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Magnetic phase diagram of the Hubbard model in three dimensions:
The second-order local approximation

A. N. Tahvildar-Zadeh
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221

J. K. Freericks
Department of Physics, Georgetown University, Washington, D.C. 20057-0995

M. Jarrell
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221

~Received 25 April 1996!

A local, second-order~truncated! approximation is applied to the Hubbard model in three dimensions.
Lowering the temperature, at half-filling, the paramagnetic ground state becomes unstable towards the forma-
tion of a commensurate spin-density-wave~SDW! state~antiferromagnetism! and sufficiently far away from
half-filling towards the formation of incommensurate SDW states. The incommensurate-ordering wave vector
does not deviate much from the commensurate one, which is in accordance with the experimental data for the
SDW in chromium alloys.@S0163-1829~97!00402-5#
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I. INTRODUCTION

Pure Cr has a spin-density-wave~SDW! ground state with
an ordering wave vector which is incommensurate with
underlying lattice.1 Adding electrons to Cr~by alloying with
Mn! makes the magnetic order commensurate with the lat
and increases the transition temperature, whereas remo
electrons from the system~by alloying with V! drives the
magnetic order to a more incommensurate one, and
creases the transition temperature, eventually to zero~Fig. 5!.
Penn2 found qualitatively the same behavior for the grou
state of a single-band Hubbard model within a mean-fi
approximation. The mean-field approximation leads to
usual Stoner criterion for the instability of the paramagne
state to the formation of a SDW state. A first-order pertur
tion expansion of the self-energy in terms of the interact
parameter leads to the same criterion. In this paper we ex
this approximation one step further to a second-order~non-
self-consistent! expansion for the self-energy which includ
the lowest-order quantum fluctuations. But motivated by
case for large spatial dimensions, we ignore the nonlo
~site-nondiagonal! elements of the self-energy.3 In fact, in-
clusion of the lowest-order quantum fluctuations has b
shown to have a dramatic effect on transition temperatu
and phase diagrams in the large-dimensional limit, and
been shown to agree with the quantum Monte Carlo~QMC!
data over a wide range of interaction strengths.4–6Numerical
evidence in this latter case has also shown that the str
truncated perturbation expansions are more accurate than
kind of self-consistent solutions known to us, and that
inclusion of higher-order terms in the self-energy does
have any effect on the transition temperatures in the limi
small interaction strengths.4,7

The Hubbard model8 is perhaps the simplest model whic
can be used to study the many-body aspects of correl
electrons on a lattice. The Hubbard Hamiltonian is written
the form
550163-1829/97/55~2!/942~5!/$10.00
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H52t (
^ i , j &,s

~ci ,s
† cj ,s1cj ,s

† ci ,s!1U(
i
ni ,↑ni ,↓ , ~1!

whereci ,s
† (ci ,s) represents the creation~destruction! opera-

tor of an electron in a Wannier state of spins (s561/2 or
↑↓), on sitei , andni ,s5ci ,s

† ci ,s is the electron number op
erator. The first term corresponds to the kinetic energy
describes the hopping of electrons between nearest-neig
sites on a lattice via an overlap integralt. This term gives a
tight-binding description of the electrons in a periodic pote
tial forming a single energy bandes(k)522t( i51

3 coskia for
a simple cubic lattice with lattice constanta . The second
term corresponds to the Coulomb repulsion between e
trons. The long-range Coulomb interaction is assumed to
screened in the solid so that only the interaction between
electrons on the same site is retained, yielding the additio
energy ofU when the lattice site is doubly occupied.

The model is specified by three parameters: the stren
of the electron interactionU ~measured relative tot);
the electron density per spin or electron-fillin
ne5(1/2N) ( i ,s^ci ,s

† ci ,s&, whereN is the number of sites in
the lattice; and the temperatureT.

In Sec. II we introduce the formalism and the approxim
tion that we use to form the phase diagram. In Sec. III,
details of the numerical calculations are described. Sec
IV presents the results for the second-order approxima
and compares them to the first-order approximation and
QMC results. A semiquantitative comparison is also ma
with the experimental data for Cr. Conclusions follow in Se
V.

II. FORMALISM

For a givenU andne there may exist more than one typ
of spin order for the ground state, each being stable a
different temperature. Here we start from the paramagn
942 © 1997 The American Physical Society
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state and find a criterion for the instability towards the fo
mation of a SDW state. To do this we couple an exter
magnetic field to the system and look for singularities in
response function~magnetic susceptibility! as we change the
model parameters. The total Hamiltonian of the system in
presence of the magnetic fieldhi is

Hh5H2(
i
hiSi

z , ~2!

whereH is the Hamiltonian in the absence of the extern
field @found in Eq.~1!# and i is the position of thei th elec-
tron with spinSi

z5(ssnis . The spatial variation of the ex
ternal fieldhi is chosen to probe the particular expected or
for the spins. For example, if we want to examine the ins
bility towards antiferromagnetism, we choosehi to be of the
same magnitude everywhere but of the opposite sign on
two sublattices of the bipartite lattice.

The static response of the system~or the static spin sus
ceptibility! at temperatureT is defined as follows:

x i j52
]^Si

z&
]hj

U
h50

~3!

52T(
n,s

s
]Gi in,s

]hj
U
h50

e2 ivn0
2
,

~4!

whereGi jn,s5*dte2 ivnt^Ttcj ,s(t)ci ,s
† (0)& is Green’s func-

tion at the Matsubara frequencyvn5(2n11)pT.
Dyson’s equation for Green’s function~of the Hamil-

tonianHh) is

~Gn,s! i j
215~G0n,s! i j

212S i j
n,s1shid i j , ~5!

whereG0n,s is the noninteracting (U50) Green’s function
and S i j

n,s is the matrix element of the proper self-energ
Relation~5! and the derivative of the identity

~Gn,s! i j5~Gn,s! i l ~Gn,s! lm
21~Gn,s!mj ~6!

are employed to find

x i j
n5x i j

0n12 (
k,k8,l ,l 8

(
n8,s,s8

sGikn,sGl in,s
dSkl

n,s

dGk8 l 8
n8,s8

]Gk8 l 8
n8,s8

]hj
U
h50

,

~7!

where x i j5T(nx i j
n and the bare susceptibility satisfie

x i j
0n52(sGi jn,sGj in,s .
For the paramagnetic state, we writeGi jn,s5Gi jn,2s and

dSs/dGs85dS2s/dG2s8, so that

x i j
n5x i j

0n1 (
k,k8,l ,l 8

(
n8
Gikn Gl inF dSkl

n,↑

dGk8 l 8
n8,↑

2
dSkl

n,↓

dGk8 l 8
n8,↑G

3(
s8

2s8
]Gk8 l 8

n8,s8

]hj U
h50

. ~8!

Next, we use a truncated~non-self-consistent! perturba-
tion expansion up to second order inU/t for the self-energy
-
l
e

e

l

r
-

he

.

in Eq. ~8!. This has been shown to be an accurate appro
mation for determining the transition temperatureTc for
small to moderate values ofU/t in the limit of large spatial
dimensions.4,7 This is our motivation for applying this simple
approximation to the three-dimensional case. Hereafter
G symbols denote the noninteracting (U50) Green’s func-
tions. It was found that the resulting self-energy is alm
local in three dimensions,9 i.e., S i j'S i id i j , and so we em-
ploy the local approximationS i j5S i id i j . This approxima-
tion becomes exact in large spatial dimensions,3 and in three
dimensions, the effect of the nonlocal fluctuations onTc is
around 3% in the weak-coupling limit.4

Figure 1 shows the diagrammatic expansion of the lo
self-energy through second order, which includes the Har
term and the second-order bubble. Evaluating the diagr
yields

S i j
m,s'FUT(n Gi in,2s

2U2T2(
n,n8
Gi jn,sGi jn8,2sGj in1n82m,2sGd i j , ~9!

for the second-order local self-energy. Substituting this
proximation in Eq.~8! and Fourier transforming to the recip
rocal lattice gives a Dyson-like equation for the susceptib
ity,

x~q!5x0~q!1T2(
n,n8

x0n~q!G loc
n,n8xn8~q!, ~10!

wherex(q) is the Fourier transform ofx i j in the first Bril-
louin zone and

G loc
n,n85U@12Ux loc

pp~ ivn1n8!#, ~11!

is the irreducible vertex function.x loc
pp denotes the loca

particle-particle susceptibility which is given by

x loc
pp~ ivn!5

T

N2 (
r ,p,p8

Gr~p!G2r1n~p8!, ~12!

FIG. 1. The local self-energyS i i in the second-order approxi
mation to the Hubbard model. The Fock term is absent in the H
bard model. The solid line represents the undressed (U50) elec-
tron Green’s functionGi j0 ( ivn) and the dotted line represents th
intrasite interactionU. The external legs just show the Matsuba
frequency dependence and are not included in the analytic exp
sions.
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andx0(q) is the usual bare particle-hole susceptibility,

x0~q!5
2T

N (
n,p
Gn~p!Gn~p1q!,

5
2T

~2p!3(n E d3p
1

ivn2e~p!1m

1

ivn2e~p1q!1m
.

~13!

In these equationsm is the chemical potential which alon
with the temperature determines the electron filling throu
the relation ne5(T/2N)(n,pGn(p)eivn0

2
. Here again,

guided by the quantum Monte Carlo study of the infini
dimensional model,6 we use the bare Green’s function
calculate the electron filling. At low temperatures, the te
perature dependence ofx loc

pp is found to be negligible. Since
we are interested in temperatures nearTc , which is low in
the smallU/t limit, we replacex loc

pp( ivn1n8) in Eq. ~11! by
its zero-temperature limit which is independent ofn and
n8,

x loc
pp~T50!5 lim

T→0

T

~2p!6(n U E d3p
1

ivn2e~p!1m U2.
~14!

We expectx(qc) to diverge at temperatureTc and elec-
tron filling nec when the system is unstable towards the f
mation of a SDW at the ordering wave vectorqc . So near
the transition temperature, we can neglectx0(q) compared
to x(q) in Eq. ~10!. Thus for low transition temperatures an
smallUx loc

pp we find, from Eq.~10! and Eq.~11!,

1

U
5x0~qc ,Tc ,nec!2x loc

pp~T50,nec!, ~15!

as the condition for the transition from the paramagne
phase to an ordered SDW phase. QMC results show that
particular form of the instability criterion in the limit of larg
spatial dimensions yields an accurate approximation toTc
for values ofU up to the bandwidth.6 Here we apply this
criterion to examine how the quantum fluctuations affect
phase diagram in three dimensions. Equation~15! is called
the modified Stoner criterion for the magnetic instability
the paramagnetic ground state. If the particle-particle sus
tibility is ignored on the right-hand side of Eq.~15!, the
modified Stoner criterion becomes the usual Stoner criter
this term results from including the second-order graph in
self-energy expansion.

The lowest-order effect of the quantum fluctuations is
markably simple: Just reduce the momentum-depen
particle-hole susceptibility by the local particle-particle su
ceptibility before applying the Stoner criterion.

III. NUMERICS

For each value ofTc , qc , andU, the root of Eq.~15!
yields the critical fillingnec for the SDW order. We use th
particle-hole symmetry of the model to find the phase d
gram only for values ofne,0.5; the phase diagram is sym
metric aroundne50.5. For a fixed temperature we can fin
different roots by changing the ordering wave vectorqc .
h
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Since the modified Stoner criterion of Eq.~15! is valid only
in the nonmagnetic region of the phase diagram, we acc
that value of filling for which an instability occurs first, a
we approach half-filling; i.e., we search for theqc in the first
Brillouin zone which makes the filling minimal for a fixe
temperature.

Calculations of the modified Stoner criterion for finite
size lattices show that the desiredqc changes only along the
edge of the Brillouin zone as the system is doped away fr
half-filling, i.e.,qc5(p,p,qz) for the reduced zone that con
tains thez axis. We use this fact to reduce the triple integ
in Eq. ~13! to an effectively one-dimensional integral in th
following way: First note that we can write

x0n~q!5
21

~2p!3

3E d3p
1

2~ ivn1m!12tcos~pz!12tcos~pz1qz!

3F 1

ivn2e~p!1m
1

1

ivn2e~p1q!1mG . ~16!

This becomes an integral over the three-dimensional~3D!
density of states ifqz5p ~i.e., at the zone corner!. Note,
however, that the dependence onpx andpy is only through
22tcos(px)22tcos(py) which allows thepx andpy integrals
to be replaced by an integral over the 2D density of sta
and hence to produce the local Green’s functions in 2D,

x0n~q!5
21

2p E dpz
1

2~ ivn1m!12tcos~pz!12tcos~pz1qz!

3@G2D„ivn12tcos~pz!1m…

1G2D„ivn12tcos~pz1qz!1m…#. ~17!

HereG2D(z) is the local 2D Green’s function,

G2D~z!5E de
r2D~e!

z2e
. ~18!

G2D(z) is evaluated with a quadrature routine which e
ploys a rational function expansion for largeuzu, and em-
ploys a 512-point Gaussian integration whenuzu is small. So
we can evaluatex0(q) efficiently by numerically performing
the remaining integration overpz . Note thatx loc

pp in Eq. ~14!
can easily be written in the form of a one-dimensional in
gral over the 3D density of states.

IV. RESULTS

Figure 2 shows the resulting phase boundary for the H
bard model using the modified Stoner criterion. At ha
filling the transition is always commensurate with the lattic
i.e., q5(p/a)(1,1,1). As the system is doped away fro
half-filling the transition temperature decreases and a poin
reached where the transition becomes incommensurate
the underlying lattice. Finite-size calculations show that
ordering wave vector changes only along the Brillouin zo
edge as the transition becomes incommensurate,
q5(p/a)(1,1,12d) . The inset to Fig. 2 shows thatd re-
mains small and eventually stops changing as the filling
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changed. Note that the ordering wave vector initially chan
very rapidly at the incommensurate order onset, which
reminiscent of the first-order jump seen in the Cr data.1

Figure 3 shows the result of a finite-size calculation
the original Stoner criterion which results from a first-ord
~Hartree! approximation for the self-energy. We see that t
transition temperature is enhanced by almost a factor of 4
each value ofU compared to the second-order approxim
tion results at half-filling. For a given value ofU the change
in slope at the onset of incommensuration is much sma
than the results of the second-order approximation. T
change of slope in the second-order approximation is ag
similar to what is seen in the Cr data. Also, as was alre
shown by Penn,2 in the first-order approximation, for value
of U large enough, the ordering wave vector changes
along the edge of the zone, but then continues to move

FIG. 2. Magnetic phase boundaries for the second-order l
approximation to the Hubbard model in three dimensions for t
different values of the interaction strengthU. The vertical axis
shows the ratio of the temperature to the hopping constant.
horizontal axis shows the electron filling. The~dashed! solid lines
denote the~in!commensurate transition from a paramagnetic to
spin-density-wave ground state in the thermodynamic limit. T
~open! solid circles denote the corresponding transitions for a fin
lattice of 80 unit cells forT.0.05t and 500 unit cells for lower
temperatures. The inset shows the correspondingz component of
the magnetic ordering wave vectorq vs filling. The phase diagram
is symmetric aroundne50.5.

FIG. 3. Magnetic phase boundaries for the first-order appro
mation to the Hubbard model in three dimensions for two differ
values of the interaction strengthU. The vertical axis shows the
ratio of the temperature to the hopping constant. The horizontal
shows the electron filling. The~open! solid circles denote the~in-
!commensurate transition from a paramagnetic to a spin-den
wave ground state for a finite lattice of 30 unit cells. The lines
a guide to the eye. The inset shows the correspondingz component
of the magnetic ordering wave vectorq vs filling. The phase dia-
gram is symmetric aroundne50.5.
s
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ward the zone center as the system is doped far away f
half-filling. This latter behavior has suggested that the s
tem can become ferromagnetic for low electron filling whi
is ruled out once the quantum fluctuations are included.

Figure 4 shows a comparison of the transition tempera
versusU at half-filling for the first- and second-order ap
proximations as well as the result of a QMC simulation10

We see that in the case of the second-order approxima
Tc has negative curvature forU/t around 10 similar to the
QMC result~although the former is not a valid approxima
tion for large values ofU), whereas in the first-order ap
proximationTc continues to increase withU with a positive
curvature. In fact, since the second-order approximation
exact asU→0, it is clear that the QMC data are overes
matingTc by a factor of 4 in the weak-coupling limit. Suc
criticism has already been raised by comparing to other
proximation methods.11

Electronic band structure calculations1 show that the
d-electron concentration for pure Cr is 2.28 electrons/~atom
spin!. In order to map this onto our single-band model, w
assume that 1/5 of this contributes to our single-band filli
implying ne50.456~there are fived bands in Cr!. The Fermi
energy of pure Cr is near the edge of ad band so that the
density of states has a large peak there; thus we assume
doping with Mn adds one electron to the single band and
doping with V removes one electron from it. This maps t
rest of the experimental data to the single-band model.
then fit the value ofU in the modified Stoner criterion, to
reproduce the experimental filling for the onset of inco
mensurate order. As shown in Fig. 5, the fit is remarka
good for U55.5t. Note that there is only one adjustab
parameter in this fit. The agreement is remarkable since
lattice structure for Cr is actually bcc and because we m
such simple assumptions in the mapping to a single-b
model. Furthermore, the experimental shape cannot be p
erly accounted for with a first-order approximation for a
reasonable value ofU.

V. CONCLUSIONS

We found a criterion for the instability of the parama
netic ground state of the 3D Hubbard model towards

al
o

e

a
e
e

i-
t

is

y-
e

FIG. 4. Comparison between the results of quantum Mo
Carlo simulations~Ref. 10! ~circles!, the first-order~dashed line!,
and the second-order local approximation~solid line!. Tc /t is the
ratio of the transition temperature at half-filling to the hopping
tegral.U is the interaction strength. The second-order local appro
mation shows the same sign of the curvature as the QMC re
whereas the first-order curve shows the wrong sign of the curvat
Also, since the second-order approximation has the correct limi
behavior asU→0, this shows that the QMC data are overestimat
Tc for small values ofU.
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formation of an ordered SDW state. This criterion is a sim
modification of the Stoner criterion and is derived by inclu
ing the second-order graph in the expansion of the local s
energy. Hence this criterion includes the lowest-order corr
tions of the old Stoner criterion due to quantum fluctuatio

FIG. 5. Comparison between the experimental data for ch
mium alloys~Ref. 1! and the results of the second-order local a
proximation. The~open! solid circles denote the experimental da
for the ~in!commensurate transitions in Cr alloys. The~dashed!
solid lines denote the results of the second-order local approx
tion for the~in!commensurate transitions. The experimental dat
best fit to the theoretical calculation whenU55.5t. TI is the
transition temperature at the paramagnetic-commensu
incommensurate phase boundary.TI5360 K for experimental data
and occurs when Cr is doped with 0.3 at. % of Mn.
e
-
lf-
c-
.

We showed that the magnetic phase boundary betw
the paramagnetic and SDW phases of the model chan
both quantitatively and qualitatively when we include t
effect of quantum fluctuations to the usual mean-field~Har-
tree! result. The quantum fluctuations suppress the transi
temperatures and exclude the possibility of the formation
ferromagnetism in the 3D Hubbard model.

We showed that the resulting phase boundary from
modified Stoner criterion is consistent with the experimen
data for the SDW in dilute chromium alloys whereas the
are features in the data that cannot be accounted for by
usual Stoner criterion with reasonable values of the inter
tion strength. We were indeed able to achieve remarka
agreement with the experimental data, although this mode
too simple to be a realistic one for Cr. However, since
modified Stoner criterion is a simple and efficient appro
mation, we hope it can be applied to more realistic mod
for Cr and other transition metals.
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