finally, one may cast Eq. (25) into functional-integral
form by using coherent states [Grassmann variables for Fermions, and complex
numbers for the Bosons, a =

√

mΩ/2(x + ip/mΩ) and a∗]. If we integrate out
the host Fermionic degrees of freedom {ckσ} as well as the momentum of the
phonon, then we end up with

Seff = (∆τV )
2
∑

l,l′,σ

f∗
σ,lG0(l, l

′)fσ,l′ + Sint + SB , (27)

where

SB =
∆τ

2

∑

l

[

(

xl − xl+1

∆τ

)2
]

+ Ω2x2
l , (28)

Sint =
∑

l,σ,xl

−f∗
σ,l(fσ,l − fσ,l−1)

+ ∆τf∗
σ,l(gxl − µ +

U

2
+

α

∆τ
slσ)fσ,l−1 , (29)

and

G−1
0 (l, l′) =

1

N

∑

k

δl,l′ − δl−1,l′ [1 − ∆τǫ(k)] . (30)
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At this point the correspondence of the impurity and the infinite-dimensional
Hubbard model is clear. In both, G0 contains the information about the host
into which the impurity is embedded. The difference is that G0 must be deter-
mined self-consistently for the lattice model.

We will now proceed to derive the Monte Carlo algorithm [10] sufficient for
either the impurity or the infinite-dimensional lattice problem. By integrating
over fσ,l we can write down the partition function (neglecting a numerical
prefactor), as

Z =
∑

{sl,xl}

det(G−1
↑{sl,xl}

)det(G−1
↓{sl,xl}

)e−SB (31)

where

G−1
σ,{sl,xl}

(l, l′) = δl,l′ − δl−1,l′ [1−∆τ (gxl − µ)+αslσ]−∆τ2V 2G0(l, l
′)(32)

and we sum over all configurations of Hubbard-Stratonovich and phonon fields
{sl, xl}. If we reexponentiate the above formula by defining Vσ,{sl,xl}(l) ≡
∆τ(gxl − µ + αslσ/∆τ), we can write it in a simple notation as

G−1
σ = 1 + TeVσ + ∆τ2V 2G0 , (33)

where T is δl−1,l′ and Vσ ≡ Vσ,{sl,xl}(l) for one special configuration. For

another field configuration the only difference comes from Vσ such that G′−1
σ −

G−1
σ = T (eV

′
σ − eVσ )+O(∆τ3/2) (note that α is of the order of ∆τ1/2). On the

other hand T = (G−1
σ − 1 − ∆τ2V 2G0)e

−Vσ which results in

G′−1
σ − G−1

σ = (G−1
σ − 1)e−Vσ (eV

′
σ − eVσ ) + O(∆τ3/2) . (34)

Multiplying from the left by G and from the right by G′ and, ignoring terms
O(∆τ3/2), we find

G′
σ = Gσ + (Gσ − 1)(eV

′
σ−Vσ − 1)G′

σ , (35)

or

GσG′−1
σ = 1 + (1 − Gσ)(eV

′
σ−Vσ − 1) . (36)

The probability of having a configuration {sl, xl} is Psx ∝ det(G−1
↑{sl,xl}

)

×det(G−1
↓{sl,xl}

)e−SB ; on the other hand the detailed balance requires

Psx′Psx′→sx = PsxPsx→sx′ , (37)

for all sx′. We may satisfy this requirement by defining the probability of going
from {sl, xl} to {s′l, x′

l} as R/(1 + R), where

R ≡ det(G′
↑)det(G′

↓)e
−S′

B

det(G↑)det(G↓)e−SB
(38)
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is the relative weight of two configurations. If the difference between two con-
figuration is due to a flip of a single Hirsch-Hubbard-Stratonovich field at the
mth imaginary time slice then [10]

R =
∏

σ

[1 + (1 − Gσm,m)(e−2ασsm − 1)] , (39)

or, if the difference is due to a change in the phonon displacement xl → x′
l,

then

R = eS′
B−SB

∏

σ

[1 + (1 − Gσm,m)(e∆τg(xl−x′
l) − 1)] . (40)

Finally we can write down the evolution of the Green’s function in the QMC
time, when for example we flip a single Hirsch-Hubbard-Stratonovich field at
the mth imaginary time slice [10]

G′
σi,j = Gσi,j + (Gσi,m − δi,m)(e−2ασsm − 1)

×{1 + (1 − Gσm,m)(e−2ασsm − 1)}−1Gσm,j . (41)

Similarly, when we change a single boson xm at the mth time slice,

G′
σi,j = Gσi,j + (Gσi,m − δi,m)(e∆τg(xl−x′

l) − 1)

×{1 + (1 − Gσm,m)(e∆τg(xl−x′
l) − 1)}−1Gσm,j . (42)

The QMC process precedes by sequentially proposing changes in each field,
accepting these changes with probability Psx−>sx′ , and updating the Green’s
function with Eq. (41) or Eq. (42) when the change is accepted. In addition to
using local moves in which a single spin or a single phonon field is changed, we
also employ global moves, in which either all of the spins are flipped, or all of
the phonon coordinates are shifted,
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