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Abstract We examine the time evolution of an asymmetric
Hubbard dimer, which has a different on-site interaction on
the two sites. The Hamiltonian has a time-dependent hop-
ping term, which can be employed to describe an electric
field (which creates a Hamiltonian with complex matrix ele-
ments), or it can describe a modulation of the lattice (which
has real matrix elements). By examining the symmetries
under spin and pseudospin, we show that the former case
involves at most a 3 × 3 block—it can be mapped onto the
time evolution of a time-independent Hamiltonian, so the
dynamics can be evaluated analytically and exactly (by solv-
ing a nontrivial cubic equation). We also show that the latter
case reduces to at most 2 × 2 blocks, and hence, the time
evolution for a single Trotter step can be determined exactly,
but the time evolution generically requires a Trotter product.

Keywords Hubbard dimer · Exact time dynamics ·
Field-induced polarization · Modulation spectroscopy

1 Introduction

The two-site asymmetric Hubbard model is an interesting
paradigm for the many-body problem, because it can be
solved exactly. This was recognized soon after the Hubbard
model was introduced in the work of Harris and Falicov
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[1] for the symmetric case in the 1960s. It turns out that
this problem also greatly simplifies the time dynamics, even
when the Hamiltonian has an explicit time-dependence and
is asymmetric. Recent work has renewed interest in this
model [2]. Here, we show how to find the analytic time
evolution of the system. When the time-dependent coupling
arises from a time-varying complex phase to the hopping,
a simple unitary transformation maps the problem onto
a time-independent one, which has dynamics that can be
determined analytically from the energy eigenvalues. When
the time-dependent coupling is a time-varying real function
for the hopping, then one can find analytic formulae for
the Trotter factor of the evolution, but a full Trotter product
needs to be calculated to determine the evolution operator,
similar to the Landau-Zener problem. These results can be
applied to simplified models of molecules, to the modula-
tion spectroscopy of trapped atoms in a dimer lattice, and
also to the two-site Wilson chain, employed as a first step
in solving the single-impurity Anderson model. The results
discussed here have been presented at the Superstripes 2016
conference [3].

2 The Asymmetric Two-Site Hubbard Model

We begin with the Hamiltonian for the asymmetric two-
site Hubbard model, written in a particle-hole symmetric
fashion:

H(t) = uc

(
nc↑ − 1

2

)(
nc↓ − 1

2

)

+ ua

(
na↑ − 1

2

)(
na↓ − 1

2

)

+
∑
σ

[
γ (t)c†σ aσ + γ ∗(t)a†σ cσ

]
. (1)
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The system is determined by two sites, and we use the
symbol c†σ to denote the creation operator for a fermion
of spin σ on the first site and a†σ for the second site
(the operators cσ and aσ are the corresponding destruction
operators). These operators satisfy the standard anticom-
mutation relations {c†σ , cσ }+ = 1, {a†σ , aσ }+ = 1, and all
other anticommutators between any two fermions vanish.
The corresponding number operators are nc

σ = c†σ cσ and
na

σ = a†σ aσ . The Coulomb repulsion on each site is given
by ua and uc. The third term is the kinetic energy, where
the hopping γ (t) is time-dependent and can be complex.
Because this Hamiltonian has two fermionic degrees of free-
dom, it can be represented by a 16× 16 matrix at each time
t . The matrix can be block-diagonalized using symmetries
of the system.

The Hubbard model on a bipartite lattice has two SU(2)
symmetries: spin and pseudospin. We employ these symme-
tries to organize the different basis states for the Hamilto-
nian. This then naturally block diagonalizesH(t). To begin,
the total number of electrons operator is N = nc↑ + nc↓ +
na↑ + na↓, and it commutes with H(t). The eigenstates of
N and corresponding eigenvalues are indicated in Table 1.
In this table, we write states in a direct product space
{|0〉, | ↑〉, | ↓〉, | ↑↓〉}c ⊗ {|0〉, | ↑〉, | ↓〉, | ↑↓〉}a .

The total spin in the z-direction is given by Sz =
1
2

(
nc↑ + na↑ − nc↓ − na↓

)
, which also commutes with the

Hamiltonian. Similarly, the spin raising and lowering oper-
ators, S+ = c

†
↑c↓ + a

†
↑a↓ and S− = c

†
↓c↑ + a

†
↓a↑ commute

with H(t). Hence, S2 = (S+S− + S−S+)/2 + SzSz and Sz

Table 1 Eigenvalues of the 16 different fermionic states with respect
to the conserved symmetries of the model

States N S Sz J Jz

|0, 0〉 0 0 0 1 −1

| ↑, 0〉 1 1/2 1/2 1/2 −1/2

|0,↑〉 1 1/2 1/2 1/2 −1/2

| ↓, 0〉 1 1/2 −1/2 1/2 −1/2

|0,↓〉 1 1/2 −1/2 1/2 −1/2

| ↑, ↑〉 2 1 1 0 0
1√
2

(| ↑, ↓〉 + | ↓, ↑〉) 2 1 0 0 0
1√
2

(| ↑, ↓〉 − | ↓, ↑〉) 2 0 0 0 0
1√
2

(| ↑↓, 0〉 + |0, ↑↓〉) 2 0 0 0 0
1√
2

(| ↑↓, 0〉 − |0, ↑↓〉) 2 0 0 1 0

| ↓, ↓〉 2 1 −1 0 0

| ↑↓, ↓〉 3 1/2 −1/2 1/2 1/2

| ↓, ↑↓〉 3 1/2 −1/2 1/2 1/2

| ↑↓, ↑〉 3 1/2 1/2 1/2 1/2

| ↑, ↑↓〉 3 1/2 1/2 1/2 1/2

| ↑↓, ↑↓〉 4 0 0 1 1

Table 2 States coupled together by the hopping term of the
Hamiltonian

Couplings

|0, 0〉
| ↑, ↑〉
| ↓, ↓〉
| ↑↓, ↑↓〉
| ↑, 0〉 → |0, ↑〉 → | ↑, 0〉
| ↓, 0〉 → |0, ↓〉 → | ↓, 0〉
| ↑↓, ↑〉 → | ↑, ↑↓〉 → | ↑↓, ↑〉
| ↑↓, ↓〉 → | ↓, ↑↓〉 → | ↑↓, ↓〉
| ↑, ↓〉 → | ↑↓, 0〉 → | ↓, ↑〉 →

|0,↑↓〉 → | ↑, ↓〉

are also good quantum numbers. The pseudospin operator
Jz = N

2 −1 always commutes withH(t) as well. The corre-

sponding raising and lowering operators J+ = c
†
↑c

†
↓ − a

†
↑a

†
↓

and J− = c↓c↑ − a↓a↑ commute only when γ (t) is real,
so in general, J 2 = (J+J− + J−J+)/2 + JzJz is not a con-
served symmetry. The quantum numbers under all of these
symmetries are summarized in Table 1. Using these sym-
metries, we immediately see that the matrix should block
diagonalize into four 1× 1 blocks, four 2× 2 blocks, and, if
J is a good quantum number, two more 1× 1 and one more
2× 2 block, otherwise one more 1× 1 and one 3× 3 block.

Table 2 shows which states are coupled together by the
hopping term. In this case, we use the direct product states
to show the couplings, and in this basis, the Hamiltonian
block diagonalizes to four 1 × 1 blocks, four 2 × 2 blocks
and a 4 × 4 block. We enumerate the states in the fol-
lowing order: |0, 0〉, | ↑, 0〉, |0, ↑〉, | ↓, 0〉, |0, ↓〉, | ↑, ↑〉,
| ↑, ↓〉, | ↑↓, 0〉, |0, ↑↓〉, | ↓, ↑〉, | ↓, ↓〉, | ↑↓, ↓〉, | ↓, ↑↓〉,
| ↑↓, ↑〉, | ↑,↑↓〉, | ↑↓, ↑↓〉. This labels the states in order
of total number operator eigenstates, and pairs together
states which are coupled through the Hubbard Hamiltonian.
The 1 × 1 blocks are summarized in Table 3; the remaining

Table 3 1× 1 blocks ofH(t) and their corresponding 1× 1 blocks in
the evolution operator

State Hamiltonian Evolution operator

matrix element matrix element

|0, 0〉 (uc + ua) /4 e−i t
4 (uc+ua)

| ↑, ↑〉 − (uc + ua) /4 ei t
4 (uc+ua)

| ↓, ↓〉 − (uc + ua) /4 ei t
4 (uc+ua)

| ↑↓, ↑↓〉 (uc + ua) /4 e−i t
4 (uc+ua)
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blocks are given next. The 2 × 2 blocks for the | ↑, 0〉 and
|0, ↑〉 states and for the | ↓, 0〉 |0, ↓〉 states are identical and
given by

H(1)
2×2(t) =

( − 1
4 (uc − ua) γ ∗(t)

γ (t) 1
4 (uc − ua)

)
. (2)

For the | ↑↓, ↓〉 and | ↓, ↑↓〉 states and the | ↑↓, ↑〉 and
| ↑, ↑↓〉 states, the 2× 2 blocks are also identical and given
by H(2)

2×2(t) = −H(1)
2×2(t). The remaining 4 × 4 block, for

the four states {| ↑, ↓〉, | ↑↓, 0〉, |0, ↑↓〉, | ↓, ↑〉}, becomes

H4×4 =

⎛
⎜⎜⎝

− 1
4 (uc + ua) γ (t) γ ∗(t) 0

γ ∗(t) 1
4 (uc + ua) 0 −γ ∗(t)

γ (t) 0 1
4 (uc + ua) −γ (t)

0 −γ (t) −γ ∗(t) − 1
4 (uc + ua)

⎞
⎟⎟⎠ .

(3)

To simplify this further, we employ the S and J symmetries.
Converting to the basis given in Table 1 yields

H4×4(t) =

⎛
⎜⎜⎝

− 1
4 (uc + ua) 0 0 0

0 − 1
4 (uc + ua) γ (t) + γ ∗(t) γ (t) − γ ∗(t)

0 γ (t) + γ ∗(t) 1
4 (uc + ua) 0

0 γ ∗(t) − γ (t) 0 1
4 (uc + ua)

⎞
⎟⎟⎠ .

(4)

When γ (t) = γ ∗(t), we see that the Hamiltonian decom-
poses into a 2× 2 and two 1× 1 blocks, as claimed because
J is a good quantum number.

Now, we move on to describe the evolution operator,
which is given by

U(t, t ′) = Tt e
−i

∫ t
t ′ dt̄H(t̄)

= U(t, t − �t)U(t − �t, t − 2�t)

· · ·U(t ′ + �t, t ′), (5)

where Tt denotes the time-ordered product and the RHS is
a Trotter product. If we numerically evaluate the evolution
operator using a Trotter product, the evolution operator can
be determined analytically at each time step. For complex
γ (t), we must exponentiate a 3 × 3 matrix, which requires
us to solve a cubic equation. However, for real γ (t), the
total Hamiltonian is only composed of 2×2 blocks at worst.
An example of a time-dependent γ (t) that is real arises in
a modulation spectroscopy experiment, where the hopping
is modulated in magnitude via γ (t) = γ0 + δγ cos(�t),
although the specific functional form for the real γ (t) is
not needed to determine the overall dynamics of the system.
The evolution operator for the 1 × 1 blocks are tabulated in
Table 3. The Trotter factor for the 2 × 2 blocks with real γ

are

U (1)
2×2 = cos

⎛
⎝�t

√
δu2

16
+ γ 2

⎞
⎠ I

+
i sin

(
�t

√
δu2

16 + γ 2

)
√

δu2

16 + γ 2

(
γ τx − δu

4
τz

)
, (6)

and U (2)
2×2 = U (1)

2×2|t→−t , where δu = uc − ua , and τ rep-
resents a Pauli spin matrix. Note that �t here represents a
small time-interval and we suppressed the time dependence
of γ . For the 4 × 4 block, the Trotter factor is given by

Fig. 1 Double occupancy for c a as a function of time for � = 3 and
b as a function of frequency for t = 2. The thermal state has β = 0.5.
The functional form for the modulation is γ (t) = 2 + cos(�t); the

interactions are uc = 10 and ua = 5. As expected the periodicity
remains the same at finite temperature, but with a reduced amplitude
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Fig. 2 Polarization with respect to time with E = 20 (a) and electric field with t = 1 (b). In both cases, ua = 2, uc = 1 and β = 1. The field
strength γ0 = 1

with

U (3)
2×2 = cos

⎛
⎝�t

√
s2

16
+ 4γ 2

⎞
⎠

+
i sin

(
�t

√
s2

16 + 4γ 2

)
√

s2

16 + 4γ 2

(
2γ τx − s

4
τz

)
, (8)

where s = uc +ua . This allows for the complete solution of
the time-evolution using the analytic Trotter factors.

Another common time-dependent problem is when an
electric field is applied to the system. The dc field (turned

on at t = 0) is described by a time-dependent vector poten-
tial E = −dA(t)/dt with A(t) = −Etθ(t) and θ(t) the unit
step function. Then the functional form becomes γ (t) =
γ0e

−iA(t)·(Ra−Rc) = γ0e
iEt if we assume the a site is to the

right of the c site and γ0 is real. The 4×4 block (in the orig-
inal direct product basis) of the Hamiltonian is converted to
H̄4×4 = U†H4×4U − iU†U̇ via the unitary transformation
U = diag{1, exp(−iEt), exp(iEt), 1} which yields
H̃4×4

=

⎛
⎜⎜⎝

− 1
4 (uc + ua) γ0 γ0 0

γ0
1
4 (uc + ua) − E 0 −γ0

γ0 0 1
4 (uc + ua) + E −γ0

0 −γ0 −γ0 − 1
4 (uc + ua)

⎞
⎟⎟⎠ .

(9)

Fig. 3 Average energy as a function of time for γ (t) = 1+0.5 cos�t (a) and γ (t) = eiEt (b). We have uc = 10, ua = 5, β = 1, and E = � = 5
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This is now time-independent, so the evolution operator
can be directly written down. Converting to the S and J

eigenstate basis, we find

H̃4×4 =

⎛
⎜⎜⎝

− 1
4 s 0 0 0
0 1

4 s 2γ0 0
0 2γ0 1

4 s −E

0 0 −E − 1
4 s

⎞
⎟⎟⎠ . (10)

The evolution operator can now be analytically obtained
using the cubic formula and multiplying by the diagonal
matrix U .

For the other 2×2 blocks, we similarly move to a rotating
frame with U ′ = diag

{
1, eiEt

}
, and we find

H(1)
2×2 =

( − 1
4 δu γ0

γ0 E + 1
4 δu

)
, H(2)

2×2 =
( 1

4 δu −γ0

−γ0 E − 1
4 δu

)
. (11)

Note that the time-independent form of the Hamiltonian
corresponds precisely to the case in Ref. [2], with E =
−�v, as expected (when we take the limit uc = ua).

3 Results

For the case of real γ , we choose γ (t) = γ0 + δγ cos�t ;
we pick uc = 2, ua = 1, γ0 = 1 and δγ = 0.5. We measure
the double occupancy, or 〈nc↑nc↓〉 and 〈na↑na↓〉. Modulating
the lattice for cold atoms typically leads to an increase of
double occupancy along with oscillations. We use

Dα
g (t) = 〈ψg|U†(3)

2×2 (t, 0)nα↑nα↓U (3)
2×2(t, 0)|ψg〉, (12)

Dα
t (t) = TrN=2

(
e−βH(0)U†(t, 0)nα↑nα↓U(t, 0)

)
, (13)

where we can restrict the trace to the N = 2 sector for the
canonical thermal distribution and we take α = a, c.

Figure 1 shows the double occupancy for a simplified
modulation spectroscopy, both as a function of time at fixed
frequency and as a function of frequency at fixed time. As
one might expect, the amplitude of the oscillations is smaller
for a thermal state than for the ground state. The curves do
not show perfect periodicity, because there is more than one
frequency contributing to the oscillations. But, the dominant
frequency is the driving frequency �. In panel (B), we can
see that there are broad resonances when � is a multiple of
3.

For the dc electric field, we have γ (t) = γ0e
iEt . We mea-

sure the polarization of the molecule given by 〈nc↑ + nc↓ −
na↑ − na↓〉. Similar to the double occupancy, we have

Pg(t) = 〈ψg|U†
4×4(t, 0)(nc − na)U4×4(t, 0)|ψg〉, (14)

Pt(t) = TrN=2

(
e−βH(0)U†(t, 0)(nc − na)U(t, 0)

)
, (15)

where we are working with a canonical distribution that
fixes N = 2 for the thermal distribution.

The polarization is shown in Fig. 2, where the blue rep-
resents the ground state polarization, and the red represents
the thermal polarization with β = 1. For most cases, we
observed that the thermal polarizability rapidly converges to
the ground state polarizability as one increases β, and they
look identical for β ∼ 10. The polarization also can develop
beats. For the ground state polarization, there are two domi-
nant frequencies, and a third less prominent frequency; this
comes from the three energies in the 3 × 3 block and the
fact that the electric field does not change the symmetry of
the wavefunctions as t varies. The thermal state is somewhat
more complicated, showing more frequencies and a reduced
amplitude as expected. The electric field dependence shows
a decreasing amplitude with increasing E and oscillations at
a single frequency for the given time.

In Fig. 3, we show the average energy as a function of
time for both cases. They oscillate approximately at the
expected frequencies of 2π/� and 2π/E. In spite of the
fact that this is an interacting system, the energy tends to
oscillate and not have any overall increase with time.

While these results, and this model is quite simple,
there is experimental evidence of two different sites in the
strongly correlated CuO2 plane of cuprates, which has been
discussed as a generic feature of high temperature supercon-
ductivity [4] and provides some experimental support for
the features discussed in the theory above.

4 Conclusions

We show that the real-time behavior of the asymmetric two-
site Hubbard model can be mapped to a block-diagonal
time-independent Hamiltonian when the coupling is given
by an electric field, and can be described by the Trotter for-
mula with exact analytic results for each Trotter factor when
the off-diagonal hopping is always real. We used these solu-
tions to examine the double occupancy for an analog of
modulation spectroscopy and the polarization for an electric
field. In future work, we plan to incorporate this time evolu-
tion into the solution of quantum impurity problems, which
will further broaden their applicability.
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