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ABSTRACT: Monte Carlo simulations are performed to examine superconductivity and

charge-density-wave fluctuations in the infinite-dimensional electron-phonon problem. The

maximum charge-density-wave transition temperature is an order of magnitude smaller than

the effective electronic bandwidth and is virtually independent of the phonon frequency. The

maximum superconducting transition temperature depends strongly on phonon frequency

and is bounded by the maximum charge-density-wave transition temperature. The crossover

from weak to strong coupling is illustrated by the evolution of an effective phonon potential

that develops a double-well structure as the electron-phonon interaction increases.
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Migdal and Eliashberg pioneered the study of the electron-phonon problem in the limit

where the phonon energy scale is much smaller than the electronic energy scale [1] . Their

theory predicts that the transition temperature in the superconducting (SC) channel will

increase without an upper bound as the electron-phonon interaction strength increases [2].

A strong-coupling expansion, however, predicts that the system has a transition temperature

that decreases as the electron-phonon interaction strength increases and that the charge-

density-wave (CDW) channel is favored over the SC channel [3]. As a result, one would like

to know if there is a maximum transition temperature, what parameters set the scale for

this transition temperature, and what is the character of the ordered state (SC or CDW)?

Monte Carlo (MC) simulations are employed to bridge the gap between weak-coupling

and strong-coupling expansions. Previous work has concentrated on one-dimension where

it was found that the system always dimerized into a CDW-Peierls state at half-filling [4],

and on two-dimensions where it was found that the CDW state was unstable with respect

to electron concentration and the system superconducted when doped sufficiently far away

from half-filling [5]. Here we will explore the electron-phonon problem in infinite dimensions.

The limit of infinite dimensions is expected to be relevant to models in three (or possibly

two) dimensions. In the case of the Hubbard model, the infinite-dimensional solution [6,7]

displays all of the qualitative physics of the three-dimensional model (commensurate and in-

commensurate antiferromagnetism, crossover between metallic and insulating behavior, etc.).

The Néel temperature at half-filling in infinite dimensions is quantitatively close to the transi-

tion temperature in three dimensions [8]. Thus we expect that the electron-phonon problem

in infinite dimensions should also capture the relevant physics of its three-dimensional coun-

terpart.

The electron-phonon model chosen here is the Holstein model [9], in which the conduction
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electrons interact with local phonon modes:

H = − t∗
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where c
†
jσ (cjσ) creates (destroys) an electron at site j with spin σ, njσ = c

†
jσcjσ is the

electron number operator, and xj (pj) is the phonon coordinate (momentum) at site j. The

hopping matrix elements span the nearest neighbors of a hypercubic lattice in d-dimensions

and the rescaled matrix element t∗ sets the energy scale (all energies are measured in units of

t∗). The local phonon has a mass M and a frequency Ω associated with it; the combination

κ ≡ MΩ2 is the spring constant. The electron-phonon coupling constant is an energy per

unit length and is denoted by g. A useful combination of fundamental parameters is the

bipolaron binding energy U ≡ −g2/MΩ2 = −g2/κ, which determines the energy scale for

the effective electron-electron interaction. Once the energy scale is set by t∗ and the electron

filling is determined by the chemical potential µ, three additional parameters remain: the

coupling strength g; the mass M ; and the spring constant κ. Here we fix the mass (M = 1)

and use |U | and Ω as free parameters.

In infinite dimensions (d → ∞) the hopping from one lattice site to its nearest neighbor

is scaled to zero [see Eq. (1) ] in such a fashion that the free-electron kinetic energy remains

finite while the self energy for the single-particle Green’s function and the irreducible vertex

functions have no momentum dependence and are functionals of the local Green’s function

[10,11]. The many-body problem is solved by mapping it onto an auxiliary impurity problem

[12,13] in a time-dependent field (that mimics the hopping of an electron onto a site at time

τ and off the site at a time τ ′). The effective action for the impurity problem is [14]
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where G−1

0
is the “bare” Green’s function that contains all of the dynamical information of

the other sites of the lattice. The interacting Green’s function is determined by

G−1
n ≡ G−1(iωn) = G−1

0
(iωn) − Σ(iωn), (3)

at each Matsubara frequency ωn = (2n + 1)πT . The impurity problem is mapped onto the

infinite-dimensional lattice by self-consistently equating the impurity Green’s function with

the local Green’s function of the lattice

Gjj(iωn) =
∑

k

G(k, iωn) =
1√
π

∫ ∞

−∞
dy

exp(−y2)

iωn + µ − Σn − y
. (4)

The dynamics of the impurity problem is identical to the dynamics of the Anderson

impurity model [11–14,6] and may be solved by using the quantum MC algorithm of Hirsch

and Fye [15]. Since the bare Green’s function G−1

0
in Eq. (2) is not a priori known, the MC

algorithm must be iterated to determine a self-consistent solution for the Green’s function of

the infinite-dimensional lattice. The procedure [6] is to begin with a bare Green’s function

G−1

0
, use the quantum MC algorithm to determine the self energy Σ, calculate the lattice

Green’s function from Eq. (4), and determine a new bare Green’s function from Eq. (3).

This process is iterated until convergence is reached. A variety of two particle properties may

also be calculated in the quantum MC approach [16] since the irreducible vertex function is

also local. In particular, the static susceptibilities for both the CDW and SC response were

determined. The corresponding transition temperatures were calculated by determining

the temperature at which the relevant susceptibility diverged (further details on the MC

technique are presented elsewhere [6,17]). The results of the MC simulation are compared

to various approximation techniques below.

In the limit |U | << t∗ a weak-coupling conserving Hartree-Fock approximation [18]

should describe the Holstein model well. The electronic self energy is represented by

Σn = −UT
∑

m

G0(iωm)
Ω2

Ω2 + (ωm − ωn)2
, (5)
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to lowest order. The full Green’s function G is determined self-consistently from the self

energy Σ and the bare Green’s function G0 by the same procedure outlined above for the

MC calculation. At half-filling the system always orders in a CDW state. The transition

temperature is determined by solving the Bethe-Salpeter equation in the traditional manner

[19] with the following irreducible vertex function

ΓCDW
mn = U

[

2 − Ω2

Ω2 + (ωm − ωn)2

]

. (6)

In the opposite limit of strong coupling (|U | >> t∗), the electrons pair into bipolarons

and the Holstein Hamiltonian can be mapped onto an anisotropic (XXZ) Heisenberg anti-

ferromagnet in a uniform external field [3,20]. In infinite dimensions the mean-field theory

for the spin-1
2

anisotropic Heisenberg antiferromagnet is exact and at half-filling the system

orders in a CDW state with a transition temperature [3,4]

Tc(CDW ) =
|t∗|2
2|U |

[

1 +
∞
∑

n=1

(−S)n

(1 + S)(2 + S) · · · (n + S)

]

. (7)

Here the polaron band-narrowing parameter S is defined to be S ≡ |U |/Ω.

The results for these approximation schemes are compared to the MC results in Fig. 1

for an intermediate value of the phonon frequency (Ω/t∗ = 0.5). As the phonon frequency

varies, the height of the peak remains essentially the same, but the critical value of g (where

the maximum CDW transition temperature is attained) changes.

In order to shed some light on the transition from weak to strong coupling the MC simula-

tions were sampled to determine a time-averaged effective phonon potential. The probability

P (x) that the phonon coordinate x(τℓ) lies in the interval from x to x+δx was calculated for

each time slice τℓ and averaged over all time slices. An effective phonon potential Veff.(x)

was then extracted from the probability distribution P (x) ∝ exp[−βVeff.(x)] [21]. This ef-

fective potential is plotted in Fig. 2 for four different values of the electron-phonon coupling

strength at a temperature T = 1/7. In the case of weak coupling (g = 0.325), the potential
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appears harmonic. The potential flattens when U ≈ t∗ (g = 0.5) and as g increases further,

a double-well structure develops [22]. The barrier height grows linearly with g as does the

separation of the minima. The peak of the Tc(g) curve for the CDW transition (see Fig. 1)

is reached at the point where the barrier height is on the order of Tc (g = 0.625). Beyond

this point (g = 1.0) the system enters the strong-coupling regime and Tc decreases.

In the region where the double-well potential has developed, the phonon coordinate

tunnels between the wells and the tunneling rate decreases as the temperature is lowered

below the barrier height. At this point the system may be considered to be a random

mixture of empty sites and bipolarons that fluctuates in time. Tunneling through the barrier

produces correlations between the empty-sites and the bipolarons resulting in a condensed

CDW phase. However as the barrier height increases, the transition temperature drops

because the tunneling is suppressed. The transition temperature reaches its maximum at

the point where the barrier height is equal in magnitude to Tc.

As the system is doped away from half-filling there is a competition between CDW or-

der and superconductivity . The CDW susceptibility is calculated at all momenta q in the

Brillouin zone and found to either diverge at the “antiferromagnetic” point or not to diverge

at all (there is no evidence for incommensurate order in d = ∞[17]). Figure 3 displays the

results for the transition temperature of the Holstein model with Ω/t∗ = 0.5 as a function

of electron concentration at three different values of the electron-phonon coupling (g = 0.4,

g = 0.5, and g = 0.625). In the weak-coupling regime (g = 0.4), the transition from CDW

order to SC order occurs at nc = 0.84, and the SC transition temperature is about a factor of

four smaller than the CDW transition temperature at half-filling. As the coupling strength

is increased (g = 0.5), the superconducting transition temperature does increase, but the

critical electron filling has decreased to nc = 0.52. As the interaction strength is increased

further (g = 0.625), the maximum superconducting transition temperature decreases be-

cause the critical electron density where SC onsets has been pushed out too far [23]. For
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fixed electron-phonon interaction strength g, the critical electron concentration nc(g, Ω) is

an increasing function of the phonon frequency approaching 1 as the frequency becomes

infinite (since the Holstein model maps onto an attractive Hubbard model as Ω → ∞) and

approaching 0 as the frequency vanishes (since a static phonon field cannot support super-

conductivity). Therefore, the maximum SC transition temperature depends strongly upon

phonon frequency, and is always bounded from above by the CDW transition temperature

at half-filling.

In conclusion, the electron-phonon problem (Holstein model) has been examined in the

limit of large spatial dimensions including the first exact treatment of the crossover from

weak to strong coupling. The maximum CDW transition temperature is set by the electronic

energy scale, and is virtually independent of the phonon frequency. Its magnitude is on the

order of 0.15t∗ and occurs at half-filling when the polaron binding energy |U | is on the order

of the bandwidth t∗. The maximum SC transition temperature, on the other hand, is very

strongly dependent upon the phonon frequency (as evidenced by the frequency dependence

of the SC-CDW phase boundary in Fig. 3). In the case considered here (Ω/t∗ = 0.5), the

maximum SC transition temperature appears to be a factor of five smaller than the maximum

CDW transition temperature Tc(SC) ≤ 0.035t∗. The crossover from a weak-coupling picture

to a strong-coupling picture is illustrated with an effective phonon potential that continuously

changes from a (harmonic) single well to a (anharmonic) double well.
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to thank J. Hirsch and H.-B. Schüttler for their interest in this work and for many valuable

discussions. This research was supported at UCSB by the National Science Foundation under

grants No. DMR90-02492 and PHY89-04035 and at UC by the National Science Foundation

under grant No. DMR-9107563 and by the Ohio Supercomputer Center.

7



REFERENCES

1. A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958) [ Sov. Phys.–JETP 7 , 999

(1958) ]; G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960) [ Sov. Phys.–JETP

11 , 696 (1960) ].

2. P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).

3. R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).

4. J. E. Hirsch and E. Fradkin, Phys. Rev. Lett. 49, 402 (1982); Phys. Rev. B 27, 4302

(1983).

5. R. T. Scalettar, N. E. Bickers, and D. J. Scalapino, Phys. Rev. B 40, 197 (1989); F.

Marsiglio, Phys. Rev. B 42, 2416 (1990); R. M. Noack, D. J. Scalapino, and R. T.

Scalettar, Phys. Rev. Lett. 66, 778 (1991).

6. M. Jarrell, Phys. Rev. Lett. 69, 168 (1992); M. Jarrell and T. Pruschke, Z. Phys.

B 90, 187 (1993).

7. M. J. Rozenberg, X. Y. Zhang, and G. Kotliar, Phys. Rev. Lett. 69, 1236 (1992); A.

Georges and W. Krauth, Phys. Rev. Lett. 69, 1240 (1992); LPTENS preprint 92/24

(unpublished).

8. R. T. Scallettar, D. J. Scalapino, R. L. Sugar, and D. Toussaint, Phys. Rev. B 39,

4711 (1989).

9. T. Holstein, Ann. Phys. 8, 325 (1959).

10. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

11. H. Schweitzer and G. Czycholl, Z. Phys. B 77, 327 (1990).

12. U. Brandt and C. Mielsch, Z. Phys. B 75, 365 (1989).

8



13. F. J. Okhawa, Prog. Theor. Phys. Suppl. 106 , 95 (1991).

14. A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).

15. J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).
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FIGURE CAPTIONS

Figure 1. Tc for the commensurate CDW transition at half-filling in the Holstein model

(with Ω/t∗ = 0.5) plotted against g. The CHF approximation (dashed line) and strong-

coupling theory (solid line) are compared to the MC results (solid dots). The size of the

plotting symbols is chosen to roughly correspond to the combined statistical and systematic

error.

Figure 2. Effective phonon potential for the Holstein model at half-filling (with Ω/t∗ =

0.5 and β = 7) plotted versus the renormalized coordinate x∗ = −xMΩ2/2g. Four values

of g are included: g = 0.325 (dotted line); g = 0.5 (dashed line); g = 0.625 (solid line); and

g = 1.0 (chain-dashed line).

Figure 3. Tc versus electron concentration in the Holstein model for Ω/t∗ = 0.5. Three

values of g are shown: g = 0.4 (dotted line); g = 0.5 (dashed line); and g = 0.625 (solid

line). The solid dots represent CDW order and the open diamonds represent SC order. The

size of the plotting symbols is chosen to roughly correspond to the combined statistical and

systematic error.
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