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We develop a generalized gradient expansion of the inhomogeneous dynamical mean-field theory method for
determining properties of ultracold atoms in a trap. This approach goes beyond the well-known local density
approximation and at higher temperatures, in the normal phase, it shows why the local density approximation
works so well, since the local density and generalized gradient approximations are essentially indistinguishable
from each other (and from the exact solution within full inhomogeneous dynamical mean-field theory). But
because the generalized gradient expansion only involves nearest-neighbor corrections, it does not work as well
at low temperatures, when the systems enter into ordered phases. This is primarily due to the problem that ordered
phases often satisfy some global constraints, which determine the spatial ordering pattern, and the local density
and generalized gradient approximations are not able to impose those kinds of constraints; they also overestimate
the tendency to order. The theory is applied to phase separation of different mass fermionic mixtures represented
by the Falicov-Kimball model and to determining the entropy per particle of a fermionic system represented by
the Hubbard model. The generalized gradient approximation is a useful diagnostic for the accuracy of the local
density approximation—when both methods agree, they are likely accurate, when they disagree, neither is likely
to be correct.

DOI: 10.1103/PhysRevA.94.023614

I. INTRODUCTION

Ultracold atoms in optical lattices have become one of
the most interesting platforms to examine many-body physics
properties of quantum particles. Experiments are under great
control, and one can modify both lattice parameters and
interactions by adjusting laser intensity or external magnetic
field strength. One of the challenges, however, is that these
systems also require a (harmonic) trap to keep them stable,
which breaks the periodicity of the system. The system
size is also finite—usually about 100–300 lattice sites per
spatial dimension—implying a three-dimensional (3D) system
has 1 × 106–30 × 106 lattice sites. Many different numerical
techniques have been applied to these systems, but the larger
systems in two dimensions and nearly all systems in three
dimensions are too large for most exact calculations (the one
exception is Bosonic systems, where the quantum Monte Carlo
approaches based on the worm algorithm work extremely well
in equilibrium for ≈300 000 particles [1,2]). Inhomogeneous
dynamical mean-field theory (IDMFT) has been applied to
many of these systems, and it works well at high temperatures,
but it often cannot handle the full system size, especially
in three dimensions [3,4]. The dynamical mean-field theory
(DMFT) has two computationally limiting steps—one is
calculating the diagonal of the inverse of a general complex
matrix whose dimension is the number of lattice sites |�|
and the other is solving the impurity problem on each lattice
site. The former problem grows like |�|3 for conventional
linear-algebra algorithms, while the latter grows linearly with
|�|. Hence, significant progress can be made with the IDMFT
approach if other methods could be employed to approximately
solve the calculation of the local Green’s function from the
local self-energy. Other, more direct, quantum Monte Carlo

approaches, also suffer from similar issues regarding the
computational effort required (which usually grows as a power
law of |�|) and so are also limited by the system size they can
work with [5].

This problem has been tackled by employing the so-called
local density approximation (LDA), which assumes the local
properties of a site within a trap at a given local chemical
potential are well approximated by the local properties of a
site inside a periodic system at the same chemical potential
[6,7]. Since the trap varies both smoothly and slowly with
position, this approximation ends up being quite good, with the
chemical potential adjusted for each temperature to conserve
the total number of particles. One expects it to start to fail in two
regimes: (i) the first is at low temperature for ordered phases,
especially ordered phases that partially break translational
symmetry, because the LDA does not invoke any global
constraints involved with ensuring that the ordered phase
can fit into the given lattice structure with the trap present,
and (ii) the second is in nonequilibrium systems with mass
transport, because the LDA assumes the density at a given site
is unchanged regardless of the external field applied. These
two issues motivate us to try and develop a technique that
will share the success of the LDA for high temperatures but
will be able to correct it as the temperature is lowered to take
into account some of these nonlocal effects or can handle mass
transport in the presence of external perturbations (see Ref. [8]
for an application of LDA in nonequilibrium when there is no
mass transport).

A similar problem has existed within band structure
calculations for quite some time. The generalized gradient
approximation (GGA) was introduced there to try to take
into account some of this nonlocal behavior [9]. One can
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think of it, in some sense, as a Taylor series expansion in
inhomogeneity with the LDA as the lowest-order term, and
gradient corrections as the next term in the hierarchy. In this
work, we extend this GGA concept to solving for the Green’s
functions of inhomogeneous systems that takes into account
the local inhomogeneity about a given lattice site. While the
initial formulas we derive will hold for all computations,
we quickly adopt them to the DMFT approach, where we
assume the self-energy is local. Another way of describing
this calculation is that both the LDA and the GGA approximate
the step where we calculate the diagonal of the inverse of a
|�| × |�| matrix. In the LDA, we replace the diagonal in the
inverse matrix by one matrix element for the whole diagonal
and using Fourier transformation to compute the inverse. In
the GGA, we set up a self-consistent equation for the diagonal
of the inverse that involves employing the LDA local and
nearest-neighbor Green’s functions, the local self-energy and
GGA Green’s function. Other forms of extending the LDA to
a GGA have also been proposed. For example, see Ref. [10].

One can view this work as providing a rigorous expansion
about the LDA and demonstrating why it works so well in
the normal state. It also provides, in principle, a path toward
systematically improving the LDA, but, as we show below, it
is unlikely one will achieve high accuracy at low temperatures
with any variant of this approach. Hence, other approaches,
which take into account the sparsity of the system, are likely to
be required for even more accurate solutions of these problems.
However, when the LDA and GGA agree, this is a strong
indication that the LDA is accurate for this set of parameters,
and this can be a quite useful application of the GGA approach.

The formalism is developed in Sec. II for the two models we
consider in this work: the spinless fermionic Falicov-Kimball
model and the fermionic Hubbard model. In Sec. III, we
present the numerical results for ordered phases in mixtures
and for the entropy in the Hubbard model. Conclusions and
outlook are given in Sec. IV.

II. FORMALISM

In order to determine the properties of a many-body
quantum system, we often employ a Green’s-function-based
method. The imaginary-time Green’s function is defined by

Gi,j ;σ (τ ) = −Tr

{
e−βH

Z Tτ ciσ (τ )c†jσ (0)

}
. (1)

Here, H is the Hamiltonian, Z = Tr exp[−βH] is the partition
function, β = 1/T is the inverse temperature, −β � τ � β

is the imaginary time, and Tτ is the time-ordering operator,
indicating that the operators are ordered from right to left in in-
creasing time. The fermionic creation (annihilation) operators
are c

†
iσ (ciσ ) and O(τ ) denotes an operator in the Heisenberg

representation O(τ ) = exp[Hτ ]O exp[−Hτ ]. The index i (j )
is the lattice site and σ is the z component of the spin of the
fermion (which is dropped for the spinless Falicov-Kimball
model). We will show the explicit Hamiltonians below.

We also can define the Green’s function for real times,
and here, we will define the retarded Green’s function, which

satisfies

GR
i,j ;σ (t) = −iθ (t)Tr

{
e−βH

Z {ciσ (t),c†jσ (0)}+
}
, (2)

where θ (t) is the Heaviside unit-step function, {. . . , . . .}+
denotes the anticommutator, and the Heisenberg representation
for an operator in real time is O(t) = exp[iHt]O exp[−iHt].
We typically work with the Fourier transform of the retarded
Green’s function, which is

GR
i,j ;σ (ω) =

∫ ∞

0
dteiωtGR

i,j ;σ (t). (3)

The derivation of the GGA formalism starts with the
Dyson equation for the retarded Green’s function with the
inhomogeneous Hamiltonian on a lattice � (with |�| lattice
sites), which includes a (global) chemical potential (μ), a
local potential for lattice site i (Vi with μi = μ − Vi the local
chemical potential), a hopping between lattice sites i and j for
spin σ (−ti,j ;σ ), and a self-energy corresponding to sites i and
j [�R

i,j ;σ (ω)]:

|�|∑
k=1

[
(ω + μi)δi,k + ti,k;σ − �R

i,k;σ (ω)
]
GR

k,j ;σ (ω) = δi,j , (4)

which has an obvious modification on the imaginary axis when
Matsubara frequencies are used instead of real frequencies.
We also want to investigate the corresponding equation in
the bulk, which would be used for the LDA approach. To do
this, we need to introduce some notation. For simplicity, we
will assume the hopping matrix is homogeneous (this is not
required, but makes the notation much less complex), so that
−ti,j ;σ is the same for the inhomogeneous system and for the
homogeneous ones used to develop the LDA (for simplicity,
we also assume the hopping is between nearest neighbors
only, hence −ti,j ;σ = −ti,i+δ;σ = −tσ for δ a nearest-neighbor
translation and i + δ a schematic notation indicating the
neighbor of site i in the δ direction). We then denote the
(local) chemical potential for the homogeneous system by
μ̄

(I )
j = μ − VI for all j ∈ �. To be clear, here the index j is the

lattice site, but μ̄
(I )
j doesn’t actually depend on the lattice site

j ; we have set it globally equal to the value the inhomogeneous
problem has at site I . If we write out the Dyson equation for
the LDA Green’s function corresponding to site I , it satisfies

|�|∑
k=1

[(
ω + μ̄

(I )
i

)
δi,k + ti,k;σ − �

LDA(I )
i,k;σ (ω)

]
G

LDA(I )
k,j ;σ (ω)

= δi,j , (5)

where we suppress the R superscript for retarded. This system
is actually translationally invariant and can be solved exactly
in momentum space (and then Fourier transformed back to real
space).

Since the right-hand sides of Eqs. (4) and (5) are equal, so
are the corresponding left-hand sides. First, we pick i = j =
I and solve for the local Green’s function (by equating the

023614-2



GENERALIZED GRADIENT EXPANSION FOR . . . PHYSICAL REVIEW A 94, 023614 (2016)

corresponding left-hand sides) to find

GI,I ;σ (ω) = ω + μ̄
(I )
I − �

LDA(I )
I,I ;σ (ω)

ω + μI − �I,I ;σ (ω)
G

LDA(I )
I,I ;σ (ω) + 1

ω + μI − �I,I ;σ (ω)

⎧⎨
⎩

∑
δ

tI,I+δ;σ
[
G

LDA(I )
I+δ,I ;σ (ω) − GI+δ,I ;σ (ω)

]

+
∑
k �=I

[
�I,k;σ (ω)Gk,I ;σ (ω) − �

LDA(I )
I,k;σ (ω)GLDA(I )

k,I ;σ (ω)
]⎫⎬⎭. (6)

Here, we used the notation δ to denote a nearest-neighbor translation vector and I + δ to denote the lattice site corresponding to
the translation by the nearest-neighbor translation vector δ from site I . For the next equation, we choose i = I + δ, j = I and
the LDA is evaluated with respect to site I + δ. We then solve for GI+δ,I ;σ (ω), which yields

GI+δ,I ;σ (ω) = ω + μ̄
(I+δ)
I+δ − �

LDA(I+δ)
I+δ,I+δ;σ (ω)

ω + μI+δ − �I+δ,I+δ;σ (ω)
G

LDA(I+δ)
I+δ,I ;σ (ω)

+ 1

ω + μI+δ − �I+δ,I+δ;σ (ω)

⎧⎨
⎩

∑
δ′

tI+δ,I+δ+δ′;σ
[
G

LDA(I+δ)
I+δ+δ′,I ;σ (ω) − GI+δ+δ′,I ;σ (ω)

]

+
∑

k �=I+δ

[
�I+δ,k;σ (ω)Gk,I ;σ (ω) − �

LDA(I+δ)
I+δ,k;σ (ω)GLDA(I+δ)

k,I ;σ (ω)
]⎫⎬⎭. (7)

For the GGA derivation, we want to restrict the terms in our self-consistent equations to involve only on-site terms and
nearest-neighbor terms, so we drop terms from Eq. (7) that involve second neighbors or further. This implies δ′ = −δ and k = I

only, which gives

GI+δ,I ;σ (ω) = ω + μ̄
(I+δ)
I+δ − �

LDA(I+δ)
I+δ,I+δ;σ (ω)

ω + μI+δ − �I+δ,I+δ;σ (ω)
G

LDA(I+δ)
I+δ,I ;σ (ω) + 1

ω + μI+δ − �I+δ,I+δ;σ (ω)

× {
tI+δ,I ;σ

[
G

LDA(I+δ)
I,I ;σ (ω) − GI,I ;σ (ω)

] + �I+δ,I ;σ (ω)GI,I ;σ (ω) − �
LDA(I+δ)
I+δ,I ;σ (ω)GLDA(I+δ)

I,I ;σ (ω)
}
. (8)

Restricting k = I + δ in Eq. (6), and substituting in Eq. (8), produces (after some significant algebra and suppressing retarded
superscripts and the σ subscript)

GI,I (ω) = ω + μI − �
LDA(I )
I,I (ω)

ω + μI − �I,I (ω)
G

LDA(I )
I,I (ω) + 1

ω + μI − �I,I (ω) − ∑
δ

[tI,I+δ+�I,I+δ (ω)][tI+δ,I −�I+δ,I (ω)]
ω+μI+δ−�I+δ,I+δ (ω)

×
{∑

δ

tI,I+δ

[
G

LDA(I )
I+δ,I (ω) − ω + μI+δ − �

LDA(I+δ)
I+δ,I+δ (ω)

ω + μI+δ − �I+δ,I+δ(ω)
G

LDA(I )
I+δ,I (ω)

]

−
∑

δ

[tI,I+δ + �I,I+δ(ω)]
[
tI+δ,I − �

LDA(I+δ)
I+δ,I (ω)

]
ω + μI+δ − �I+δ,I+δ(ω)

[
G

LDA(I+δ)
I,I (ω) − ω + μI − �

LDA(I )
I,I (ω)

ω + μI − �I,I (ω)
G

LDA(I )
I,I (ω)

]

+
∑

δ

[
�

LDA(I+δ)
I+δ,I (ω)GLDA(I+δ)

I+δ,I (ω) − ω + μI − �
LDA(I )
I,I (ω)

ω + μI − �I,I (ω)
�I+δ,I (ω)GLDA(I )

I+δ,I (ω)

]

+
∑

δ

[tI,I+δ + �I,I+δ(ω)]
[
�

LDA(I+δ)
I+δ,I (ω) − �I+δ,I (ω)

]
ω + μI+δ − �I+δ,I+δ(ω)

ω + μI − �
LDA(I )
I,I (ω)

ω + μI − �I,I (ω)
G

LDA(I )
I,I (ω)

}
. (9)

In particular, if we examine this equation for a spatially uniform system, we have that the LDA self-energy equals the full
self-energy, and the equation reduces to G = GLDA, as it must.

Note that this result depends both on the local and the nearest-neighbor self-energy. One can extract a nearest-neighbor
self-energy from the LDA solution, because the local problem is mapped to a homogeneous lattice, but then one must decide
which nonlocal self-energy to use, the one extracted from the I th site or from the J th site. One could average the nonlocal
self-energies extracted from each site via

�I,J (ω) = 1
2

[
�

LDA(I )
I,J (ω) + �

LDA(J )
I,J (ω)

]
, (10)
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as the most unbiased way to proceed, but the problem becomes more complex due to these types of ambiguities. We will not
pursue this discussion further here.

For this work, we focus on the IDMFT approach, so we have only local self-energies, and hence we have �I,J (ω) = 0, for
I �= J . This result produces a great simplification, and we find

GI,I (ω) = ω + μI − �
LDA(I )
I,I (ω)

ω + μI − �I,I (ω)
G

LDA(I )
I,I (ω) + 1

ω + μI − �I,I (ω) − ∑
δ

tI,I+δ tI+δ,I

ω+μI+δ−�I+δ,I+δ (ω)

×
{∑

δ

tI,I+δ

[
G

LDA(I )
I+δ,I (ω) − ω + μI+δ − �

LDA(I+δ)
I+δ,I+δ

ω + μI+δ − �I+δ,I+δ(ω)
G

LDA(I )
I+δ,I (ω)

]

−
∑

δ

tI,I+δtI+δ,I

ω + μI+δ − �I+δ,I+δ(ω)

[
G

LDA(I+δ)
I+δ,I+δ (ω) − ω + μI − �

LDA(I )
I,I (ω)

ω + μI − �I,I (ω)
G

LDA(I )
I,I (ω)

]}
(11)

within the GGA-DMFT approach. For a spatially uniform
system, we find G = GLDA, same as before.

The LDA-DMFT algorithm is as follows: (i) determine all
of the local chemical potentials {μi = μ − Vi} for the different
lattice sites; (ii) start with a guess for the LDA self-energy on
each lattice site (usually zero); (iii) solve |�| copies of the bulk
problem for the LDA self-energy and LDA Green’s function
for each different value of μi via the standard homogeneous
DMFT algorithm [(a) compute the local Green’s function
G from the self-energy � by summing over all momenta;
(b) extract the effective medium (or host Green’s function)
G0 = 1/(1/G + �); (c) solve the impurity problem for the
given effective medium to construct the new G; (d) extract
the new self-energy from the impurity Dyson’s equation and
the old effective medium and new Green’s functions; (e) repeat
(a)–(d) until the equations reach a fixed point]; (iv) use the new
LDA self-energy on each lattice site to initialize part (iii) again
and iterate until one reaches a fixed point; (v) compute the
total density of particles and compare to the target density—if
correct, then stop, if incorrect, update μ and repeat the process.
Solving the LDA problem will produce the self-energies and
the Green’s functions for all of the different lattice sites
in the LDA approximation. These are then input into the
GGA calculation, which involves the following steps; (i) start
with a guess for the self-energy given by the corresponding
LDA solution—�I,I (ω) = �

LDA(I )
I,I (ω); (ii) compute the new

local Green’s function G at each site from Eq. (11) and the
fixed LDA results; (iii) compute the effective medium for
the impurity problem via G0 = 1/(1/G + �); (iv) solve the
impurity problem in the given effective medium; (v) determine
the new self-energy from the impurity Dyson’s equation, the
old effective medium and the new Green’s function; (vi)
extract the self-energy via Dyson’s equation; (vii) iterate
(ii)–(vi) until converged. These solutions are the GGA-DMFT
solutions to the problem. Note that this algorithm works for
either real or imaginary frequencies. Note further that the
chemical potential should be adjusted to give the correct filling
for the GGA. This implies that the LDA results employed
within the GGA solution may be at the wrong chemical
potential. This causes no problems with the formalism, but
one should not compare the LDA solutions at this wrong
chemical potential to the GGA solutions, rather one should
compare the LDA and GGA solutions at the same total particle
number.

A. Application to the Falicov-Kimball model

The spinless Falicov-Kimball model is given by the
following Hamiltonian [11]

HFK = −
∑
ij

ti,j c
†
i cj −

∑
i

μic
†
i ci +

∑
i

E
f

i wi

+U
∑

i

c
†
i ci wi, (12)

where μi = μ − Vi is the local chemical potential (and Vi is
the harmonic trap), E

f

i = Ef + V
f

i is the local site energy
for the static particles with V

f

i the harmonic trap potential
for the heavy particles, U is the on-site interaction between
heavy and light particles, c†i (ci ) are the fermionic creation and
annihilation operators for the mobile electrons, and wi = 0
or 1 is the heavy particle number operator. This Hamiltonian
can be thought of as the Hubbard model Hamiltonian with a
spin-dependent hopping and the hopping for the down particles
set to zero.

The dynamical mean-field theory for the Falicov-Kimball
model is exactly solvable [12,13]. We usually solve the
problem on the imaginary axis to determine the chemical
potentials, and the fillings of the different particles on the
different sites. Many other quantities can be determined from
these solutions, such as the total energy, kinetic energy, and
so on; but some observables, such as the entropy, require
results on the real frequency axis, and so one would then
repeat the above procedure, this time for the real frequency
axis, to calculate those observables. In that case, the chemical
potentials would be set from the imaginary axis calculations,
and the real-axis calculations would be done primarily to find
the spectral functions, and quantities that can be derived from
them.

One technical element for the Falicov-Kimball model on
the imaginary axis is that it is useful to sum the tails of series
using exact sum rules for summations of Green’s functions.
These sum rules can be found from the moments of the Green’s
functions. We use this technique to improve the accuracy of our
calculations when we determine the filling on each lattice site.
For all of the properties reported here with the Falicov-Kimball
model, we focused entirely on the imaginary-axis results—no
real-axis calculations were needed.
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Because we will be comparing these LDA-DMFT and
GGA-DMFT results for the Falicov-Kimball model to a
complete inhomogeneous DMFT calculation, we cannot make
the system size too large. We work primarily with about 10 000
lattice sites and total particle number equal to 1350 (625 for
each species). This system is slightly smaller than a typical
experimental system, but only by a factor of four or so. Note
also that earlier work already showed that the IDMFT solution
agrees well with the Monte Carlo solution [14].

B. Application to the Fermi-Hubbard model

The Hubbard model Hamiltonian is [15]

HH = −
∑
ijσ

ti,j ;σ c
†
iσ cjσ −

∑
i

μic
†
iσ ciσ

+U
∑

i

c
†
i↑ci↑c

†
i↓ci↓, (13)

where we have mobile up and down spin particles now.
We employ two different techniques to solve this prob-

lem. One is a strong-coupling perturbation theory approach
(through second order in the hopping divided by the in-
teraction), which has been used earlier to determine the
inhomogeneous distribution of the density of the particles and
the entropy per particle of the system [16]. We do not repeat
the derivation of those formulas here.

We also use a continuous-time quantum Monte Carlo ap-
proach with a weak-coupling implementation. This approach
uses stochastic sampling to sum a series of Feynman diagrams
in imaginary time, which then solves the problem [17,18].
The algorithm sums over a random collection of diagrams at
different orders, and adjusts the order of the diagram based
on importance sampling via a Metropolis strategy. In the
implementation that we employ, the approach is most accurate
at high temperature and small interaction strengths. As both
the temperature is reduced and the interaction is increased, the
average order of the calculation increases, and the integration
range in imaginary time also increases (which requires more
sampling). This technique is currently believed to be the most
accurate state-of-the-art approach for determining properties
that can be calculated at finite temperatures using Green’s
functions evaluated along the imaginary-time axis. These
include the particle density at each lattice site, the double
occupancy, the entropy per particle, and the order parameter
if the system goes into an ordered antiferromagnetic phase.
Details for how this algorithm is implemented can be found
elsewhere [19].

Here, we focus on the density distribution and the calcu-
lation of the total energy of the system. Starting from high
temperature, we can then integrate to find the entropy via the
relation [20]

S(β) = S(0) +
∫ β

0
β̄

dE(β̄)

dβ̄
dβ̄

≈ S(β ′) + 1

2
[E(β) − E(β ′)](β + β ′) (14)

for β ′ = β − 
β with a small chosen step size 
β, with
S(0) the infinite-temperature entropy. This result follows from
the thermodynamic relation ∂T E = T ∂T S. We start at a high

temperature with hard-wall boundary conditions, which has a
limiting form for the high-temperature entropy and then lower
the temperature in steps to accumulate the entropy for lower
temperatures. One must be careful to properly renormalize the
entropy per lattice site for a lattice calculation into an entropy
per particle for the trapped system. Since the strong-coupling
approximation is excellent at high temperatures, it provides
a useful benchmark for the LDA-DMFT and GGA-DMFT
when we are at high temperature. (In the following, we
sometimes drop the DMFT when we describe the LDA-DMFT
and GGA-DMFT approximations, for simplicity).

Because these solution methods are highly optimized, they
allow us to directly solve the problem on lattices with 8 ×
106 lattice sites and up to 300 000 particles just like in the
experimental systems. The scaling of the code with problem
size is discussed elsewhere [21].

III. RESULTS

A. Falicov-Kimball model

We perform a series of test calculations on the Falicov-
Kimball model to examine the robustness of the LDA-DMFT
and GGA-DMFT approaches. The system we chose to examine
is a two-dimensional lattice with |�| = 101 × 101 = 10 201.
This system is large enough that the density of particles
approaches zero at the boundary at high temperature where
T/t = 0.5, and stays within the boundary for all lower T . We
have 625 light and 625 heavy particles and choose UFK/t = 5,
so we can compare to work done previously [14]. The trap
potential for the heavy fermions is written as

V
(f )
i = t

(
�ω(f )

2t

)2 |Ri |2
a2

, (15)

where the f superscript is used for the heavy particles and ω

denotes the trap frequency. Here, we define α(f ) = 2t/�ω(f )

as the trap parameter, which is set equal to 12.9 for the light
particles and 30 for the heavy particles. At low temperatures,
this system shows phase separation, where the light particles
concentrate at the center and the heavy particles concentrate
in a ring on the periphery of the system. Because this system
has a homogeneous order parameter in the phase-separated
state, it should be describable by both the LDA and the GGA
more accurately than any other phase transition that partially
breaks translational symmetry. Hence, it is a useful test case
to examine. Note that energies are in units of t and entropy per
particle in units of kB when not explicitly included.

We begin by showing radial profiles for the LDA, the GGA,
and the IDMFT results at the same temperature. In Fig. 1, we
plot the radial profiles for the light particles (red) and the heavy
particles (blue) for T = 0.5 (top) and T = 0.15 (bottom).
Across each row, we show the [Figs. 1(a) and 1(d)] LDA,
the [Figs. 1(b) and 1(e)] GGA, and the [Figs. 1(c) and 1(f)]
full IDMFT results. In all the cases, the difference between
these curves is difficult to see with the naked eye. Indeed, in
the normal state, before phase separation sets in, all results
agree perfectly, indicating the accuracy of the LDA, and the
fact that corrections are very small.

On the other hand, as the temperature is lowered further,
the system starts to enter the phase-separated state, and the
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FIG. 1. (Top row) Radial density for T = 0.5. Blue is for heavy particles, red is for light particles. From left to right, we have the (a) LDA,
(b) GGA, and (c) IDMFT results. (Bottom row) Radial density for T = 0.15. Blue is for heavy particles, red is for light particles. From left to
right, we have the (d) LDA, (e) GGA, and (f) IDMFT results.

bulk systems also see density-wave ordered phases, the most
prominent being the checkerboard phase. In our results, we can
see these effects clearly. We start to see disagreements between
the three methods and even the prediction of the wrong ordered
phases.

Start with T = 0.1, shown in Fig. 2, where we first see the
effects of the phase separation. In the top row, we plot the radial
density profiles for the three different approximations. Unlike
at higher temperature, where the curves were all essentially
identical, we see disagreement between all three methods here.
The fast oscillations in the radial profile for the GGA case,
occur due to an ordering in the checkerboard phase at the edge
of the region where the light particles give way to the heavy
particles (see middle and bottom rows). Note that the GGA
also shows the beginnings of a faceted stable region instead of
a circular region. Of course, the IDMFT solution does not show
these features, so they are an artifact of the GGA solution.

It is easy to understand what is happening here. Both the
LDA and the GGA are predicting too tight a compression
of the heavy particles around the light ones. The result is
that the transition between the two occurs too soon, and ends
up lying very close to the regions where the checkerboard
phase is stable near half-filling. For the LDA, it does not quite
look like the checkerboard is stabilized (although there might
be a small modulation of the charge), while the GGA has
significant regions with obvious checkerboard order. Because
the IDMFT solution is somewhat less dense, it stays away from
simultaneous half-filling for both particles, and hence does not
display the density-wave order.

To understand this behavior further, we lower the tempera-
ture even more. The results at T = 0.05 are shown in Fig. 3.
Surprisingly, here we see the checkerboard density-wave
ordering is far reduced, and appears only on the boundary

regions of the heavy particle rings. Looking closely at the LDA
solution, we can see the beginnings of some organization of
facets, with the flat regions in the inner and outer circles for
the heavy particle distributions. In the GGA, the behavior is
somewhat reduced. It is absent in the IDMFT solution. One
might ask, how such facets can form at all in the LDA or GGA,
since the potential profiles have circular symmetry, but a little
thought shows that if there is any kind of density-wave order,
then one might not be able to fit the pattern of the density wave
into a circular shape, and hence it can slightly alter the shape
of the density distributions, yielding behavior that resembles
facets. Of course, the IDMFT can naturally pick up facets if
they are energetically favorable, which they clearly are not at
this temperature.

Finally, we go to the lowest temperature studied here T =
0.02 in Fig. 4. Here the LDA shows an innermost phase-
separated region containing light particles, surrounded by a
phase-separated ring containing heavy ones, followed by a
checkerboard region, where both species interpenetrate before
the density gets small at large distances. The GGA appears to
have a small amount of disorder in the checkerboard phase,
which perhaps could be inferred as an indication that it is
trying to destabilize the checkerboard phase. But otherwise, it
resembles the LDA results quite closely, with the exception that
it shows more faceting, as one might expect because it has some
sensitivity to nonlocal ordering effects. The IDMFT results, on
the other hand, continue to show only phase separation, and
they now start to build up facets as one might expect at low
temperatures.

Hence, the results we see for the Falicov-Kimball model,
which represents mixtures of atoms with different hoppings on
an optical lattice (one much bigger than the other), show that
at high temperature, the LDA is an excellent approximation,
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FIG. 2. (Top row) Radial density for T = 0.1. Blue is for heavy particles, red is for light particles. From left to right, we have the (a) LDA,
(b) GGA, and (c) IDMFT results. (Middle row) Light particle density for T = 0.1 (red). The size of the symbol is proportional to the density
of the light particles at that site. From left to right, we have the (d) LDA, (e) GGA, and (f) IDMFT results. (Bottom row) Heavy particle density
for T = 0.1 (blue). The size of the symbol is proportional to the density of the heavy particles at that site. From left to right, we have the (g)
LDA, (h) GGA, and (i) IDMFT results.

but it rapidly breaks down as one lowers the temperature
and enters the ordered phases. This occurs, primarily, because
neither the LDA nor the GGA can enforce global constraints
and hence favor density-wave ordering much more strongly
than it occurs in the real system. The IDMFT results, on the
other hand, evolve smoothly and, because they invoke global
constraints, they show less density-wave ordering patterns.
One can also see the stability of the half-filled checkerboard
phase in the bulk is so strong that it falsely introduces that
phase into the LDA and GGA results, even though they are
not present in the IDMFT results. There is a delicate balance
between local, or nearly local stability and global stability

effects that determines the correct phases in the trap, and these
effects require more complex algorithms that properly impose
the global constraints, rather than techniques that only sense
small variations on the scale of the nearest neighbors.

B. Hubbard model

We next turn to the Hubbard model, where we apply our
results to the experimental results of Refs. [22] and [23]. In that
work, a strong-coupling perturbation theory was employed to
determine the entropy per particle of fermion systems with
different interaction strengths and different particle densities
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FIG. 3. (Top row) Radial density for T = 0.05. Blue is for heavy particles, red is for light particles. From left to right, we have the (a)
LDA, (b) GGA, and (c) IDMFT results. (Middle row) Light particle density for T = 0.05 (red). The size of the symbol is proportional to the
density of the light particles at that site. From left to right, we have the (d) LDA, (e) GGA, and (f) IDMFT results. (Bottom row) Heavy particle
density for T = 0.05 (blue). The size of the symbol is proportional to the density of the heavy particles at that site. From left to right, we have
the (g) LDA, (h) GGA, and (i) IDMFT results.

(the assumption was that under an adiabatic turning on of the
optical lattice, the entropy per particle should be the same
for all particle densities). Furthermore, it was shown that the
entropy per particle appeared to be nearly constant and fell
into a reasonable range in between that of the initial fermionic
gas (prior to turning on of the lattice) and the final fermionic
gas (after dropping the lattice), where it heated during the
experiment due to diabatic and other effects. In addition, all but
the lowest U cases worked very well for determining a single
entropy per particle for the range of different particle densities.
However, for the smallest interactions, a case where the strong-
coupling perturbation theory is expected to be least accurate,

and particularly for low densities, one could see significant
deviations of the plots of the double occupancy versus particle
number.

We investigate this problem further here by comparing
the strong-coupling approach to a more accurate but
approximate IDMFT calculation based on the LDA and GGA
approximations [since the system is too large to be studied
with the IDMFT because it requires about 10 × 106 lattice
sites for the highest number of fermions (about 300 000)].
The issue for IDMFT lies not in the problem with solving
the impurity problem for so many lattice sites, but it lies
in the problem of finding the diagonal of the inverse of the
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FIG. 4. (Top row) Radial density for T = 0.02. Blue is for heavy particles, red is for light particles. From left to right, we have the (a)
LDA, (b) GGA, and (c) IDMFT results. (Middle row) Light particle density for T = 0.02 (red). The size of the symbol is proportional to the
density of the light particles at that site. From left to right, we have the (d) LDA, (e) GGA, and (f) IDMFT results. (Bottom row) Heavy particle
density for T = 0.02 (blue). The size of the symbol is proportional to the density of the heavy particles at that site. From left to right, we have
the (g) LDA, (h) GGA, and (i) IDMFT results.

sparse matrix, which gives G−1. There are techniques like
an iterative low-rank Lanczos-based method [24] that could
be applied in this case, but the implementation turns out to
be difficult in finding the appropriate starting point without
requiring the inverse of a rather large submatrix block.

Because the bulk DMFT solution is rather fast with the
continuous time quantum Monte Carlo algorithm, it is feasible
to do the LDA-DMFT and GGA-DMFT calculations on a high-
performance computer. We took the parameters for the system
from experiment. The mass of the K40 atom is 39.964 a.u. and
the lattice spacing is 532 nm. Energies are measured in terms
of the recoil energy Er for a potassium atom in a 1064 nm

laser. Using a lattice depth of 7Er , the hopping is 174 Hz,
and the trap frequencies for the x, y, and z axes are 54.1 Hz,
50.1 Hz, and 129.1 Hz, respectively. We use these precise trap
frequencies, which create a slightly anisotropic trap. The trap
potential energy is written as

1
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)
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(16)

where we introduced the trap lengths Rα given by Rx = 10.3a,
Ry = 11.1a, and Rz = 4.3a. We choose the lattice to initially
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be a cube of 250 lattice sites on each edge. Next, we compute
the maximal potential at the point (0,125a,0), which is at the
center of the cube face where the potential grows the slowest,
and then discard all points in the lattice with a potential energy
due to the trap that is larger than this cutoff. The net number of
lattice sites used was then 1.964 881 × 106. But we reduced
these lattice sites into equivalence classes due to the three
reflection planes, which involved 253 230 equivalence classes
for different lattice sites (in an irreducible wedge). This is
the number of lattice sites for which we needed to solve the
impurity problem with the QMC algorithm during each step
of the iteration. This process is easy to parallelize despite the
fact that at low temperatures the times to obtain solutions
for different fillings could vary by more than an order of
magnitude. This is done simply by employing a master-slave
algorithm and dividing the work according to “first finished
gets a new job”. The code scaled linearly on up to 43 500
cores. About 15 × 106 cpu hours were required to run these
codes on a Cray XE6 [21].

In Fig. 5, we plot the radial distribution for different
temperatures with a total number of N = 61 455 particles.
At high temperature, the distribution is rather flat, and then as
T is lowered, the peak in the density at the center of the trap
sharpens and starts to show a kink at half-filling due to the
strong-coupling physics. In Fig. 6, we show the similar plot
for N = 332 455,where the strong-coupling behavior becomes
more pronounced at low T . The LDA curves are completely
smooth in both plots. This is because the LDA depends only on
the value of the potential at the particular position in space. The
GGA results, especially those at low T , show more variations
due to the increased anisotropy that sets in in the cloud as
the temperature is lowered, and the fact that the GGA results
depend not only on the potential, but on the environment of the
neighbors. These fluctuations can be seen by the thickening of
the lines and the rapid oscillations in the data. The occurrence
of those oscillations is an artifact of how we chose to plot the
data and does not represent a loss of continuity in the particle
density for the system when viewed as a function in space. This
is the simplest way to summarize the three-dimensional data.

In the experiment, systems of up to 300 000 particles were
cooled down to an entropy per particle of about 1.3 kB . Two
different hyperfine states of K were employed for the spin-
up and spin-down states of the Hubbard model. The optical
lattice was then turned on, experiments performed, and then
the lattice was dropped. The ending entropy per particle was
around 2.5 kB . If we assume the entropy is held constant during
the experiment in the trap, then we would immediately guess
that the entropy per particle is halfway between these two
limits or 1.9 kB , but there might be some variations depending
on the interactions and on whether both the turning on and
turning off of the lattice heat the system in the same fashion.
Hence, we would like to be able to independently assess the
value of the entropy per particle in the optical lattice. This was
done by plotting the double occupancy versus the total number
of particles and fitting to isoentropic curves for the double
occupancy versus the number of particles. The latter were
found via a strong-coupling approach. Excellent results were
found for U = 24.6 t , 19.2 t , and 14.4 t , but when the case with
U = 8.4t was examined, there were clear deviations between
the experimental data and the isoentropic curves at low particle
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FIG. 5. Density of particles for N = 61 455 (a) LDA and (b)
GGA for four different temperatures as labeled in the figure. Note
how the system must be as large as it is to enclose all of the particles
at high temperature and how at lower T we start to see the kink in
the distribution due to strong-coupling physics. The horizontal axis
is an effective radius derived from the potential energy and using the
geometric mean of the trap lengths. This allows all of the data for the
3D system to be plotted on one plot.

numbers. Hence, we choose to examine this case with the LDA
and GGA approaches employing a weak-coupling continuous-
time QMC solver instead of the strong-coupling solver.

Numerically, we achieve this by picking a fixed number of
particles and setting U = 8.4t . Then we start at high tempera-
ture and use the LDA or GGA algorithms to compute the total
number of particles for a given chemical potential. This is then
adjusted until the total number of particles agrees with the
target value; because the LDA and GGA results are so close
here, we use the same global chemical potential for both, which
results in a slightly different total number of particles for each.
Then we extract the double occupancy and the total energy. By
using the integral formula for the entropy, we also determine
that for each temperature. We then reduce the temperature and
repeat. In our calculations, we typically used about 12 different
temperatures to establish a fine grid of entropy versus T , a
fraction of doubly occupied particles d versus T , and μ(T ).
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FIG. 6. Density of particles for N = 332 455 (a) LDA and (b)
GGA for four different temperatures as labeled in the figure. Note
how the system must be as large as it is to enclose all of the particles
at high temperature and how at lower T we start to see the kink in
the distribution due to strong-coupling physics. The horizontal axis
is an effective radius derived from the potential energy and using the
geometric mean of the trap lengths. This allows all of the data for the
3D system to be plotted on one plot.

This is then repeated for the different experimental densities
(15 different total number of particles chosen to match
experiment), and the data is then interpolated to determine
the isoentropic curves. These curves are then compared to
the experimental data. As an example, we show a series of
calculations for the target particle number N = 174 518 in
Tables I and II. One can see that the two calculations are quite
close to each other, but they deviate rather significantly from
the strong-coupling approach at low temperatures.

Since the strong-coupling calculation is much more effi-
cient, we compare our results to the strong-coupling results.
We found that the entropy versus T for the GGA solution starts
to deviate from strong-coupling results (with the DMFT results
showing a higher entropy per particle than the strong-coupling
results) at temperatures in the range of 2.5t � T � 3.3t for
both high and low densities of particles (see Fig. 5 of Ref. [21]
for a plot and look at the two tables). This is a little higher

TABLE I. Data employed in the LDA calculation for N =
174 518. N0 = 7393 is the characteristic particle number, d is the
fraction of doubly occupied particles, E/N is the total energy per
particle in units of t , and S/N is the entropy per particle in units
of kB for the LDA and strong-coupling approximations. We have
U/t = 8.4. Note how the strong-coupling approximation agrees
well with the LDA-DMFT-QMC calculation until the temperature
becomes low enough that they start to deviate.

T/t μ N/N0 d E/N SLDA/N Sstrong/N

20.0 −17.3833 23.518 0.0809 30.542 3.474 3.474
15.0 −5.4714 23.536 0.1045 25.177 3.161 3.160
10.0 4.6824 23.555 0.1477 19.139 2.658 2.658
7.0 9.5722 23.556 0.1918 15.655 2.235 2.231
5.0 12.1948 23.576 0.2356 13.621 1.886 1.869
3.3 13.9113 23.591 0.2884 12.227 1.538 1.493
2.5 14.5775 23.614 0.3242 11.685 1.348 1.267
2.0 14.9092 23.609 0.3507 11.341 1.193 1.112
1.5 15.1753 23.620 0.3807 11.097 1.051 0.948
1.0 15.3812 23.636 0.4156 10.914 0.898 0.765
0.8 15.4460 23.642 0.4311 10.863 0.841 0.686

than the rule of thumb that the strong-coupling approach fails
once the temperature reaches around t . Unfortunately, because
the DMFT solutions are known to overestimate the entropy at
low temperatures, it is not clear which result is more accurate
in the temperature range from about 3–0.5t . We operate
under the assumption that the DMFT results are better here
because the interaction strength is not particularly strong.

The fitting of the data is then rather straightforward. We
plot a series of isoentropic curves for the double occupancy
versus the total number of particles and compare to the data
and to the data shifted upward and downward by the standard
deviation of the double occupancy at each point (see Fig. 7).
Then we can estimate both by eye and by evaluating a weighted
least-squares fit what the optimal entropy per particle is. Note
that the low particle number data still do not fit so well. Hence

TABLE II. Data employed in the GGA calculation for N =
174 518. N0 = 7393 is the characteristic particle number, d is the
fraction of doubly occupied particles, E/N is the total energy per
particle in units of t , and S/N is the entropy per particle in units
of kB for the LDA and strong-coupling approximations. We have
U/t = 8.4. Note how the GGA and LDA results are nearly identical.

T/t μ N/N0 d E/N SGGA/N Sstrong/N

20.0 −17.3833 23.529 0.0808 30.555 3.474 3.474
15.0 −5.4714 23.545 0.1044 25.186 3.161 3.160
10.0 4.6824 23.561 0.1477 19.139 2.657 2.658
7.0 9.5722 23.572 0.1917 15.656 2.234 2.231
5.0 12.1948 23.580 0.2355 13.622 1.885 1.869
3.3 13.9113 23.598 0.2882 12.230 1.537 1.493
2.5 14.5775 23.617 0.3241 11.686 1.347 1.267
2.0 14.9092 23.607 0.3507 11.340 1.191 1.112
1.5 15.1753 23.619 0.3808 11.097 1.049 0.948
1.0 15.3812 23.633 0.4158 10.913 0.897 0.765
0.8 15.4460 23.637 0.4314 10.861 0.838 0.686
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FIG. 7. Double occupancy versus particle number for experiment
(symbols with error bars) and isoentropic lines with the entropy per
particle equal to the most-likely fit interval 2.14, 2.24, or 2.34 kB and
the extreme values at 1.3 and 2.5 kB for (a) LDA and (b) GGA. In
both cases, we have U/t = 8.4.

the use of LDA or GGA does not significantly improve the
analysis.

To be more quantitative, we use a Bayesian inference
approach to determine the posterior probability density func-
tion (PDF) as determined by the experimental measurements.
We start from a prior PDF that is flat between the initial
experimental value for the entropy per particle 1.3 kB and
the final value 2.5 kB (since we only know the possible
range for the entropy and all possibilities are a priori equally
likely). For each experimental measurement, we compare to a
theoretical estimate which results from the QMC calculations
within the LDA or GGA approach, which are extended from
their computed values by a quadratic Lagrange interpolation
formula. Then we form the χ square

χ2(s) =
∑

i

[
d

exp
i (Ni) − d th

i (s,Ni)

σi

]2

. (17)

Here, d
exp
i (Ni) is the measured experimental probability

for an atom to be paired when there are on average Ni

atoms in the system, d th
i (s,Ni) is the theoretical prediction
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FIG. 8. Posterior PDF for the LDA (black, solid) and GGA
(orange, dashed) approaches, compared to the prior PDF (magenta,
dashed). Note how it becomes strongly peaked around 2.24 kB .

for the probability to be paired at a fixed value for the
entropy per particle; this is calculated by interpolating the
QMC data. The symbol σi is the experimental standard
deviation for each experimental measurement at Ni of the
pairing probability. The posterior probability for the system
then follows from Bayes rule: P (s|d) = P (s)P (d|s)/P (d) ∝
P (s) exp[−χ2(s)/2]. The posterior PDF is the product of the
prior PDF (which is chosen to be uniform) and the exponential
of minus one half the χ square. The posterior PDF is plotted
in Fig. 8 for the LDA (black solid) and for the GGA (orange
dashed). One can see that they nearly lie on top of each
other. The simplest estimate for the entropy is the maximum
a posteriori (MAP) estimate, which is the entropy per particle
at the maximum of the PDF, which is 2.243 kB for the LDA
and 2.242 kB for the GGA. We also can calculate the average
value of the entropy per particle, by integrating over the PDF
along with the variance, which is called the least mean squares
(LMS) estimate. It yields s = 2.244 ± 0.033kB for the LDA
and s = 2.243 ± 0.033kB for the GGA; the strong-coupling
fit was s = 2.25kB . The reason why the LDA and GGA
approaches do not improve things very much is that the fit
temperature is rather high and hence is in the regime where
the LDA, GGA, and strong-coupling approaches all agree quite
closely. In particular, we find that the GGA and LDA results
are so close for this case that they essentially lie on top of
each other. This is not too surprising since we are rather far
from the temperature where the system will start to order.
Unfortunately, we are not able to quantitatively answer the
question as to whether this LDA or GGA analysis is more
accurate than the strong-coupling analysis, because we had no
unbiased way to choose between them.

One additional point to note, however, is that the lowest
point in each figure for S/N = 1.3kB in Fig. 7 appears to be a
bit higher than we would have expected. This arises because of
the problems the DMFT has in overestimating the entropy at
low temperature. In particular, at half-filling, in a bulk system,
the entropy per lattice site cannot get below ln 2 kB until the
systems orders into an antiferromagnetic phase, which can
quench the entropy. We believe that the entropy we calculated
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at the lowest temperature T = 0.5 for N = 61 445, is high
and when we extrapolate to find the double occupancy for
the S/N = 1.3kB curve, we find it produces results that are
too high. The situation is a little better for the GGA than for
the LDA, primarily because the entropy in the GGA is a bit
smaller than the entropy for the LDA at T = 0.5 (1.305 versus
1.338 kB , respectively). For both points, we employed a linear
extrapolation using T = 0.7 and T = 0.5 data.

IV. CONCLUSION

In this work, we showed how to develop the first correction
to the LDA by taking into account gradient terms in the Dyson
equation for the Green’s function. We found that the algorithm
for the GGA within a DMFT approach involved only a small
change from the LDA. In the normal state, at temperatures
above any of the ordering temperatures, the LDA, GGA, and
IDMFT results all agree very well with one another. This
result strongly supports the accuracy for using the LDA for
such normal state calculations of the properties of ultracold
atoms on an optical lattice.

However, when we enter the ordered phase, the LDA and
GGA become inaccurate, often predicting the wrong transition
temperature and also predicting the wrong ordered phase. We
have so far not found there to be any simple way to fix this,
as the problem appears to require properly applying global
constraints as opposed to local and nearly local constraints.
Hence, we conclude that the LDA is poor for these kinds of
problems when the temperature is low enough that it falls into
a regime where the system orders.

This does not rule out the approach as being good to
describe systems in nonequilibrium with mass transport. Such

a problem is beyond the scope of this article, but there has
been some preliminary work on this question [8].

Finally, we conclude that in most cases where the LDA
works well, the GGA does not provide a significant improve-
ment, and when the LDA fails, the GGA does not fix the
failures, so there does not seem to be a huge need for the
GGA per se, unless it works well at repairing the problem
with nonequilibrium mass transport, which should be looked
at critically from this perspective. However, calculating results
for the GGA is only slightly more complicated than the LDA,
and doing so can serve as a useful test on the accuracy of the
LDA—in cases where the LDA and GGA agree, it is likely
that their results are accurate, in cases where they disagree, it
is likely that neither is accurate.
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