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Magnetic phase diagram of the Hubbard model in three dimensions:
The second-order local approximation
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A local, second-ordeftruncate¢l approximation is applied to the Hubbard model in three dimensions.
Lowering the temperature, at half-filling, the paramagnetic ground state becomes unstable towards the forma-
tion of a commensurate spin-density-wa\8DW) state(antiferromagnetispnand sufficiently far away from
half-filling towards the formation of incommensurate SDW states. The incommensurate-ordering wave vector
does not deviate much from the commensurate one, which is in accordance with the experimental data for the
SDW in chromium alloys[S0163-18297)00402-5

I. INTRODUCTION
H=—t > (c],¢,+cl,c)+UX nin, (D
Pure Cr has a spin-density-wat@DW) ground state with (). '
an ordgring wave vector which is incommensurgte W.ith th(?NhereciT (¢ ») represents the creatiqdestruction opera-
underlying lattice’ Addn‘_\g electrons to Ceby aIon!ng with ._tor of an't:aler’:tron in a Wannier state of spin(oc=*1/2 or
Mn) makes the magnetic order commensurate with the lattic

itei Co=ct e i -
and increases the transition temperature, whereas removir? ), on sitel, andn; ;=i ,Ci  is the electrqn number op
electrons from the systertby alloying with V) drives the erator. The first term corresponds to the kinetic energy and

magnetic order to a more incommensurate one, and déj__escrlbes the hopping of electrons between nearest-neighbor

creases the transition temperature, eventually to @& 5). sites on a lattice v!a an overlap integtarrhis term gives a
Penrt found qualitatively the same behavior for the groundt!ght'b'n,dmg dgscrlptlon of the electrons in asperlod|c poten-
state of a single-band Hubbard model within a mean-fieldia! forming a single energy bang (k) = —2t={_,cosqa for
approximation. The mean-field approximation leads to the® simple cubic lattice with lattice constaat. The second
usual Stoner criterion for the instability of the paramagneticd€'™m corresponds to the Coulomb repulsion between elec-
state to the formation of a SDW state. A first-order perturbalrons. The long-range Coulomb interaction is assumed to be
tion expansion of the self-energy in terms of the interactiorScréened in the solid so that only the interaction between two
parameter leads to the same criterion. In this paper we exterf]€Ctrons on the same site is retained, yielding the additional
this approximation one step further to a second-ofden-  €nergy ofU when the lattice site is doubly occupied.
self-consistentexpansion for the self-energy which includes  The model is specified by three parameters: the strength
the lowest-order quantum fluctuations. But motivated by thef the electron interaction (measured relative td);
case for large spatial dimensions, we ignore the nonlocdf’® ~€lectron  density per spin or electron-filling
(site-nondiagonalelements of the self-enerdyin fact, in-  Ne=(1/2N) Z; ,(c| ,c; ,), whereN is the number of sites in
clusion of the lowest-order quantum fluctuations has beethe lattice; and the temperatufe
shown to have a dramatic effect on transition temperatures n Sec. Il we introduce the formalism and the approxima-
and phase diagrams in the large-dimensional limit, and haon that we use to form the phase diagram. In Sec. IlI, the
been shown to agree with the quantum Monte C&BMC) details of the numerical calculations are described. Section
data over a wide range of interaction strendttfdNumerical 1V presents the results for the second-order approximation
evidence in this latter case has also shown that the strictignd compares them to the first-order approximation and the
truncated perturbation expansions are more accurate than aRMC results. A semiquantitative comparison is also made
kind of self-consistent solutions known to us, and that thewith the experimental data for Cr. Conclusions follow in Sec.
inclusion of higher-order terms in the self-energy does notV-
have any effect on the transition temperatures in the limit of
small interaction strengtH‘s? ' . Il. FORMALISM

The Hubbard mod&is perhaps the simplest model which
can be used to study the many-body aspects of correlated For a givenU andn, there may exist more than one type
electrons on a lattice. The Hubbard Hamiltonian is written inof spin order for the ground state, each being stable at a
the form different temperature. Here we start from the paramagnetic
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state and find a criterion for the instability towards the for- 5

mation of a SDW state. To do this we couple an external 5
magnetic field to the system and look for singularities in the @ , ,
response functiofmagnetic susceptibilijyas we change the mo : ! :
model parameters. The total Hamiltonian of the system in the Zii =il mt omis i om

presence of the magnetic field is

FIG. 1. The local self-energ¥;; in the second-order approxi-
Hh=H~- E hiS, (2)  mation to the Hubbard model. The Fock term is absent in the Hub-
bard model. The solid line represents the undres&éd @) elec-

whereH is the Hamiltonian in the absence of the externaltron Green’s functiorg](iw,) and the dotted line represents the
field [found in Eq.(1)] andi is the position of théth elec- intrasite interactiorlJ. The external legs just show the Matsubara
tron with spinS’=3 on;,,. The spatial variation of the ex- frequency dependence and are not included in the analytic expres-
ternal fieldh; is chosen to probe the particular expected ordeFions:
for the spins. For example, if we want to examine the insta-
bility towards antiferromagnetism, we chodseto be of the  in Eq. (8). This has been shown to be an accurate approxi-
same magnitude everywhere but of the opposite sign on theation for determining the transition temperatufg for

two sublattices of the bipartite lattice. small to moderate values &f/t in the limit of large spatial
The static response of the systéar the static spin sus- dimensiong’ This is our motivation for applying this simple
ceptibility) at temperaturd is defined as follows: approximation to the three-dimensional case. Hereafter the

G symbols denote the noninteracting £0) Green'’s func-
tions. It was found that the resulting self-energy is almost

Xij = ah 3 local in three dimensionsj.e., 2ij~2id;, and so we em-
=0 ploy the local apprommaﬂoﬁlIJ 2 6jj . This approxima-
Pt tion becomes exact in large spatial dimensidasd in three
:21-2 o — g ien0 dimensions, the effect of the nonlocal fluctuationsTonis
no o h=0 around 3% in the weak-coupling linfit.
(4) Figure 1 shows the diagrammatic expansion of the local

where gin_,o:deefiwnr<Tch a(T)C-Tg(O» is Green’s func- self-energy through second order, which includes the Hartree

tion at the Matsubara frequen&yné(2n+1)wT. term and the second-order bubble. Evaluating the diagrams

Dyson’s equation for Green's functiofof the Hamil- yields
tonian™,,) is
(gn,a)i}l:(QOn,a’)” 1 zn o4 O'h 5” , (5) zm o UTE gn -
where G°"¢ is the noninteractingly=0) Green’s function
no ; ; _
and 2ij is the matrix .eler.nent of the proper self-energy. —UZTZE gn o n o n|+n -m,— AP TIRC)
Relation(5) and the derivative of the identity ]
(G )i =(G" )it (G" )i (G mj (6) o _
, for the second-order local self-energy. Substituting this ap-
are employed to find proximation in Eq(8) and Fourier transforming to the recip-
58 g”' o rocal lattice gives a Dyson-like equation for the susceptibil-
o 0%k (7 G ity,
Xi] :X?jn"'z > X aGvar e oh :
kKL 00,0 Gy L R
(7

Y x(a)= x°<q>+T22 XN@TRS XY (@), (10
where Xij= TEnX{‘ and the bare susceptibility satisfies

X” —_E gno' na_
For the paramagnetlc state, we Wr@

n—a

and  wherex(q) is the Fourier transform of;; in the first Bril-

83918G% = 6357918G7"", so that louin zone and
EO
X{}:XIJ + 2 2 glk li n’ T Ioc _U[l UXIoc(Iwn+n )] (11)
KK/ ,LIT ' G\ Qk,p
agn o’ is the irreducible vertex functionyf? denotes the local
k’I’
XE 20 (8)  Pparticle-particle susceptibility which is given by
" h=0
Next, we use a truncateghon-self-consistetperturba- xR wy) = NG 2 G'(p)G ""(p"), (12)

tion expansion up to second orderltt for the self-energy r.p.p’
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and x°(q) is the usual bare particle-hole susceptibility, Since the modified Stoner criterion of E@.5) is valid only

in the nonmagnetic region of the phase diagram, we accept
that value of filling for which an instability occurs first, as
we approach half-filling; i.e., we search for thgin the first
Brillouin zone which makes the filling minimal for a fixed

x°(q) = —E G"(p)G"(p+q),

2 f e 1 temperature
)3 Pio n—€ p)+,u iw,—e(p+qQ)+u’ Calculations of the modified Stoner criterion for finite-
size lattices show that the desirgdchanges only along the

13 edge of the Brillouin zone as the system is doped away from

In these equationg is the chemical potential which along half-filling, i.e., q.=(,,q,) for the reduced zone that con-

with the temperature determines the electron filling througHains thez axis. We use this fact to reduce the triple integral

the relation n.=(T/2N)=, pgn(p)eiwno_. Here again, N Eq..(13) to an.effectlvely one—dlmen5|9nal integral in the

guided by the quantum Monte Carlo study of the infinite-following way: First note that we can write

dimensional modéi,we use the bare Green’s function to 1

calculate the electron filling. At low temperatures, the tem- ,0"(q)= ——

perature dependence gfP is found to be negligible. Since (2m)

we are interested in temperatures n&ar which is low in , 1

the smallU/t limit, we replacexfl(iw,. ) in Eg. (11) by f d°p=—

its zero-temperature limit which is independent ofand 2(1wnt p) +2tcosp,) +2tcos p,+q,)

n’, » 1 N 1 16
2 o, —€e(p)+u  io,—e(p+q)+
xPR(T=0) —I|m 62 fd3 — | . , , " ,
o(2m) e(p)+,u This becomes an integral over the three-dimensigB8I)

(14) density of states ifj,= (i.e., at the zone corngrNote,
however, that the dependence ppandp, is only through
We expecty(q.) to diverge at temperaturg, and elec- — 2tcosf,)—2tcosf,) which allows thep, andp, integrals
tron filling ne. when the system is unstable towards the for-to be replaced by an integral over the 2D density of states,
mation of a SDW at the ordering wave vectgy. So near and hence to produce the local Green’s functions in 2D,
the transition temperature, we can neglgétq) compared

to x(q) in Eq.(10). Thus for low transition temperatures and on( ) = _f dp,=— 1

small U xP? we find, from Eq.(10) and Eq.(11), 27 ?2(iwp+ u)+ 2tcog p,) + 2tcog p,+q,)
1 0 X[Gopli w,+2tcog p,) + u)
U:X (Ac, TeaNed) — Xloc(T 0.neo), (15 +QZD(iwn+2tcos( D+ qz)+M)] 17)

as the condition for the transition from the paramagneticdHere G,p(2) is the local 2D Green'’s function,
phase to an ordered SDW phase. QMC results show that this
particular form of the instability criterion in the limit of large
spatial dimensions yields an accurate approximatioff o
for values ofU up to the bandwidtf.Here we apply this
criterion to examine how the quantum fluctuations affect the G.p(2) is evaluated with a quadrature routine which em-
phase diagram in three dimensions. Equatibb) is called ploys a rational function expansion for lar¢®, and em-
the modified Stoner criterion for the magnetic instability of ploys a 512-point Gaussian integration wHehis small. So
the paramagnetic ground state. If the particle-particle suscepve can evaluatg®(q) efficiently by numerically performing
tibility is ignored on the right-hand side of Eql5), the the remaining integration over,. Note thaty[>. in Eq. (14)
modified Stoner criterion becomes the usual Stoner criteriongan easily be written in the form of a one-dimensional inte-
this term results from including the second-order graph in theyral over the 3D density of states.
self-energy expansion.

The lowest-order effect of the quantum fluctuations is re- IV. RESULTS
markably simple: Just reduce the momentum-dependent
particle-hole susceptibility by the local particle-particle sus- ~ Figure 2 shows the resulting phase boundary for the Hub-

Gon(2) = f dep 20l E) . (18)

ceptibility before applying the Stoner criterion. bard model using the modified Stoner criterion. At half-
filling the transition is always commensurate with the lattice,
IIl. NUMERICS i.e.,, q=(m/a)(1,1,1). As the system is doped away from

half-filling the transition temperature decreases and a point is
For each value ofl;, q., andU, the root of Eq.(15) reached where the transition becomes incommensurate with
yields the critical fillingn, for the SDW order. We use the the underlying lattice. Finite-size calculations show that the
particle-hole symmetry of the model to find the phase dia-ordering wave vector changes only along the Brillouin zone
gram only for values oh,<0.5; the phase diagram is sym- edge as the transition becomes incommensurate, i.e.,
metric aroundh,=0.5. For a fixed temperature we can find g=(=/a)(1,1,1- ) . The inset to Fig. 2 shows tha re-
different roots by changing the ordering wave vectgr. mains small and eventually stops changing as the filling is
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FIG. 2. Magnetic phase boundaries for the second-order local FIG. 4. Comparison between the results of quantum Monte
approximation to the Hubbard model in three dimensions for twoCarlo simulationsRef. 10 (circles, the first-order(dashed ling
different values of the interaction strength. The vertical axis and the second-order local approximati@olid line). T/t is the
shows the ratio of the temperature to the hopping constant. Theatio of the transition temperature at half-filling to the hopping in-
horizontal axis shows the electron filling. Tka@ashedl solid lines  tegral.U is the interaction strength. The second-order local approxi-
denote the(in)commensurate transition from a paramagnetic to amation shows the same sign of the curvature as the QMC result,
spin-density-wave ground state in the thermodynamic limit. Thewhereas the first-order curve shows the wrong sign of the curvature.
(open solid circles denote the corresponding transitions for a finiteAlso, since the second-order approximation has the correct limiting
lattice of 80 unit cells forT>0.0% and 500 unit cells for lower behavior adJ—0, this shows that the QMC data are overestimating
temperatures. The inset shows the correspondicgmponent of T, for small values olU.
the magnetic ordering wave vectgrvs filling. The phase diagram

is symmetric around,=0.5. ward the zone center as the system is doped far away from

half-filling. This latter behavior has suggested that the sys-
: - tem can become ferromagnetic for low electron filling which
changed_. Note that t_he ordering wave vector initially Chang?% ruled out once the quantum fluctuations are included.
very rapidly at the incommensurate order onset, which is" tjqre 4 shows a comparison of the transition temperature
reminiscent of the first-order jump seen in the Cr data.  yergusy at half-filling for the first- and second-order ap-
Figure 3 shows the result of a finite-size calculation forproximations as well as the result of a QMC simulatin.
the original Stoner criterion which results from a first-order\ye see that in the case of the second-order approximation,
(Hartreg approximation for the self-energy. We see that theT _ has negative curvature fdd/t around 10 similar to the
transition temperature is enhanced by almost a factor of 4 fopMC result(although the former is not a valid approxima-
each value olU compared to the second-order approxima-tion for large values o), whereas in the first-order ap-
tion results at half-filling. For a given value &f the change proximationT, continues to increase with with a positive
in slope at the onset of incommensuration is much smallecurvature. In fact, since the second-order approximation is
than the results of the second-order approximation. Thigxact asU—D0, it is clear that the QMC data are overesti-
change of slope in the second-order approximation is agaimating T, by a factor of 4 in the weak-coupling limit. Such
similar to what is seen in the Cr data. Also, as was alreadgriticism has already been raised by comparing to other ap-
shown by PenA,in the first-order approximation, for values proximation methods®
of U large enough, the ordering wave vector changes first Electronic band structure calculatidnshow that the

along the edge of the zone, but then continues to move tdd-electron concentration for pure Cr is 2.28 electroatsim
spin). In order to map this onto our single-band model, we

assume that 1/5 of this contributes to our single-band filling,
implying n,= 0.456(there are fivel bands in Cy. The Fermi
energy of pure Cr is near the edge ofieband so that the
density of states has a large peak there; thus we assume that
doping with Mn adds one electron to the single band and that
doping with V removes one electron from it. This maps the
rest of the experimental data to the single-band model. We
then fit the value oMU in the modified Stoner criterion, to
, ‘ « reproduce the experimental filling for the onset of incom-
0.2 03 04 0.5 mensurate order. As shown in Fig. 5, the fit is remarkably
n, good for U=5.%. Note that there is only one adjustable
parameter in this fit. The agreement is remarkable since the
FIG. 3. Magnetic phase boundaries for the first-order approxi{attice structure for Cr is actually bcc and because we made
mation to the Hubbard model in three dimensions for two differentsych simple assumptions in the mapping to a single-band
values of the interaction strength. The vertical axis shows the  model. Furthermore, the experimental shape cannot be prop-

ratio of the temperature to the hopping constant. The horizontal axiény accounted for with a first-order approximation for any
shows the electron filling. Théopen solid circles denote thén- reasonable value df.

)commensurate transition from a paramagnetic to a spin-density-

3.0
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wave ground state for a finite lattice of 30 unit cells. The lines are V. CONCLUSIONS
a guide to the eye. The inset shows the correspordit@mponent
of the magnetic ordering wave vectgrvs filling. The phase dia- We found a criterion for the instability of the paramag-

gram is symmetric around,=0.5. netic ground state of the 3D Hubbard model towards the
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20 ‘ ‘ : We showed that the magnetic phase boundary between

lines: theory U=5.5t the paramagnetic and SDW phases of the model changes

15 Sf;flgg;eex periment both quantitatively and qgalltatlvely when we mc]ude the
effect of quantum fluctuations to the usual mean-figldr-

Eh 1.0t tred result. The quantum fluctuations suppress the transition
temperatures and exclude the possibility of the formation of
0.5 1 ferromagnetism in the 3D Hubbard model.
We showed that the resulting phase boundary from this
0.0 : : o IR 4 . .
0.42 0.44 0.46 0.48 0.50 modified Stoner criterion is consistent with the experimental

n data for the SDW in dilute chromium alloys whereas there
are features in the data that cannot be accounted for by the
usual Stoner criterion with reasonable values of the interac-

FIG. 5. Comparison between the experimental data for chro-. h indeed abl hi kabl
mium alloys(Ref. 1) and the results of the second-order local ap-tIon strength. We were indeed able to achieve remarkable

proximation. The(open solid circles denote the experimental data 29reement with the experimental data, although this model is
for the (in)commensurate transitions in Cr alloys. Ttaashey 0O Simple to be a realistic one for Cr. However, since the
solid lines denote the results of the second-order local approximanodified Stoner criterion is a simple and efficient approxi-

tion for the (in)commensurate transitions. The experimental data ignation, we hope it can be applied to more realistic models
best fit to the theoretical calculation whan=5.5. T, is the for Cr and other transition metals.

transition temperature at the paramagnetic-commensurate-
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